有理数培优训练

合集下载

2024北师大版七年级数学上册第二章有理数的概念及加减运算培优专题训练

2024北师大版七年级数学上册第二章有理数的概念及加减运算培优专题训练

七年级数学上册第二章有理数一.知识点梳理:(一)有理数的相关概念1.正数和负数可以表示具有的量,既不是正数也不是负数。

2.有理数的分类:(1)有理数可以分为和;(2)有理数可以分为,和 .3.非负数是指;非正数是指 .(二)数轴绝对值相反数1.数轴:规定了的直线叫做数轴。

数轴是研究有理数的工具。

2.任何一个有理数都可以用数轴上的来表示。

3.任何一个数都有两部分组成: .4.相反数:只有的两个数互为相反数,0的相反数是 .一个数a的相反数是 .5. 绝对值:在数轴上,一个数所对应的点与原点之间的距离,叫做这个数的绝对值.一个数a的绝对值可以表示为 .6.绝对值的性质:一个正数的绝对值是;一个负数的绝对值是它的;0的绝对值是。

7.有理数大小的比较:数轴上两个点表示的数,右边的总比左边的;正数都与0;负数都 0;两个负数比较,绝对值大的反而(三)有理数的加减运算1.有理数的加法法则:同号两数相加,取的符号,并把绝对值;绝对值不等的异号两数相加,取的符号,并用较大数的绝对值较小数的绝对值;互为相反数的两数相加得;一个数同0相加得。

2.有理数的减法法则:减去一个数等于这个数的相反数。

3.有理数的运算是先定符号,再定绝对值。

要分清“+”是正号还是加号.4.数轴上点A表示数a,点B表示数b,则点A,B之间的距离是 .5.非负数的性质:若几个非负数的和为0,则每一个非负数的值为 .(四)有理数的乘法运算有理数的乘除运算法则:1.两数相乘,同号得,异号得,并把相乘。

2.任何数与0相乘都得3.几个不等于0的数相乘,积的符号由的个数决定。

当负因数有个数时,积为正;当负因数有个数时,积为负,并把绝对值相乘。

4.几个数相乘,有一个因数为0时,积为5.进行有理数乘法运算时,先确定积的符号,再确定积的绝对值 .6.进行乘除运算时,带分数要化为假分数 .(五)有理数的除法有理数的除法法则:除以一个数(不为0))等于乘以这个数的倒数(六)乘方的意义及性质1.求n个相同因数a的的运算叫做乘方,记作a n,这里a叫,n叫做 .乘方的结果叫 .2.底数是分数或负数时,要用括号把底数括起来。

有理数经典培优训练含答案

有理数经典培优训练含答案

专训一:有理数的比较大小的方法 名师点金:有理数大小的比较需要根据有理数的特征灵活地选择适当的方法,除了常规的比较大小的方法外,还有几种特殊的方法:作差法、作商法、找中间量法、倒数法、变形法、数轴法、特殊值法、分类讨论法等.)利用作差法比较大小1.比较1731和5293的大小.*利用作商法比较大小;2.比较-172 016和-344 071的大小.;利用找中间量法比较大小3.比较1 0072 016与1 0092 017的大小.[利用倒数法比较大小· 4.比较1111 111和1 11111 111的大小.)利用变形法比较大小5.比较-2 0142 015,-1415,-2 0152 016,-1516的大小.]6.比较-623,-417,-311,-1247的大小.}、利用数轴法比较大小7.已知a >0,b <0,且|b|<a ,试比较a ,-a ,b ,-b 的大小.%利用特殊值法比较大小8.已知a,b是有理数,且a,b异号,则|a+b|,|a-b|,|a|+|b|的大小关系为_______________________________________________.【利用分类讨论法比较大小9.比较a与a3的大小.专训二:有理数中6种易错类型-对有理数有关概念理解不清造成错误1.下列说法正确的是()A.最小的正整数是0B.-a是负数\C.符号不同的两个数互为相反数D.-a的相反数是a2.已知|a|=7,则a=W.误认为|a|=a,忽略对字母a分情况讨论3.如果一个数的绝对值等于它本身,那么这个数一定是()·A.负数B.负数或零C.正数或零D.正数4.已知a=8,|a|=|b|,则b的值等于()B.-8D.±8对括号使用不当导致错误!5.计算:-7-5.[6.计算:2-⎝ ⎛⎭⎪⎫-15+14-12.}忽略或不清楚运算顺序[7.计算:-81÷94×49÷(-16).。

完整版)有理数培优训练

完整版)有理数培优训练

完整版)有理数培优训练有理数培优训练一、选择题:1.已知数轴上的三点A、B、C分别表示有理数a,1,-1,那么|a+1|表示()A。

A、B两点的距离 B。

A、C两点的距离C。

A、B两点到原点的距离之和 D。

A、C两点到原点的距离之和2.定义运算符号“*”的意义为:a*b = (a+b)/(ab) (其中a、b均不为0)。

下面有两个结论(1)ab运算“*”满足交换律;(2)运算“*”满足结合律。

其中()A。

只有(1)正确 B。

只有(2)正确C。

(1)和(2)都正确 D。

(1)和(2)都不正确3.如果a,b,c为非零有理数,则 |a|+|b|+|c|的值有()A。

1个 B。

2个 C。

3个 D。

4个4.设a+b+c=0,abc>0,则b+c/(a+c)+a+b的值是()A。

-3 B。

1 C。

3或-1 D。

-3或15.若|m|=m+1,则(4m+1)^2010=A。

-1 B。

1 C。

-1/2 D。

1/26.若19a+98b=0,则ab是()A。

正数 B。

非正数 C。

负数 D。

非负数7.有理数a、b、c在数轴上的表示如图,则在中间区域的数是()A。

负数 B。

非正数 C。

非负数 D。

正数8.一杯盐水重21千克,浓度是7%,当再加入0.7千克的纯盐后,这杯盐水的浓度是()A。

7.7% B。

10% C。

10.7% D。

11%9.a、b都是有理数,现有4个判断:①如果a+ba;④如果a>b,则|a|>|b|。

其中正确的判断是()A。

①② B。

②③ C。

①④ D。

①③10.若a,b,c是不全为0的有理数,且a+b+c=0,则|a-b|+|b-c|+|c-a|的最小值是()A。

21 B。

2 C。

12 D。

12611.数a、b、c如图所示,有以下4个判断其中正确的判断是()①a>b;②ab^2>c;③a-b>-c;④5a>2b。

A。

①② B。

①③ C。

②④ D。

③④二、填空题:12.初一“数学晚会”上,有10个同学藏在10个大盾牌后面。

第一章 有理数 培优训练(2024年版)人教版数学 七年级上册

第一章 有理数 培优训练(2024年版)人教版数学 七年级上册

第一章有理数培优训练2024-2025学年七年级上册数学人教版1.1 正数和负数考点 1 认识正数和负数1. 下列各数:−14,+2,3.5,−9,0,+27,25%,−π,0.12.其中,是负数的有 ( )A.2个B.3个C.4个D.5个考点2 用正数、负数表示具有相反意义的量2.下列选项中,是具有相反意义的量的是 ( )A.气温升高6℃与气温零下8 ℃B.增加 2 L与减少2kgC.超过0.5mm 与不足0.3mD. 向东走 4k m和向南走 5km3.某粮店出售的三种品牌的面粉袋上,分别标有“(50±0.1) kg、(50±0.2) kg、(50±0.3) k g”的字样,从中任意拿出两袋,它们的质量最多相差 ( )A.0.8kgB.0.6kgC.0.5kgD.0.4kg4.以下的五个时钟显示了同一时刻国外四个城市时间和北京时间,若表中给出的是国外四个城市与北京的时差,则这五个时钟对应的城市从左到右依次是 ( )A.C. 伦敦、纽约、北京、罗马、悉尼D.北京、罗马、伦敦、悉尼、纽约易错点对正数、负数、0的概念理解不透5. 下列说法:①带正号的数就是正数,带负号的数就是负数;②海拔高度是0米表示没有高度;③0是正数与负数的分界;④任意一个正数的前面加上“-”号就是负数;⑤字母a既是正数,又是负数;⑥不大于0的数一定是负数.正确的有 .(填序号)1.2 有理数考点1有理数的概念与分类1.下列说法中,正确的是 ( )A. 非负数一定是正数B.有最小的正整数,也有最小的有理数C. 前面有“-”号的数一定是负数D.最大的负整数是-12.将各数填在相应的集合的圈里:-8,+6,75,-0.4,25%,0,-2023,-2.8, 37考点2 数轴(重点)3.在数轴上距表示-2.5的点有3.5个单位长度的点所表示的数是 ( )A. -6B.1C.-1或6D.-6或1 >> 对点专练P4,P334.有理数a,b 在数轴上的位置如图所示,则数a,b,-a,-b 的大小关系为 ( )A. -a<-b<b<aB.-a<b<a<-bC.-a<b<-b<aD.-a<-b<a<b考点3 相反数5.下列各组数中,互为相反数的是 ( )A.-(+7)与+(-7)B.−12与+(-0.5)C.−54与 45 D. +(-0.01)与-(-0.01) 考点4 绝对值(重点)6.下列四个数中,最大的数是 ( )A.-(-1021)B.|- 022|C.-|-1023|D.-(+1024)7.若 |−m|=|−12|,则m 的值为 .易错点 多重符号化简时,正负号易出错8.(1)相反数等于本身的数是 ;化简−[−(+3)]=.(2)当+1的前面有99 个负号时,化简结果是 ,当-2的前面有 99 个负号时,化简结果是 .能力诊断1.若|a-1|与|b-2|互为相反数,则a+b 的值为 ( )A.3B. -3C. 1D. -12.如图,某同学用直尺画数轴,数轴上点A ,B 分别在直尺的1cm ,9 cm 处,若点A 对应-2,直尺的0刻度位置对应-4,则点 B 对应的数为 ( )A.6B.7C.12D.143.把下列各数对应的序号填在相应的大括号里:①-8,②π,③-121,④ 227,⑤4,⑥-0.9,⑦5.4,⑧-3.6,⑨0.负有理数集合:{ …}; 正分数集合:{ …};自然数集合:{ …}; 非正整数集合:{ …}.4.|m-n|表示数轴上表示数m和数n的两点之间的距离.结合数轴回答下列问题.(1)数轴上表示 3 和2 的两点之间的距离是;表示-2和1的两点之间的距离是.(2)如果|x-1|=3,那么x= .(3)若数轴上表示数a的点位于-4与2之间,则|a+4l+|a-2l= .(4)|a-(-3)|+|a-5|的最小值是 .5.如图,A,B分别为数轴上的两点,点A 对应的数是-20,点B 对应的数为80.现在有一只电子蚂蚁P从点 B出发,以2个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从点A 出发,以3个单位长度/秒的速度向右运动,设两只电子蚂蚁在数轴上的点 C相遇.(1)求出点 C 在数轴上所对应的数.(2)何时两只电子蚂蚁在数轴上相距15个单位长度?专题数轴与绝对值类型一数轴1. 数轴上表示整数的点称为整点.某数轴的单位长度为1cm,若在这条数轴上任意画一条长1 000 cm的线段,则线段盖住的整数点的个数是 ( )A. 1 000B. 1 001C. 1 000 或 1 001D.999 或1 00 02.在数轴上,点A,B在原点O 的两侧,分别表示数a,2,将点A 向右移动1个单位长度得到点C,若点 B 与点 C到原点的距离相等,则a的值为 ( )A. -3B. -2C. -1D. 13. 如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数-556将与圆周上的数字 重合.4. 一把刻度尺在数轴上的位置摆放如图①所示,刻度尺右端点 B 的刻度为“0”,刻度“10c m ”和“25cm ”分别与数轴上表示数0和-2 的点重合,现将该刻度尺沿数轴向右平移4个单位长度,如图②,使刻度尺的左端点 A 与数轴上表示的数1重合,则该刻度尺的长度为 cm.类型二 绝对值5. 若a 的绝对值等于它的相反数,则a 的值不可以是 ( )A. -1B.-0.5C.0D. 16. 若|a-1|+|b-2|=0,则a+b 的相反数是 ( )A. 1B.3C. -3D. -27. 已知 |73−a|=a −73,请写一个符合条件的整数a : . 8. 根据数轴,求绝对值不大于11.1的整数有多少个.第一章 章 末 检 测一、 选择题1.下列各数中: +3,-π,- 23,9,- 227,-(-8),0,-|3|,正有理数有 ( )A.1个B.2 个C.3 个D. 4个2.下列说法:①-a 一定是负数;②0不是有理数;③有理数都可以用数轴上的点来表示;④任何有理数必定等于或小于它的绝对值.其中正确的个数为 ( )A.1B.2C.3D.43.若m表示正整数,且−3m >−37,则m的值可以是 ( )A.3B.5C.7D.94.规定45分钟为1个单位时间,并将每天上午9时记为0,9时以前的时间记为负数,9时以后的时间记为正数,例如:8:15记为-1;9:45记为+1;以此类推,则上午7:30应记为( )A.+2B. -2C.-1.50D.-7.305.在数轴上有间隔相等的四个点M,N,P,Q,所表示的数分别为m,n,p,q,其中有两个数互为相反数,若m的绝对值最大,则数轴的原点是 ( )A. 点 NB.点 PC.点P或点N,P的中点D.点 P或点P,Q的中点二、填空题6.-100的相反数是;绝对值是 .7. 点A,B,C在同一条数轴上,其中点A,B表示的数分别为-4,1,若BC=2,则AC等于 .8. 按一定规律排列的一列数依次为2, −53,105,−177,269,−3711,…·按此规律排列下去,第10个数是 .三、解答题9. 根据以下信息,完成相应的任务:a是最大的负整数,b是最小的正整数,c是负数且数轴上表示c的点到原点的距离为2,d的相反数是其本身.任务:求出有理数a,b,c,d的值,并用“>”将值连接起来.10. 邮递员骑摩托车从邮局出发,先向西骑行2km到达A村,继续向西骑行3km到达B村,然后向东骑行9 km到达C村,最后回到邮局.(1)以邮局为原点,向东方向为正方向,用1cm表示1km,画出数轴,并在该数轴上表示A,B,C三个村庄的位置;(2)由数轴可得 C村离A 村 km;(3)若摩托车的油耗为每千米0.03 L,求邮递员这次出行的耗油量.11. 如图,一只甲虫在:5×5的方格(每小格边长为1m)上沿着网格线运动.它从A 处出发去看望B,C,D处的其他甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),,从B到A记为:B→A(−1,−4),,其中第一个数表示左右方向,第二个数表示上下方向.(1)A→C( , ),B→C( , ),C→ (+1, );(2)若这只甲虫沿着网格线的行走路线为A→D→C→B,请计算该甲虫走过的最短路程;(3)若这只甲虫从A 处去P 处的行走路线依次为(+2,+1),(+3,+2),(−2,−1),(−2,−2),请在图中标出点 P 的位置.。

有理数培优练习题(供参考)

有理数培优练习题(供参考)

有理数培优题一、填空:一、如图,四个有理数在数轴上对应点M ,P ,N ,Q ,假设点P ,N 表示的有理数互为相反数,那么图中表示绝对值最大的数的点是________. 二、假设∣a ∣=-a,那么a______0.3、已知|a|=3,|b|=4,且a<b ,则a -ba +b 的值为________.4、假设﹣1<n <0,那么n 、n 2、 的大小关系是 . 五、将毫米的厚度的纸对折20次,列式表示厚度是 。

六、已知||3,||2,||a b a b a b ==-=-,那么a b += 7、|2||3|x x -++的最小值是 。

八、在数轴上,点A 、B 别离表示2141,-,那么线段AB 的中点所表示的数是 。

九、假设,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,那么()20102a b mn p p++-= 。

10、假设abc ≠0,那么||||||a b c a b c++的值是 . 1一、以下有规律排列的一列数:一、43、32、85、53、…,其中从左到右第100个数是 。

1二、已知四个互不相等的整数a ,b ,c ,d 知足abcd=77,那么a+b+c+d=________.13、如图,数轴上的A ,B ,C 三点所表示的数别离是a ,b ,c ,其中AB =BC ,若是|a |>|b |>|c |,那么该数轴的原点的位置应该在( )A .点A 的左侧B .点A 与点B 之间C .点B 与点C 之间D .点B 与点C 之间或点C 的右边14、如图,数轴上一动点A 向左移动2个单位长度抵达点B ,再向右移动5个单位长度抵达点C .假设点C 表示的数为0,那么点A 表示的数为1五、小亮在计算28-N 时,误将“-”号看成了“÷”号,取得的结果为-7,那么28-N 的正确值为 1六、已知:23C =212×3⨯=3,35C =321345⨯⨯⨯⨯=10,46C =4×3×21?3×4×5×6=15,…,观看上面的计算进程,寻觅规律并计算610C =_______.17、假设三个有理数,,a b c 知足||||||1a b c a b c ++=,那么||abc abc的值为1八、方程x x -=-20082008 的解的个数是( )A .1个B .2个C .3个D .无穷多个 二、解答问题:一、已知x+3=0,|y+5|+4的值是4,z 对应的点到-2对应的点的距离是7,求x 、y 、 z 这三个数两两之积的和。

七年级《有理数》培优练习题(有答案)

七年级《有理数》培优练习题(有答案)

1.计算:1﹣(+2)+3﹣(+4)+5﹣(+6)…+2015﹣(+2016)= .2.已知a、b、c的位置如图:则化简|﹣a|﹣|c﹣b|﹣|a﹣c|= .3.有理数a、b在数轴上的位置如图所示化简:|a+2|﹣|a|+|b﹣1|+|a+b|可得到.4.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,A n.若点A1在数轴表示的数是,则点A2016在数轴上表示的数是.5.如果x、y都是不为0的有理数,则代数式的最大值是.6.|x+2|+|x﹣2|+|x﹣1|的最小值是.7.当式子|x+1|+|x﹣2|取最小值时,相应的x的取值范围是,最小值是.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x的值.16 x11 15129.先观察:1﹣=×,1﹣=×,1﹣=×,…(1)探究规律填空:1﹣= ×;(2)计算:(1﹣)•(1﹣)•(1﹣)…(1﹣)10.阅读下列各式:(a•b)2=a2b2,(a•b)3=a3b3,(a•b)4=a4b4…回答下列三个问题:(1)验证:(2×)100= ,2100×()100= ;(2)通过上述验证,归纳得出:(a•b)n= ;(abc)n= .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.11.数轴上的点M对应的数是2,一只蚂蚁从点M出发沿着数轴以每秒2个单位的速度向左或向右爬行,当它到达数轴上的点N后,立即返回到原点,共用6秒.(1)蚂蚁爬行的路程是多少?(2)点N对应的数是多少?(3)点M和点N之间的距离是多少?12.我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果a b=N(a>0,a≠1,N>0),则b叫做以a为底N的对数,记作log a N=b.例如:因为53=125,所以log5125=3;因为112=121,所以log11121=2.(1)填空:log66= ,log381= .(2)如果log2(m﹣2)=3,求m的值.13.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?14.已知:数轴上点A表示的数是8,点B表示的数是﹣4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.(1)经过多长时间,点P位于点Q左侧2个单位长度?(2)在点P运动的过程中,若点M是AP的中点,点N是BP的中点,求线段MN的长度.15.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是,点B对应的数是;(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F 从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B都以每秒2个单位沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t.17.已知如图,在数轴上有A,B两点,所表示的数分别为﹣10,﹣4,点A以每秒5个单位长度的速度向右运动,同时点B以每秒3个单位长度的速度也向右运动,如果设运动时间为t秒,解答下列问题:(1)运动前线段AB的长为;运动1秒后线段AB的长为;(2)运动t秒后,点A,点B运动的距离分别为和;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.18.如图,在数轴上,点A表示﹣10,点B表示11,点C表示18.动点P从点A出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q从点C出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t秒.(1)当t为何值时,P、Q两点相遇?相遇点M所对应的数是多少?(2)在点Q出发后到达点B之前,求t为何值时,点P到点O的距离与点Q到点B的距离相等;(3)在点P向右运动的过程中,N是AP的中点,在点P到达点C之前,求2CN﹣PC的值.19.已知点A在数轴上对应的有理数为a,将点A向左移动6个单位长度,再向右移动2个单位长度与点B重合,点B对应的有理数为﹣24.(1)求a;(2)如果数轴上的点C在数轴上移动3个单位长度后,距B点8个单位长度,那么移动前的点C距离原点有几个单位长度?20.已知数轴上A、B两点对应的数分别为﹣1和3,数轴上的一个动点P,其对应的数为x.(1)若点P到A、B两点的距离相等,求点P对应的数x的值;(2)数轴上是否存在点P,使点P到A、B两点的距离之和为5:若存在,请求出求x的值;若不存在,请说明理由.21.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发.求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?22.如图,点A、B在数轴上表示的数分别为﹣12和8,两只蚂蚁M、N分别从A、B两点同时出发,相向而行.M的速度为2个单位长度/秒,N的速度为3个单位长度/秒.(1)运动秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数是;(2)若运动t秒钟时,两只蚂蚁的距离为10,求出t的值(写出解题过程).23.看数轴,化简:|a|﹣|b|+|a﹣2|.24.在一条不完整的数轴上从左到右有点A,B,C,其中点A到点B的距离为3,点C到点B的距离为7,如图所示:设点A,B,C所对应的数的和是m.(1)若以B为原点,则点C所对应的数是;若以C为原点,则m的值是.(2)若原点O在图中数轴上,且点C到原点O的距离为4,求m的值.(3)动点P从A点出发,以每秒2个单位长度的速度向终点C移动,动点Q同时从B点出发,以每秒1个单位的速度向终点C移动,当几秒后,P、Q两点间的距离为2?请直接写出答案.参考答案与试题解析一.填空题(共8小题)1.﹣1008 . 2.b﹣2c . 3.﹣2b﹣a﹣1 . 4.﹣1 .【解答】解:∵点A1在数轴表示的数是,∴A2==2,A3==﹣1,A4==,A5==2,A6=﹣1,…,2016÷3=672,所有点A2016在数轴上表示的数是﹣1,故答案为:﹣1.5.如果x、y都是不为0的有理数,则代数式的最大值是 1 .【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.6.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【解答】解:|x+2|+|x ﹣2|+|x ﹣1|表示:数轴上一点到﹣2,2和1距离的和, 当x 在﹣2和2之间的1时距离的和最小,是4. 7.﹣1≤x ≤2 ,最小值是 3 . 【解答】解:由数形结合得,若|x+1|+|x ﹣2|取最小值,那么表示x 的点在﹣1和2之间的线段上, 所以﹣1≤x ≤2,最小值是3.8.如图,方格表中的格子填上了数,每一行每一列及两条对角线中所填数的和均相等,则x 的值 9 .【解答】解:16+11+12=39, 39﹣11﹣15=13, 39﹣12﹣13=14,x=39﹣16﹣14=9. 故答案为:9.二.解答题(共16小题) 9.先观察:1﹣=×,1﹣=×,1﹣=×,… (1)探究规律填空:1﹣=× ; (2)计算:(1﹣)•(1﹣)•(1﹣) (1))【解答】解:(1)原式=×;(2)原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)=××××…××=,故答案为:(1);10.阅读下列各式:(a•b)2=a 2b 2,(a•b)3=a 3b 3,(a•b)4=a 4b 4…16 x111512回答下列三个问题:(1)验证:(2×)100= 1 ,2100×()100= 1 ;(2)通过上述验证,归纳得出:(a•b)n= a n b n;(abc)n= a n b n c n.(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.【解答】解:(1)(2×)100=1,2100×()100=1;②(a•b)n=a n b n,(abc)n=a n b n c n,③原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×=(﹣1)2015×=﹣1×=﹣.11.【解答】解:(1)2×6=12(个单位长度).故蚂蚁爬行的路程是12个单位长度;(2)①当点M在点N左侧时:a﹣2+a=12,a=7;②当点M在点N右侧时:﹣a+2﹣a=12,a=﹣5;(3)若向左爬MN=2﹣(﹣5)=7若向右爬MN=7﹣2=5.12.(1)填空:log66= 1 ,log381= 4 .(2)如果log2(m﹣2)=3,求m的值.解:(1)∵61=6,34=81,∴log66=1,log381=4,故答案为:1、4;(2)∵log2(m﹣2)=3,∴m﹣2=23,解得:m=10;13.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)14.解:(1)设经过t秒,点P位于点Q左侧2个单位长度,6t﹣[4t+8﹣(﹣4)]=2,解得,t=7答:经过7秒,点P位于点Q左侧2个单位长度;(2)由题意可得,经过时间t,点P表示的数为:8﹣6t,∵点M是AP的中点,点N是BP的中点,∴点M表示的数是:,点N表示的数是:,∴MN=|(8﹣3t)﹣(2﹣3t)|=|8﹣3t﹣2+3t|=6,即线段MN的长度是6.15.(1)点A所对应的数是﹣5 ,点B对应的数是27 ;解:(1)根据题意得:A点所对应的数是﹣5;B对应的数是27;(2)设经过x秒F追上点E,根据题意得:2x+32=4x,解得:x=16,则点C对应的数为﹣5﹣2×16=﹣37.故答案为:﹣5;27.16.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是﹣4 ;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是0 ;解:(1)点B表示的数是﹣4;(2)﹣4+2×2=﹣4+4=0.故2秒后点B表示的数是0,(3)由题意可知:①O为BA的中点,(﹣4+2t)+(2+2t)=0,解得t=;②B为OA的中点,2+2t=2(﹣4+2t),解得t=5.故答案为:﹣4;0.17.(1)运动前线段AB的长为 6 ;运动1秒后线段AB的长为 4 ;(2)运动t秒后,点A,点B运动的距离分别为5t 和3t ;(3)求t为何值时,点A与点B恰好重合;(4)在上述运动的过程中,是否存在某一时刻t,使得线段AB的长为5,若存在,求t 的值;若不存在,请说明理由.解:(1)AB=﹣4﹣(﹣10)=6,运动1秒后,A表示﹣5,B表示﹣1,∴AB=﹣1+5=4.故答案为6,4.(2)运动t秒后,点A,点B运动的距离分别为5t,3t,故答案为5t,3t.(3)由题意:(5﹣3)t=6,∴t=3.(4)由题意:6+3t﹣5t=5或5t﹣(6+3t)=5,解得t=或,∴t的值为或秒时,线段AB的长为5.18.解:(1)根据题意得2t+t=28,解得t=,∴AM=>10,∴M在O的右侧,且OM=﹣10=,∴当t=时,P、Q两点相遇,相遇点M所对应的数是;(2)由题意得,t的值大于0且小于7.若点P在点O的左边,则10﹣2t=7﹣t,解得t=3.若点P在点O的右边,则2t﹣10=7﹣t,解得t=.综上所述,t的值为3或时,点P到点O的距离与点Q到点B的距离相等;(3)∵N是AP的中点,∴AN=PN=AP=t,∴CN=AC﹣AN=28﹣t,PC=28﹣AP=28﹣2t,2CN﹣PC=2(28﹣t)﹣(28﹣2t)=28.19.解:(1)依题意有a﹣6+2=﹣24,解得a=﹣20.(2)点C在数轴上向左移动3个单位长度是﹣24﹣8+3=﹣29或﹣24+8+3=﹣13;点C在数轴上向右移动3个单位长度是﹣24﹣8﹣3=﹣35或﹣24+8﹣3=﹣19.故移动前的点C距离原点有29或13或35或19个单位长度.20.解:(1)由题意,得PA=PB,∴x﹣(﹣1)=3﹣x,解得x=1.(2)∵3﹣(﹣1)=4<5,∴点P不在线段AB上.当点P落在点B右侧时,有PB+PA=5,∴(x﹣3)+(x+1)=5,解得x=3.5.当点P落在点A左侧时,有BP+AP=5,∴(﹣1﹣x)+(3﹣x)=5,解得x=﹣1.5.∴x的值是3.5或﹣1.5.21.解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为6t,∵动点P从点A出发,以每秒6个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣6t;(2)①点P运动t秒时追上点R,根据题意得6t=10+4t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+4a﹣6a=8,解得a=1;当P超过Q,则10+4a+8=6a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.22.解:(1)设运动x秒时,两只蚂蚁相遇在点P,根据题意可得:2x+3x=8﹣(﹣12),解得:x=4,﹣12+2×4=﹣4.答:运动4秒钟时,两只蚂蚁相遇在点P;点P在数轴上表示的数为:﹣4;(2)运动t秒钟,蚂蚁M向右移动了2t,蚂蚁N向左移动了3t,若在相遇之前距离为10,则有2t+3t+10=20,解得:t=2.若在相遇之后距离为10,则有2t+3t﹣10=20,解得:t=6.综上所述:t的值为2或6.故答案为:4;﹣4.24.(1)若以B为原点,则点C所对应的数是7 ;若以C为原点,则m的值是﹣17 .解:(1)当B为原点时,点C对应的数是7;当以C为原点时,A、B对应的数分别为﹣7,﹣10,m=﹣10+(﹣7)+0=﹣17,故答案为:7,﹣17;(2)当O在C的左边时,A、B、C三点在数轴上所对应的数分别为﹣6、﹣3、4,则 m=﹣6﹣3+4=﹣5,当O在C的右边时,A、B、C三点在数轴上所对应的数分别为﹣14、﹣11、﹣4,则m=﹣14﹣11﹣4=﹣29,综上所述:m=﹣5或﹣29;(3)假如以C为原点,则A、B、C对应的数为﹣10,﹣7,0,Q对应的数是﹣(7﹣t),P 对应的数是﹣(10﹣2t),当P在Q的左边时,[﹣(7﹣t)]﹣[﹣(10﹣2t)]=2,解得:t=1当P在Q的左边时,[﹣(10﹣2t)]﹣[﹣(7﹣t)]=2,解得:t=5,即当1秒或5秒后,P、Q两点间的距离为2.。

(完整版)有理数培优练习题

(完整版)有理数培优练习题

有理数培优题一、填空题1、如图b a ,为数轴上的两点表示的有理数,在a b b a a b b a ---+,,2,中,负数的个数有 个2、如果数轴上点A 到原点的距离为3,点B 到原点的距离为5,那么A 、B 两点的距离为 。

3、已知数轴上有A 、B 两点,A 、B 之间的距离为1,点A 与原点O 的距离为3,那么所有满足条件的点B 与原点O 的距离之和等于 。

4、已知0,0<>b a 且0<+b a ,那么有理数b a b a ,,,-的大小关系是 。

5、有理数c b a ,,在数轴上的位置如图所示,式子c b b a b a -++++化简结果为 .6、有理数c b a ,,在数轴上的位置如图所示,则化简c c a b b a ------+11的结果为 。

7、已知b b a b a 2=-++,在数轴上给出关于b a ,的四种情况如图所示,则成立的是 .① ② ③ ④8、已知是有理数,且()()012122=++-y x ,那么y x +的值是。

9、如图,数轴上标出若干个点,每相邻两点相距1个单位,点A 、B 、C 、D 对应的数分别是整数d c b a ,,,且102=-a d ,那么数轴的原点应是( )A .A 点B .B 点C .C 点D .D 点 10、数d cb a ,,,所对应的点A ,B,C ,D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )A .d b c a +<+B .d b c a +=+C .d b c a +>+D .不确定的11、不相等的有理数c b a ,,在数轴上对应点分别为A,B ,C,若c a c b b a -=-+-,那么点B ( )A .在A 、C 点右边B .在A 、C 点左边 C .在A 、C 点之间D .以上均有可能12、设11++-=x x y ,则下面四个结论中正确的是( )(全国初中数学联赛题)A .y 没有最小值B .只一个x 使y 取最小值C .有限个x (不止一个)使y 取最小值D .有无穷多个x 使y 取最小值13、在数轴上,点A ,B 分别表示31-和51,则线段AB 的中点所表示的数是 .14、x 是有理数,则22195221100++-x x 的最小值是 。

有理数培优测试题

有理数培优测试题

有理数培优训练 一、填空题 1、若|x+1|=3,则x= ;a 2=4则a 3= 。

2、x 2=91,则x= ;—x 3= —641,则x= 。

3、当a 时,(a —4)2+5有最 值为 ;当a 时,5—(a —4)2有最 值为 。

4、1-=a a,则a 0;a a 〉,则a 0;a a -=-33,则a ;33a a -=,则a 0。

5、若(2a —1)2+03=+b ,则a= ;b= .若25-a 与1+b 互为相反数求b 1996—5a 2= .6、计算:(—)2006×82006=(—2)2003+(—2)2002=(—1)2n + (—1)2n+1= ,(n 为正整数)7、若A=a 1+a 2+a 3+…+a 111,当a=0时,A= ;当A=1时A= ;当a=-1时,A= 。

8、若2a-b=4,则2(b-2a )2-3(b-2a)+1=9、按下图程序,若开始输入的值为x=3,则最后输出 。

10、给出依次排列的一列数:-1,2,-4,8,-16,32,……按此规律,第7个是 ,第n 个是 。

11、-|-76|=_______, -(-76)=_______, -|+31|=_______,-(+31)=_______, +|-(21)|=_______, +(-21)=_______. 12、若|x|=|-4|,则x=_______. 若|m -1|=1-m ,则m 的取值范围是___________.13、已知数轴上有A、B两点,A、B之间的距离为1,点A与原点的距离为3,那么所有满足条件的点B与原点的距离之和等于_______。

14、已知a<0, b>0,|a |>b, 试用“>”将a, b, -a, -b 连接起来:_________________________.15若,,,,,a b c d e f 是六个有理数,且11111,,,,23456a b c d e b c d e f =-==-==-,则_______.f a= 输入x 计算(1)2x x +的值 >100 输出 是 否二、选择题1、x 、y 表示有理数,那么下列各数中,值一定为正数的是( )A 、|x+5|B 、(x+y)2C 、y 2+21 D 、|x 2+y 2| 2、计算(—1)2002+(—1)2002÷2001)2(1-+-的值等于( )A 、0B 、1C 、-1D 、23、下列各组数中相等的共有( )①—52和(—5)2 ②—33和(—3)3 ③0100和03 ④34和43⑤a 2003·a 3和a 2006 ⑥652和(65)2 ⑦—(—2)2和22 A 、1对 B 、2对 C 、3对 D 、4对4、数轴上表示A 、B 两点到原点的距离分别是2、5,则A 、B 两点的距离为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数培优训练
一.选择题:
1. 已知数轴上的三点A 、B 、C 分别表示有理数,1,1a -,那么|1|a +表示( ) A . A 、B 两点的距离
B .A 、
C 两点的距离
C .A 、B 两点到原点的距离之和
D .A 、C 两点到原点的距离之和
2. 定义运算符号“*”的意义为:ab
b a b a +=*(其中a 、b 均不为0)。

下面有两个结论(1)
运算“*”满足交换律;(2)运算“*”满足结合律。

其中( ) A .只有(1)正确 B .只有(2)正确 C .(1)和(2)都正确 D .(1)和(2)都不正确 3. 如果,,a b c 为非零有理数,则||||||a b c a b c
++的值有( )
A .1个
B .2个
C .3个
D .4个
4. 设0a b c ++=,0abc >,则||||||
b c a c a b a b c +++++的值是( )
A .-3
B .1
C . 3或-1
D .-3或1 5. 若||1m m =+,则()201041m +=( ) A .-1 B .1 C .12-
D .1
2
6.若19a+98b=0,则ab 是( ) A . 正数 B . 非正数
C . 负数
D . 非负数
7.有理数a 、b 、c 在数轴上的表示如图,则在
中( )
A . 最小
B . |ac|最大
C .
最大
D .
最大
8.一杯盐水重21千克,浓度是7%,当再加入千克的纯盐后,这杯盐水的浓度是( ) A . % B . 10%
C . %
D . 11%
9.a 、b 都是有理数,现有4个判断:①如果a+b <a ,则b <0;②如果ab <a ,则b <0;③如果a ﹣b <a ,则b >0;④如果a >b ,则,其中正确的判断是( )
A . ①②
B . ②③
C . ①④
D . ①③
10.若,则的最大值为( )
A . 21
B . 2
C . 12
D . 126
11.数a 、b 、c 如图所示,有以下4个判断其中正确的判断是( ) ①
;②ab 2>c ;③a ﹣b >﹣c ;④5a >2b .
A . ①②
B . ①③
C . ②④
D . ②③
二.填空题:
12. 初一“数学晚会”上,有10个同学藏在10个大盾牌后面。

男同学的盾牌前面写的是一个正数,女同
学的盾牌前面写的是一个负数。

这10个盾牌如下所示:30
30)
(-、25
5--、12
+a 、
2009
12009
)(-、97
198-、8-、2--、3
33)
(-,)(24-⨯、15-⨯。

则盾牌后面的同学中,男同学有 个,女同学有 个。

13.|2||3|x x -++的最小值是_________;
14.在数轴上,点A 、B 分别表示2141,-,则线段AB 的中点所表示的数是_________; 15.两个三位自然数之和减去1999所得之差的最大值是 _________ .
16.一个有理数的倒数的相反数的3倍是,那么这个有理数是 _________ .
17.17个连续整数的和是306,那么紧接在这17个数后面的那17个连续整数的和等于 _________ .
18.1998年某人的年龄恰等于他出生的公元年数的数字之和,那么他的年龄是 _________ 岁.
19.五位数
是9的倍数,其中
是4的倍数,那么
的最小值是 _________ .
20.3个有理数a 、b 、c 两两不等,则中有 _________ 个是负数.
21.篮、排、足球放在一堆共25个,其中篮球个数是足球个数的7倍,那么其中排球的个数是 _________ . 三.解答题:
22.已知|2|ab -与|1|b -互为相反数,试求代数式:
()()()()
()()
1
1
1
112220102010a b a b a b +
++
++++++的值。

23.定义一种对正整数n 的"F"运算1.当n 为奇数时,结果为3n+5;2.当n 为偶数时,结果为n/2k (2的k 次方)(其中k 是使原式为奇数的正整数),并且运算重复进行。

例如,取n=26,则: 26F ②→13F①→44F ②→11……若n=449,则第449次“F 运算”的结果是多少
24.将1,﹣,,﹣,,﹣,…,按一定规律排成下表: 第一行 1
第二行 、 第三行 、、
第四行 、、、﹣ 第五行 、





从表中可以看到第四行中,自左向右第三个数是;第五行自左向右第二个数是﹣,那么第199行自左
向右第8个数是 _________ ,第2006行自左向右第11个数是 _________ . 家庭作业 一、 选择题
1、若||5,||3,0a b a b ==+>,那么a b -的值是( )
A .2或8
B .2或-2
C .8或-8
D .-2或-8 2、有理数a 等于它的倒数,有理数b 等于它的相反数,则2010
2011a b +等于( )
A .0
B .1
C .-1
D .2 二、填空题
3、已知|4||1|0x y -++=,则3
2011x
y 的值为_________;
4. 数轴上有A 、B 两点,如果点A 对应的数是-2,且A 、B 两点的距离为3,则点B 对应的数是_________; 5.已知数轴上有A 、B 两点,A 、B 之间的距离为2,点A 与原点O 的距离为6,则所有满足条件的点B 与
原点O 的距离的和为_________;
6、若,a b 互为相反数,,m n 互为倒数,P 的绝对值为3,则()
2010
2a b mn p p
++-=_________
三.解答题: 7、若||5,||3x y ==,且||x y y x -=-,求()
||
x y x y ++的值。

整式的加减
1化简求值:2225232(4)abc a b abc ab a b ⎡⎤-+--⎣⎦其中,,a b c 满足2120a b c -+-+=
2代数式22111(2)(21)352
x ax y x y bx +-+--+-的值与字母x 的取值无关,求25a b -的值。

3已知332227,6a b a b ab +=-=-,求代数式332232()(3)2()b a a b ab b a b -+---的值
4当1x =-时,代数式3238ax bx -+的值为18,求代数式962b a -+的值
5已知2,4x y ==-时,代数式31519972ax by ++=,求当14,2
x y =-=-时,代数式33244986ax by -+的

6已知012=-+a a ,求2007223++a a 的值.
7已知25a b a b -=+,求代数式2(2)3()2a b a b a b a b -+++-的值。

8当250(23)a b -+达到最大值时,求22149a b +-的值。

9.研究下列算式,你会发现有什么规律
①13=12
②13+23=32
③13+23+33=62
④13+23+33+43=102
⑤13+23+33+43+53=152…
(1)根据以上算式的规律,请你写出第⑥个算式;
(2)用含n(n为正整数)的式子表示第n个算式;
(3)请用上述规律计算:73+83+93+ (203)
10.已知xy<0,x<y且|x|=1,|y|=2.
(1)求x和y的值;
(2)求的值.
11.已知,a,b互为相反数,c,d互为倒数,|m|=2,求:的值.
12.观察下列算式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62,…请你在观察规律后用得到的规律填空:10×14+4=_________,_________×_________+_________=202.
13.如图,用火柴棒摆成边长为1,2,3,…,(n﹣1),n的正方形
(1)依此规律,摆成边长为4的正方形图案中,需火柴棒根数为_________;
(2)拼成边长为n的正方形图案比边长为(n﹣1)的正方形图案多_________个小正方形;
(3)摆成边长为n的正方形图案中需要火柴棒根数为_________.
14.如图,把面积为1的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,再把面积为的长方形等分成两个面积为的长方形,如此进行下去,试用图形揭示规律.计算:.
15.将四个数a、b、c、d排列成的形式,定义=ad﹣bc,若=10,求7x2﹣2的值.。

相关文档
最新文档