第3章 数据采集与处理系统

合集下载

数据采集与处理技术PPT课件

数据采集与处理技术PPT课件
技术创新
新型的数据采集技术如基于区块链的 数据验证、基于人工智能的数据预测 等,将为数据采集带来更多的可能性 。
02
数据预处理技术
数据清洗
数据去重
异常值处理
去除重复和冗余的数据, 确保数据集的唯一性。
识别并处理异常值,如 离群点或极端值,以避 免对分析结果的干扰。
缺失值处理
根据数据分布和业务逻 辑,对缺失值进行填充
案例二:实时数据处理系统设计
总结词
实时数据流处理、数据质量监控
详细描述
介绍实时数据处理系统的关键技术,如数据流处理框架、实时计算引擎等。同时,结合具体案例,讲解如何设计 一个高效、可靠的实时数据处理系统,并实现数据质量监控和异常检测功能。
案例三:数据挖掘在商业智能中的应用
总结词
数据挖掘算法、商业智能应用场景
数据采集的方法与分类
方法
数据采集的方法包括传感器采集、网络爬虫、日志采集、数据库导入等。
分类
数据采集可以根据数据来源、采集方式、数据类型等进行分类,如物联网数据、 社交媒体数据、交易数据等。
数据采集技术的发展趋势
发展趋势
随着物联网、人工智能等技术的不断 发展,数据采集技术正朝着自动化、 智能化、高效化的方向发展。
特点
应用场景
适用于需要复杂查询和事务处理的场 景,如金融、电商等。
数据结构化、完整性约束、事务处理 能力、支持ACID特性。
NoSQL数据库
定义
NoSQL数据库是指非关系型的数 据库,它不使用固定的数据结构,
而是根据实际需要灵活地组织数 据。
特点
可扩展性、灵活性、高性能、面向 文档或键值存储。
应用场景
分析。
数据转换

《数据采集与处理》课件

《数据采集与处理》课件
《数据采集与处理 》PPT课件
contents
目录
• 数据采集 • 数据处理 • 数据应用 • 数据安全 • 案例分析
01
数据采集
数据来源
用户生成内容
例如社交媒体上的帖子、评论,博客文章等。
企业数据库
如销售数据、库存数据、客户数据等。
政府机构发布的数据
如人口普查数据、经济统计数据等。
公开的APIs
数据格式化
将数据转换为统一、规范化的格式,便于后续处 理和分析。
数据转换
数据类型转换
特征工程
将数据从一种类型转换为另一种类型,如 将文本转换为数字或将日期转换为统一格 式。
通过变换或组合原始特征,生成新的特征 ,以丰富数据的表达力。
数据归一化
数据降维
将数据缩放到特定范围,如[0,1]或[-1,1], 以提高算法的收敛速度和模型的稳定性。
电商数据采集主要包括用户行为数据、交 易数据、商品信息等,通过数据清洗、整 合、分析等处理方式,可以挖掘出用户偏 好、购买力、市场趋势等信息,为电商企 业提供精准营销、个性化推荐、库存管理 等方面的决策支持。
金融数据采集与处理
总结词
金融数据采集与处理是金融机构进行风险控制、投资决策、 客户关系管理的重要依据,通过对股票、债券、期货等金融 市场数据的采集和处理,可以获取市场动态和预测未来走势 。
许多企业和组织提供API接口,可以获取其数据。
数据采集方法
网络爬虫
用于从网站上抓取数据。
数据库查询
直接从数据库中查询数据。
API调用
通过API接口获取数据。
传感器数据采集
用于采集物理世界的数据。
数据采集工具
Python(如Scrapy、BeautifulSoup):用于网络爬 虫。

第三章:数据采集与处理系统

第三章:数据采集与处理系统

第3章 数据采集系统设计
显然双端口 RAM技术可以大大提高多字节 数据采集速率,也可提高CPU的利用率。这 类双端口RAM可以用一个同步触发信号实 现数据交换。当采用高速A/D为外设时,只 要将 A/D转换结束脉冲作为同步触发信号, 就能把数据存入双端口 RAM。当存储器响 应时间小于A/D转换时间(如采用MK4116为 双端口RAM,响应时间为3us),数据采集 速率主要决定于A/D等采样部件的响应速度。
第3章 数据采集系统设计
(1)由于数字滤波是用程序实现的,因而不需要增
加硬件设备,很容易实现。同时,多个输入通道还可 以共用一个滤波程序。
(2)由于数字滤波不需要硬件设备,因而可靠性高,
稳定性好,各回路之间不存在阻抗匹配等问题。 (3)数字滤波可以对频率很低的信号实现滤波,克 服了模拟滤波器的缺陷。 (4)通过改写数字滤波程序,可以实现不同的滤波
方法或调整滤波参数,它比改变模拟滤波器的硬件方
便得多。
第3章 数据采集系统设计
1.程序判断滤波
当采样信号由于随机干扰、误检或者变送器不稳 定等原因引起严重失真时,可以采用程序判断滤波。 程序判断滤波的方法是,根据经验确定出两次采样输 入信号可能出现的最大偏差ΔY,若相邻两次采样信号 的差值大于ΔY,则表明该采样信号是干扰信号,应该 去掉;若小于ΔY,则表明没有受到干扰,可将该信号 作为本次采样值。
第3章 数据采集系统设计
1.采用DMA技术的高速数据采集系 统 图3-4是在DMA控制器管理下 将A/D转换的数据直接存人RAM的 原理图。有关DMA控制器的原理, 已在“微型计算机原理或计算机接 口技术”课程中作过介绍,这里仅 就DMA控制下的A/D数据采方式的 原理作一简述。
第3章 数据采集系统设计

《数据采集与处理》课件

《数据采集与处理》课件

数据脱敏技术
01
静态数据脱敏
对敏感数据进行处理,使其在数 据仓库或数据湖中不再包含真实 的敏感信息。
02
动态数据脱敏
03
数据去标识化
在数据传输和使用过程中,对敏 感数据进行实时脱敏处理,确保 数据的安全性。
将个人数据从原始数据集中移除 或更改,使其无法识别特定个体 的身份。Байду номын сангаас
THANK YOU
关联规则挖掘
关联规则
发现数据集中项之间的有趣关系,生成关联规则。
关联规则挖掘算法
常见关联规则挖掘算法包括Apriori、FP-Growth等。
序列模式挖掘
序列模式
发现数据集中项之间的有序关系。
序列模式挖掘算法
常见序列模式挖掘算法包括GSP、SPADE等。
05
大数据处理与云计算
大数据处理技术
01
02
Microsoft Azure:微软的云服务平台,提供IaaS、 PaaS和SaaS服务。
03
Google Cloud Platform (GCP):谷歌的云服务平 台,提供基础设施和应用服务。
大数据与云计算的结合应用
实时数据处理
利用云计算的弹性可扩展性,处理大规模实 时数据流。
数据安全保障
云计算的安全机制可以保护大数据免受未经 授权的访问和泄露。
《数据采集与处理》PPT课件
• 数据采集概述 • 数据预处理 • 数据存储与数据库 • 数据挖掘与分析 • 大数据处理与云计算 • 数据安全与隐私保护
01
数据采集概述
数据采集的定义
定义
数据采集是指从各种来源获取、识别 、转换和存储原始数据的过程,以便 进行后续的数据处理和分析。

第三章数据采集与处理文档全文免费阅读、在线看

第三章数据采集与处理文档全文免费阅读、在线看
其中,τ=RC是滤波器的滤波时间常数。τ越大,则滤
波器的截止频率越低,滤出的电压纹波较小。
由于大的时间常数及高精度的RC电路不易制作,所以硬 件RC 滤波器不可能对极低频率的信号进行滤波。为此可 以模仿硬件RC滤波器的特性参数,用软件做成低通数字 滤波器,从而实现一阶惯性的数字滤波。
离散化可得:
整理得:
——1 线性标度转换
线性标度变换是最常用的标度变换方式,其前提条 件是传感器的输出信号与被测参数之间呈线性关系。
线性标度变换
数字量Nx对应的工程量Ax的线性标度变换公式为:
式中: A0——一次测量仪表的下限(测量范围最小值); Am——一次测量仪表的上限(测量范围最大值); Ax——实际测量值(工程量); N0——仪表下限所对应的数字量; Nm——仪表上限所对应的数字量; Nx——实际测量值所对应的数字量。
上式为线性标度变换的通用公式,其中A0,Am,N0, Nm对某一个具体的被测参数与输入通道来说都是常数, 不同的参数有着不同的值。为使程序设计简单,一般 把一次测量仪表的下限A0所对应的A/D转换值置为0, 即N0=0。这样上式可写成:
在很多测量系统中,仪表下限值A0=0,此时进一步简 化为:
在控制系统的模拟量输入通道中,一般存在传感器温度 漂移、放大器等器件的零点偏移的现象,这些都会造成 误差,从而影响测量数据的准确性,这些误差称为系统 误差。 特点:在一定的测量条件下,其变化规律是可以掌握的 产生误差的原因一般也是知道的。因此,原则上讲,系 统误差是可以通过适当的技术途径来确定并加以校正的 方法:一般采用软件程序进行处理,对系统误差进行自 动校准。
常用的数据采集与处理技术方法包括:误差校 正、数字滤波、标度变换,越限报警等。
数据处理一般包括三方面内容:

数据采集与处理技术第3版(上册)课后习题解答-马明建

数据采集与处理技术第3版(上册)课后习题解答-马明建

LSB 2
第5章 习题与思考题
③ 输入信号的最大变化率为
dU i •
dtmax
f
•Um
则 由③有
diU 3 .1 4 1 13 0 1 0 3.4 1 13 (0 V) d tmax
由②有
第5章 习题与思考题
1LSB 2
dU

dt
tCO
NV
( 1 1 0 0 0 . 0 % 0 2 1 6 1 ) 0 1 0 6
则最高信号频率
fmax
1
2n1(tAP
12tAP)
1
3.702kHz
2121 3.14(101)109
2
第5章 习题与思考题
5-7. 一个数据采集系统的孔径时间tAP=2ns, 试问一个10kHz信号在其变化率最大点
被采样时所能达到的分辨率是多少?
解:∵
fmax
1
2ntAP
∴ 2n 1
fmaxtAP
T d 0.00001
第3章 习题与思考题
⑵ 选择多路开关
∵ 由表3.5可知,CD4051的ton和toff 都为0.8μs
则 CD4051开关的切换时间为1.6μs
开关的切换速率
1 6250 60 2 k0 5 H 1.61 0 6
∴ 多路开关选择 CD4051。
第4章 习题与思考题
4-2. 设一数据采集系统有测量放大器,已知 R1=R2=5kΩ,RG=100Ω,R4=10kΩ , R5=20kΩ,若R4和R5的精度为0.1%, 试求此放大器的增益及CMRR。

tA C 1 1 1 0 3 0 t CO 1 N 1 1 0 3 V 1 0 1 0 6 0 9 1 5 s 0

工业自动化系统操作规程

工业自动化系统操作规程

工业自动化系统操作规程第一章工业自动化系统概述 (2)1.1 系统简介 (2)第二章系统安装与调试 (4)1.1.1 安装前准备 (4)1.1.2 安装流程 (4)1.1.3 注意事项 (4)1.1.4 调试前准备 (4)1.1.5 调试流程 (4)1.1.6 注意事项 (5)第三章系统操作准备 (5)1.1.7 培训目的 (5)1.1.8 培训内容 (5)1.1.9 培训方式 (5)1.1.10 培训周期 (5)1.1.11 培训要求 (5)1.1.12 设备检查目的 (6)1.1.13 设备检查内容 (6)1.1.14 设备检查周期 (6)1.1.15 设备检查要求 (6)第四章设备操作规程 (6)1.1.16 启动前准备 (6)1.1.17 启动操作 (7)1.1.18 启动注意事项 (7)1.1.19 运行监控 (7)1.1.20 运行维护 (7)1.1.21 运行注意事项 (7)1.1.22 停机操作 (7)1.1.23 停机检查 (8)1.1.24 停机注意事项 (8)第五章系统监控与维护 (8)1.1.25 监控系统概述 (8)1.1.26 监控系统构成 (8)1.1.27 监控系统操作规程 (8)1.1.28 维护保养目的 (9)1.1.29 维护保养内容 (9)1.1.30 维护保养操作规程 (9)第六章故障处理与排除 (9)1.1.31 概述 (9)1.1.32 故障分类 (9)1.1.33 故障发觉与报告 (10)1.1.34 故障诊断 (10)1.1.35 故障处理 (10)1.1.36 故障原因分析 (10)1.1.37 故障预防与改进 (11)1.1.38 故障记录与反馈 (11)第七章安全生产 (11)1.1.39 操作前准备 (11)1.1.40 操作流程 (11)1.1.41 操作注意事项 (11)1.1.42 设备故障应急处理 (11)1.1.43 人员伤害应急处理 (12)1.1.44 火灾应急处理 (12)1.1.45 其他突发事件应急处理 (12)第八章质量控制 (12)1.1.46 质量标准概述 (12)1.1.47 质量标准内容 (12)1.1.48 质量标准制定原则 (13)1.1.49 质量检测概述 (13)1.1.50 质量检测方法 (13)1.1.51 质量检测流程 (13)1.1.52 质量检测要求 (13)第九章系统升级与改造 (14)1.1.53 系统升级目的 (14)1.1.54 升级前的准备工作 (14)1.1.55 升级流程 (14)1.1.56 升级过程中的注意事项 (14)1.1.57 改造背景 (14)1.1.58 改造目标 (14)1.1.59 改造方案 (15)第十章系统管理 (15)1.1.60 目的与意义 (15)1.1.61 适用范围 (15)1.1.62 组织架构 (15)1.1.63 管理制度 (15)1.1.64 运行管理措施 (16)1.1.65 安全管理措施 (16)1.1.66 维护管理措施 (16)1.1.67 人员管理措施 (16)第一章工业自动化系统概述1.1 系统简介工业自动化系统是指在工业生产过程中,利用计算机、通信、控制等技术,对生产过程进行自动检测、自动控制、自动调节和自动管理的系统。

数据采集与处理 ppt课件

数据采集与处理 ppt课件
采样过程如图2.2所示。
数据采集与处理
7
UEST
C
x(t)
2.2 采样过程
xS(nTS )
δTs(t)
图2.2中:
x(t)
xS(nTS )
t
K
τ
TS 2TS 3TS …
t
TS
图2.2 采样过程
xs(nTs ) — 采样信号; 0, TS, 2 TS — 采样时刻
τ — 采样时; TS — 采样周期。
有舍有入
1. ″只舍不入″的量化 如图2.12所示。
数据采集与处理
34
UEST C
xS(nTS)
2.7 量化与量化误差
xq(nTS)
.
.
.
.
.
.
3q 2q q 0 TS 2TS 3TS …
(a)
3q
2q q
t
0 TS 2TS 3TS …
t
(b)
图2.12 “只舍不入”量化过程
将信号幅值轴分成若干层,各层之间的间 隔均等于量化单位q。
⑴无条件采样
特点:运行采样程序,立即采集数据,直 到将一段时间内的模拟信号的采样 点数据全部采完为止。
优点:为无约束采样。
数据采集与处理
23
UEST
2.6 模拟信号的采样控制方式
C
缺点:不管信号是否准备好都采样,可能

容易出错。
①定时采样:采样周期不变 方法
②变步长采样:采样周期变化
⑵ 条件采样
①查询方式 方法
讨论:
当φ = 0, xs(nTs ) = 0,即采样值为零, 无法恢复原来的模拟信号x(t) 。
数据采集与处理
15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 微型计算机数据采集系统(2)
显 示 接 口 电 路 数字量输入通道 计 算 机 报 警 打 印
模拟量输入通道 生 产 过 程
图3―1 计算机数据采集与处理系统
3.1 微型计算机数据采集系统(3)
3.1.2 基本的数据采集与处理系统 1. 数据采集系统的基本功能 ①时钟。时钟除定时发出中断请求确 定数据采样周期以外,还能为显示和打 印时、分、秒提供数据,以便操作人员 根据打印时间判断读取测量结果。 ②采集、打印(或显示)及越限报警。 ③能实现召唤制表或定时制表,即根 据用户由键盘送入的指令开始或终止制 表,或根据时钟周期定时制表。
3.2 数字滤波技术(7)
3.2.3 算数平均值滤波
算术平均值滤波公式 取N次采样值的算术平均值 作为本次采样值,即
Y (k ) 1 N
i 1
X (i)
N
Y (k )
1 N X (i) N i 1
式中 Y (k ) -----为第k次采样N个采 样值的算术平均值 X(k) -----第i个采样值 N ----- 采样次数
7 16 13 14 15 12 CD4051 1 5 1# 2 4 多路开关 11 3 10 9 6 8 6
10kΩ +VC 0.1μF 0.1μF 0.1μF
CS RD WR
+VC
CD4051 2# 6 8
3kΩ 3kΩ
3 7 5 2 47 6
INT
接数据 总线
D7
片选
1kΩ -V C
CD4051 8# 6 8
3.2 数字滤波技术(4)
2、限速滤波
限速滤波 也是滤掉采样值变化过大的信号 限速滤波有时需要三次采样值来决定采样结果 1)限速滤波的方法 当|Y(k)- Y(k-1)| > ⊿Y 时,不是取Y(k-1)作为本次 的采样值,而是再采样一次,取的Y(k+1),然后根据|Y(k+1)- Y(k)| 与⊿Y 的大小关系,来决定本次的采样值。 设顺序采样时刻k-1、k、k+1,所采集到的数据分别为Y(k-1)、Y(k)、 Y(k+1) 当|Y(k)- Y(k-1)|≤⊿Y 时,采用Y(k) 当|Y(k)- Y(k-1)| > ⊿Y 时,不采用Y(k-1) ,但保留,继续采样得Y(k+1) 当|Y(k+1)- Y(k)|≤⊿Y 时, 采用Y(k+1) 当|Y(k+1)- Y(k)| > ⊿Y 时,则取(Y(k+1)+Y(k))/2为采样值 2)限速滤波的特点 既照顾了采样的实时性,又顾及了采样值变化的连 续性。不足 一是不够灵活,二是不能反映采样点数大于3时各采样数值受 干扰情况。故应用受到限制。
计算机控制技术
( 3)
周广兴
第3章 数据采集与处理系统
3.1.1 数据采集与处理系统的构成 • 数据采集与处理是每个计算机控制系统都 必须具备的基本功能。对于数据采集系统而言, 它的主要任务是把生产过程中反映生产状态的 各种工艺参数 ( 如温度、压力、流量等 ) 送入计 算机进行计算、处理。所得结果不仅作为操作 指导信息输出显示,还可进行打印、存储、传 送等操作。此外,数据采集系统还可以根据计 算结果判断生产状态是否正常,如果发现异常, 还会自动进行报警。
e
T /
5、应用
把每一个采样值X( k)代入上式进行计算,即得到对应的 滤波后的值。
3.2 数字滤波技术(14)
3.2.7 复合数字滤波
3.2.4 加权平均值滤波
1、加权平均值滤波 算术平均值滤波中的算术平均值,对于所用 的N个采样值,所占的比例是相同的,滤波的结果取每个采样值的 1/N。 为了提高滤波效果,将各采样值取不同的比例,然后再相加,此方法 称为加权平均法。 具有N个采样值的加权平均值公式为:
Y (k ) C i X (i )
3.2 数字滤波技术(3)
1、限幅滤波
限幅滤波 是滤掉采样值变化过大的信号 1)限幅滤波的方法 是把相邻两次的采样值相减,求出其增 量(绝对值),然后与两次采样允许的最大差值(据情况而定) ⊿Y进行比较,若小于或等于⊿Y ,则取本次的采样值;若大于 ⊿Y ,则仍取上次的采样值作为本次的采样值。即 若 |Y(k)- Y(k-1)|≤⊿Y ,则Y(k)=Y(k), 取本次采样值 若 |Y(k)- Y(k-1)| > ⊿Y ,则Y(k)=Y(k-1),取上次采样值 说明: ⊿Y 的大小取决于采样周期T及Y值的变化动态响应。 2)限幅滤波的应用系统 是主要用于变化比较缓慢的参数, 如温度、物位等测量系统。 3)使用时最大允许误差⊿Y的选取,可根据经验数据或实验 得出。 ⊿Y 太大,各种干扰信号将“乘机而入”,使系统误差增 大; ⊿Y 太小,又会使一些有用信号“拒之门外”,使计算机采 样效率变低。
3.1 微型计算机数据采集系统(1)
• 数据采集与处理系统根据其任务, 一般应由以下几个部分组成:用于系统 控制的计算机,完成数据输入输出任务 的过程通道,连接计算机与过程通道的 接口电路,实现数据显示、打印、存储 等功能的输出与报警装置,用于系统控 制与数据处理的应用软件等。计算机数 据采集与处理系统的一般结构框图如图 3―1所示。
3.1 微型计算机数据采集系统(6)
若采集多个点,则用多通道结构。多通 道结构又可分为通路结构 ( 各模拟信号有 各自的A/D)和共用A/D结构(用多路开关对 各模拟信号分别采样 )。前者速度快,通 道间串扰小,但所用A/D芯片多,因而成 本高。后者因多路开关切换需要时间, 而A/D公用,故速度慢且开关间存在串扰, 但它价格低、电路也简单,故用得较广。
3.1 微型计算机数据采集系统(8)
③采样频率的确定。可根据采样定理 和一些工程方法确定。 ④具体的数据处理要求。如处理方法、 精度和速度等。 图3-2给出了这种结构的一个方案。
3.1 微型计算机数据采集系统(9)

00
-V C
+VC
接模拟量
63
A B C +VC 路选 +VC
20 1 2 D0 3 5 4 6 7 74LS273 8 9 13 锁存器 12 14 15 17 16 18 19 10 11 16 15 14 1 13 2 12 3 74LS138 4 译码器 5 11 6 10 9 7 8 6
3.2 数字滤波技术(11)
3.2.6 RC低通数字滤波
1、前面几种滤波器的特点
基本上属于静态滤波,主要适用于变化比较快的信号,如压 力、流量、速度等。对于慢速随机变化的信号,采用在短时间内 采样求平均值滤波,其效果往往不理想。
2、RC低通滤波器
右图所示为RC低通滤波器,信号
X(s)频率越高,旁路阻抗越低,信号 越容易被滤掉,信号X(s)频率越低,旁路阻抗越高,信号越不容 易被滤掉。是电子线路中常用的一种滤波器。 RC之积为滤波器的时间常数。
Hale Waihona Puke 即为RC低通滤数字波器的数学公式。式中, X(k)-----第k个采样值; Y(k)-----第k次滤波输出值; Y(k-1)-----第k-1次滤波输出值; α ----- 滤波平滑系数, T ----- 为采样周期; τ ----- 滤波环节的时间常数
3.2 数字滤波技术(13)
4、平滑系数α与T、τ的简化关系
3.2 数字滤波技术(12)
3、RC低通滤数字波器
从控制理论的角度看,上图是一个惯性环节,其参数RC为 时间常数。该环节的传递函数为
Go (s) X (s) s 1
Y ( s) 1
式中τ=RC,为环节的时间常数。
离散化得差分方程 (用kT代替t,不写T)
Y (k ) (1 )Y (k 1) X (k )
i 1 N
......, 式中 Ci C1, C2, C N 均为常数,称为各采样值的系数,应满足以下
关系:
i 1
Ci 1
N
Ci 体现了各采样值在平均值中所占的比例,可以根据具体情况决定。 2、Ci 取值例子 对于正在变化的信号,如采集流量的之间值,一 般采样次数愈靠后,取的比例愈大,这样可以增加新的采样值在平均 值的比例。 3、主要应用 根据需要,突出或抑制某一部分信号。
3.2 数字滤波技术(5)
3.2 数字滤波技术(6)
3.2.2 中值滤波
中值滤波 是对某一参数连续采样n次(一 般n取奇数),然后把n次的采样值从小到大、 或从大到小排序,取其中间值作为本次采样 值。 中值滤波的功能 对于去掉偶然因素引起 的波动、或采样器不稳定而造成的误差所引 起的脉动干扰有效。 中值滤波的应用系统 适用与信号变化 比较缓慢的系统,对于变化快速的信号,如 流量、快速运动的位移、角度等不适用。 中值滤波的程序设计 程序设计流程图如左图所示。 程序见教材P63(略)
(4)可以对频率很低(如0.1Hz)的信号滤波
(5)使用灵活、方便,如可选择不同的滤波器和参数
3.2 数字滤波技术(2)
3.2.1 程序判断滤波
程序判断滤波的方法,是根据生产经验,确定出 相邻两次采样信号之间可能出现的最大偏差⊿Y。若 超过此偏差值,则表明是干扰信号,应该去掉;若小 于此偏差值,则将该信号作为本次的采样值。 程序判断滤波的主要作用 用于滤掉由于大功率 设备的启停,所造成的电流尖峰干扰或误检测,以及 变送器不稳定而引起的严重失真等。 程序判断滤波可分为限幅滤波和限速滤波两种。
3.2 数字滤波技术(10)
3.2.5 滑动平均值滤波
1、算术平均值滤波与加权平均值滤波的缺点 不管是算术 平均滤波还是加权平均滤波,都需要连续采样N个数据,然后求 算术平均值或加权平均值。这种方法适合于有脉动式干扰的场合。 但由于采样N个需要的时间较长,故检测速度较慢。滑动平均值 滤波可克服此缺点。 2、滑动平均值滤波 在RAM中建立一数据缓冲区,依次存 放N个采样数据,每采进一个新数据,就将最早采集的那个数据 丢掉,然后求包括新数据在内的N个数据的算术平均值或加权平 均值。 3、有两种滑动平均值滤波 一种是算术平均滤波,另一种 是加权平均滤波 提示:在滑动平均值滤波开始时,要先采集N个数据存放在 缓冲区中,然后再做滑动平均值滤波。
相关文档
最新文档