排列组合概率选择题.
高二数学排列组合概率练习 人教版 试题

2006年某某省重点中学高二数学排列组合概率练习一、选择题1.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A .36种B .48种C .72种D .96种2.设nb a )(-的展开式中,二项式系数的和为256,则此二项展开式中系数最小的项是( )A .第5项B .第4、5两项C .第5、6两项D .第4、6两项3.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。
如果A 、B 为必选城市,并且在游览过程中必须按先A 后B 的次序经过A 、B 两城市(A 、B 两城市可以不相邻),则有不同的游览线路( )A .120种B .240种C .480种D .600种4.百米决赛有6名运动A 、B 、C 、D 、E 、F 参赛,每个运动员的速度都不同,则运动员A 比运动员F 先到终点的比赛结果共有( )A .360种B .240种C .120种D .48种5.若二项式(122)m mbx ax -+的展开式中系数最大的项恰是常数项,则正整数ba的值为 ( )A .2B .4C .6D .56.用1,2,3,4这四个数字可排成必须..含有重复数字的四位数有 ( )7.在5X 卡片上分别写着数字1、2、3、4、5,然后把它们混合,再任意排成一行,则得到的数能被5或2整除的概率是B.0.6 C8.由关于x 的恒等式x 4+a 1x 3+a 2x 2+a 3x+a 4=(x+1)4+b 1(x+1)3+b 2(x+1)2+b 3(x+1)+b 4,定义映射f:(a 1, a 2, a 3, a 4)→(b 1, b 2, b 3, b 4),则f(4, 3, 2, 1) = (A.(1, 2, 3, 4)B.(0, 3, 4, 0)C.(-1, 0, 2, -2)D.(0, -3, 4, -1) 9. 五个身高均不相同的学生排成一排俣影留念,高个子站中间,从中间到左边和从中间到右边均一个比一个矮,则这样的排法共有 ( )(A)6种 (B)8种 (C)12种 (D)16种10. 袋中有红、黑、黄三种颜色的小球各10个,每次从袋中取出一个小球不放回,一直到发现某种颜色的小球恰好取够6个,便立即停止取球,则最多的取球次数为( ) A. 6 B. 16 C. 20 D. 2611.某电视台邀请了6位同学的父母共12人,请这12位家长中的4位介绍教育子女的情况,那么这4位中至多一对夫妻的选择方法为( )A .15种B .120种C .240种D .480种12.某种体育彩票抽奖规定,从01到36共36个中抽出7个为一注,每注2元,某人想从01到10中选3个连续号,从11到20中选2个连续号,从21到30中选1个号,从31到36中选1个号组成一注,现这人把这些特殊的号全买,要花费的钱数是( ).A .3 360元B .6 720元C .4 320元D .8 640元 二、填空题13、如果一个三位正整数a 1a 2a 3满足a 1<a 2且a 3<a 2,则称这样的三位数为凸数(如120,363,374等),那么所有凸数的个数是_______________(用数作答)14、有15名新生,其中有3名优秀生,现随机将他们分到三个班级中去,每班5人,则每班都分到优秀生的概率是.15、由0,1,2,…,9这十个数字组成的、无重复数字的四位数中,个位数字与百位数字之差的绝对值等于8的个数为_______________16、甲、乙、丙三人分别独立解一道题,已知甲做对这道题的概率是43,甲、丙两人都做错的概率是121,乙、丙两人都做对的概率是41。
【高中数学】排列组合概率(排列组合)选择题A

YOU WIN 教学帮你会,不留疑问助你赢。
用方法注解效率 用行动助推梦想 用效果诠释责任A1.函数f:|1,2,3|→|1,2,3|满足f(f(x))= f(x),则这样的函数个数共有 ( D )(A)1个 (B)4个 (C)8个 (D)10个2.过平行六面体ABCD-A 1B 1C 1D 1任意两条棱的中点作直线,其中与平面DBB 1D 1平行的直线共有 ( D )A.4条B.6条C.8条D.12条3.某外商计划在四个候选城市投资3个不同的项目,且在同一个城市投资的项目不超过2个,则该外商不同的投资方案有 ( D )A.16种B.36种C.42种D.60种4.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有(B)(A )36个 (B )24个(C )18个 (D )6个5 .在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( C )种.(A )34A (B )34 (C )43 (D )34C6.5本不同的书全部分给4个学生,每个学生至少一本,不同的分法种数为( B . )(A )480 种 (B )240种 (C )120种 (D )96种 7 . 某交通岗共有3人,从周一到周日的七天中,每天安排一人值班,每人至少值2天,其不同的排法共有( D )种.(A )5040 (B )1260 (C )210 (D )6308. 用数字0,1,2,3,4组成没有重复数字的比1000大的奇数共有(D )(A )36个 (B )48个 (C )66个 (D )72个9.现有1角、2角、5角、1元、2元、5元、10元、50元人民币各一张,100元人民币2张,从中至少取一张,共可组成不同的币值种数是( D )(A)1024种 (B)1023种 (C)1536种 (D)1535种10 .现有8个人排成一排照相,其中有甲、乙、丙三人不能相邻的排法有( B )种.(A )5536A A ⋅ (B )336688A A A ⋅- (C )3335A A ⋅ (D )4688A A -11. 高三年级的三个班到甲、乙、丙、丁四个工厂进行社会实践,其中工厂甲必须有班级去,每班去何工厂可自由选择,则不同的分配方案有( C ).(A )16种 (B )18种 (C )37种 (D )48种。
高中数学排列组合与概率统计习题

高中数学必修 排列 组合和概率练习题一、选择题(每小题5分,共60分)(1) 已知集合A={1,3,5,7,9,11},B={1,7,17}.试以集合A 和B 中各取一个数作为点的坐标,在同一直角坐标系中所确定的不同点的个数是(A) 32 (B) 33 (C) 34 (D) 36解 分别以{}1357911,,,,,和{}1711,,的元素为x 和y 坐标, 不同点的个数为1163P P 分别以{}1357911,,,,,和{}1711,,的元素为y 和x 坐标, 不同点的个数为1163P P不同点的个数总数是1111636336P P P P +=个() (2) 从1,2,3,…,9这九个数学中任取两个,其中一个作底数,另一个作真数,则可以得到不同的对数值的个数为(A) 64 (B) 56 (C) 53 55 (D) 51解 ①从1,2,3,…,9这九个数学中任取两个的数分别作底数和真数的“对数式”个数为292P ;②1不能为底数,以1为底数的“对数式”个数有8个,而应减去;③1为真数时,对数为0,以1为真数的“对数式”个数有8个 ,应减去7个; ④23log 4log 92==,,应减去2个所示求不同的对数值的个数为29287255()C ---=个(3) 四名男生三名女生排成一排,若三名女生中有两名站在一起,但三名女生不能全排在一起,则不同的排法数有(A )3600 (B )3200 (C )3080 (D )2880解 ①三名女生中有两名站在一起的站法种数是23P ;②将站在一起的二名女生看作1人和其他5人排列的排列种数是66P ,其中的三名女生排在一起的站法应减去。
站在一起的二名女生和另一女生看作1人和4名男生作全排列,排列数为55P ,站在一起的二名女生和另一女生可互换位置的排列,故三名女生排在一起的种数是1525P P 。
符合题设的排列数为:26153625665432254322454322880P P P P -=⨯⨯⨯⨯⨯-⨯⨯⨯⨯=⨯⨯⨯⨯=种()()()(4) 由100展开所得x 多项式中,系数为有理项的共有(A )50项 (B )17项 (C )16项 (D )15项解 1000100110011r 100r r 10010033100100100100=C )+C )++C (3)(2)++C (2)x --可见通项式为:1003100230010010010010023666100100100100)666r rr rrr rrr rr rr r CC xC xC x ---++----===()且当r=06121896,,,,,时,相应项的系数为有理数,这些项共有17个, 故系数为有理项的共有17个. (5) 设有甲、 乙两把不相同的锁,甲锁配有2把钥匙,乙锁配有2把钥匙,这4把钥匙和不能开这两把锁的2把钥匙混在一起,从中任取2把钥匙能打开2把锁的概率是(A ) 4/15 (B ) 2/5 (C ) 1/3 (D ) 2/3解 从6把钥匙中任取2把的组合数为26P ,若从中任取的2把钥匙能打开2把锁,则取出的必是甲锁的2把钥匙之一和乙锁的2把钥匙之一。
数学中的排列组合与概率运算测试题

数学中的排列组合与概率运算测试题在我们的日常生活和学术研究中,数学中的排列组合与概率运算扮演着至关重要的角色。
它们不仅是数学学科的重要组成部分,还在众多领域如统计学、物理学、计算机科学等中有着广泛的应用。
为了帮助大家更好地理解和掌握这部分知识,下面为大家准备了一份测试题,一起来挑战一下吧!一、选择题(每题 5 分,共 30 分)1、从 5 个不同的元素中取出 3 个元素的排列数为()A 60B 10C 20D 1202、从 10 名学生中选出 3 名参加某项活动,不同的选法有()种。
A 120B 720C 100D 3603、有 5 本不同的书,从中任选 3 本送给 3 个同学,每人一本,不同的送法有()种。
A 60B 120C 10D 204、一个袋子里有 3 个红球和 2 个白球,从中任取 2 个球,恰好都是红球的概率是()A 3/10B 3/5C 9/25D 3/255、掷两枚骰子,点数之和为 7 的概率是()A 1/6B 1/9C 1/3D 1/126、从 5 个男生和 4 个女生中选出 3 个男生和 2 个女生排成一排,共有()种不同的排法。
A 7200B 3600C 14400D 720二、填空题(每题 5 分,共 30 分)1、从 8 个不同的元素中取出 2 个元素的组合数为_____。
2、有 4 个不同的小球,放入 3 个不同的盒子中,每个盒子至少放一个小球,共有_____种放法。
3、从 1、2、3、4、5 这五个数字中,任取三个数字组成没有重复数字的三位数,其中是奇数的有_____个。
4、一批产品共有 10 件,其中次品有 3 件,从这批产品中任取 3 件,恰好有 1 件次品的概率是_____。
5、一个口袋里有 5 个红球和 3 个白球,从中任取 3 个球,至少有1 个红球的概率是_____。
6、展开式\((x + 2)^6\)中\(x^3\)的系数是_____。
三、解答题(每题 20 分,共 40 分)1、 7 个人排成一排,其中甲、乙两人必须相邻,有多少种不同的排法?2、某班级有 10 名男生和 8 名女生,从中任选 4 名学生参加数学竞赛,求至少有 1 名女生的概率。
职高数学 排列组合二项式概率测试题(含答案)

排列组合二项式概率测试题满分120分 时间 120分钟一、选择题(本题共15个小题,每小题 3分,共45分)1.某段铁路共有5个车站,共准备多少种不同的车票( ).A .10B .20C .15D .322.某地生态园有4个出入口,若某游客从任一出入口进入,并且从另外3个出入口之一走出,进出方案种数为( )A .4B .7C .10D .123.将4封不同的信投入3个不同的信箱,则不同的投送方法有多少种( ).A . 43B . 34C . 34C D . 34P4.甲、乙、丙三人排成一排照相,甲不站在排头的所有排列种数为( )A .6B .4C .8D .105.某商场有四个大门,若从一个门进入,购买商品后再从另一个门出去,不同的进出方法共有多少种 ( ).A .12B .20C .24D .286.6名学生站成一排,其中甲不能站在排尾的不同排法种数是( ).A.1556P P B .1555P P C .56P D .6565P 2P -7.n N ∈,n <25,则乘积(25-n )(26-n )⋅⋅⋅(39-n )等于( ).A.2539P n n -- B .1539P n - C .1525P n - D . 1439P n -8.从集合A ={2,3,5,7,11}中任取两个数作为对数log a x 的底数和真数,则可以得到不同的对数值为( ).A .20B .30C .40D .609.楼道里有12盏灯,为了节约用电,需关掉3盏不相邻的灯,则关灯方案有( )A .72种B .84种C .120种D .168种10.在二项式521x -()的展开式中,含2x 的项是( ).A .25x -B .25xC .240x -D .240x11.抛掷两枚硬币,则两枚硬币都正面朝上的概率为( ).A . 12B . 14C . 18D . 3412.甲、乙两人进行射击比赛,甲击中目标的概率是0.8,乙击中目标的概率是0.6,则甲乙二人恰有一人击中目标的概率是( ).A .0.32B .0.44C .0.12D .0.5613.从“舞蹈、相声、小品……”等5个候选节目中选出4个节目参加“艺术节”的汇演,其中第一出场节目不能是“舞蹈”,也不能是“相声”,则不同的演出方案种数是( )A . 48B . 72C . 96D .10814.某人参加一次考试,4道题中解对3道题则为及格,已知他的解题正确率为0.6,则他能及格的概率是( ).A .0.3456B .0.1296C .0.4752D .0.524815.袋中有5个大小相同的球,其中2个红球,3个白球,从袋中任意抽取2个球,抽取的球为不 同颜色的概率是( ).A . 25B . 35C . 715D . 1225二、填空题(本题有15个空,每空2分,共30分)16.已知事件A 在一次试验中不发生的概率为0.2,则事件A 发生的概率为_____.17.在学校举行的演讲比赛中,共有6名选手进入决赛,则选手甲不在第一个也不在最后一个演讲的概率为______.18.从甲地到乙地有3条路可走,从乙地到丙地有4条路可走,从甲地不经过乙地到丙地有2条路可走,那么从甲地到丙地有______种走法.19.若43410n n C C C +=,则n =______.20.某铁路客运段上有9个站,那么该线路上共有______种不同的票价. 21.7个座位,3个人去坐,每人坐一个座位,有______种不同的坐法.22.612x (+)展开式中二项式系数最大的项是第______项.23.245n nC -=,则n =_________. 24.在三次独立重复试验中,事件A 至少发生1次的概率为6364.则事件A 在一次试验中发生 的概率为_________.25.抛掷两颗骰子,出现总数之和等于7的概率为_________.26.5个人用抽签的方法分配两张电影票,第二个人抽到电影票的概率是_____. 27.4名男同学和3名女同学站成一排照相,则男同学与女同学相间排列的排法种数有_____种.28.从1到100中任取一个数,则这个数既能被2整除,又能被5整除的概率是_______.29.一批产品的次品率为0.1,有放回的抽取3次,则恰好有1次取到次品的概率是_______.30.右表是某个随机变量ξ的概率分布,其中m 的值是_________.三、解答题(本题共7个小题,共45分) 31.用0,1,2,3,4,5可以组成多少个没有重复数字的三位偶数?32. 7个人站成一排照相,(1)若甲不能站在中间,共有多少种不同的排法?(2)若甲必须站在两端,共有多少种不同的排法?(3)若甲乙中间必须间隔一个人,共有多少种不同的排法?33.甲乙两人参加安全知识竞赛,共有10道不同题目,其中选择题7道,判断题3道,甲乙二人依次各抽一题,(1)甲抽到选择题,乙抽到判断题的概率是多 少?(2)甲乙二人抽到不同题型的概率是多少?34.求101x x-()的展开式中的常数项. 35. 7()2x x-的二项展开式中,求(1)第4项;(2)含3x 项的系数. 36.某小组有3名男生和2名女生,任选3个人去参加某项活动,求所选3个人中女生数目ξ的概 率分布.37.一个袋中装有10个形状和大小相同的球,其中8个红球和2个白球,(1)若从中任取1球,求出现白球的概率;(2)若从中有放回地任取1个,连取2次,求出现白球次数ξ的概率分布.排列组合二项式概率测试题答案一、 选择题1—5 B D A B A 6—10 B B A C C 11—15 B B B C B二、填空题16.0.8 17. 2318.14 19.920.36 21.21022.4 23.1024. 34 25. 1626. 2527.144 28. 11029.0.243 30.0.04三、解答题31.个位数字为0有25P 20=个位数字不为0,有11442P P 32=种 故所求没有重复数字共有211544P 2P P 52+=个. 32.(1)1666P P 4320=种 (2)1626C P 1440=种(3) 152552C P P 1200=种33.(1)设A ={甲抽到选择题,乙抽到判断题}()117311109C C 7C C 30P A ==(2)设B ={甲乙二人抽到不同题型}()1111733711109C C C C 7C C 15P A +== 34. 101101C m m m m T xx -+⎛⎫=- ⎪⎝⎭ ()102101C m m m x-=- 令1020m -=,得5m =故,第6项为常数项.()556101C 252T =-=- 35.(1)33443172C T T x x +⎛⎫==- ⎪⎝⎭()333471C 2x x ⎛⎫=- ⎪⎝⎭()43358x x -=⨯-280x =- (2)7172C mm m m T x x -+⎛⎫=- ⎪⎝⎭()77C 2m m m m x x --=-()7272C m m m x -=- 令723m -=,得2m =故第三项为含3x 的项,该项的系数为()2272C 84-= 36.ξ的可能取值为0,1,2.()032335C C 1P 0C 10ξ===;()122335C C 63P 1C 105ξ====,()212335C C 3P 2C 10ξ=== 所以,ξ的概率分布为37.(1)设A ={出现白球},则()21P 105A == (2)ξ的可能取值为0,1,2. 有放回的任取一球,取到白球的概率不变,每次取到白球的概率都是12p =. ()02214160C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ ()121481C 5525p ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭ 所以,ξ的概率分布为。
【36】排列组合与概率统计《计数原理》选择题(58题)

1.【点击此处回目录】(2018•新课标Ⅲ)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.80【考点】二项式定理.【分析】由二项式定理得(x2+)5的展开式的通项为:T r+1=(x2)5﹣r()r=,由10﹣3r=4,解得r=2,由此能求出(x2+)5的展开式中x4的系数.【解答】解:由二项式定理得(x2+)5的展开式的通项为:T r+1=(x2)5﹣r()r=,由10﹣3r=4,解得r=2,∴(x2+)5的展开式中x4的系数为=40.故选:C.【点评】本题考查二项展开式中x4的系数的求法,考查二项式定理、通项公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.2.【点击此处回目录】(2018•新课标Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.3【考点】排列、组合及简单计数问题.【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,根据概率公式计算即可,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有C52=10种,其中全是女生的有C32=3种,故选中的2人都是女同学的概率P==0.3,(适合文科生),设2名男生为a,b,3名女生为A,B,C,则任选2人的种数为ab,aA,aB,aC,bA,bB,Bc,AB,AC,BC共10种,其中全是女生为AB,AC,BC共3种,故选中的2人都是女同学的概率P==0.3,故选:D.【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.3.【点击此处回目录】(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4B.8C.12D.16【考点】排列、组合及简单计数问题.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×4=8,当A1ACC1为底面矩形,有4个满足题意,当A1AEE1为底面矩形,有4个满足题意,故有8+4+4=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.4.【点击此处回目录】(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有()A.16个B.70个C.140个D.256个【考点】排列、组合及简单计数问题.【分析】利用排列数的性质、计算公式直接求解.【解答】解:4个数字1和4个数字2可以组成不同的8位数共有:=70.故选:B.【点评】本题考查排列数的求法,考查排列数的性质、计算公式等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.【点击此处回目录】(2017•新课标Ⅰ)(1+)(1+x)6展开式中x2的系数为()A.15B.20C.30D.35【考点】二项式定理.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.6.【点击此处回目录】(2017•新课标Ⅲ)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80B.﹣40C.40D.80【考点】二项式定理.【分析】(2x﹣y)5的展开式的通项公式:T r+1=(2x)5﹣r(﹣y)r=25﹣r(﹣1)r x5﹣r y r.令5﹣r =2,r=3,解得r=3.令5﹣r=3,r=2,解得r=2.即可得出.【解答】解:(2x﹣y)5的展开式的通项公式:T r+1=(2x)5﹣r(﹣y)r=25﹣r(﹣1)r x5﹣r y r.令5﹣r=2,r=3,解得r=3.令5﹣r=3,r=2,解得r=2.∴(x+y)(2x﹣y)5的展开式中的x3y3系数=22×(﹣1)3+23×=40.故选:C.【点评】本题考查了二项式定理的应用,考查了推理能力与计算能力,属于中档题.7.【点击此处回目录】(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有()A.12种B.18种C.24种D.36种【考点】排列、组合及简单计数问题.【分析】把工作分成3组,然后安排工作方式即可.【解答】解:4项工作分成3组,可得:=6,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:6×=36种.故选:D.【点评】本题考查排列组合的实际应用,注意分组方法以及排列方法的区别,考查计算能力.8.【点击此处回目录】(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A.6种B.9种C.10种D.15种【考点】计数原理的应用;排列、组合及简单计数问题.【分析】利用组合数和列举法能求出结果.【解答】解:从1,2,3,4,5,6中任取三个不同的数相加,所得的最小值为1+2+3=6,最大值为4+5+6=15,1+2+3=6,1+2+4=7,1+2+5=1+3+4=8,1+2+6=1+3+5=2+3+4=9,1+3+6=1+4+5=2+3+5=10,1+4+6=2+3+6=2+4+5=11,1+5+6=2+4+6=3+4+5=12,3+4+6=13,3+5+6=14,4+5+6=15共有:10种不同结果.故选:C.【点评】本题考查三个数相加的不同的和的求法,考查排列组合、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.9.【点击此处回目录】(2016•四川)设i为虚数单位,则(x+i)6的展开式中含x4的项为()A.﹣15x4B.15x4C.﹣20ix4D.20ix4【考点】二项式定理.【分析】利用二项展开式的通项公式即可得到答案.【解答】解:(x+i)6的展开式中含x4的项为x4•i2=﹣15x4,故选:A.【点评】本题考查二项式定理,深刻理解二项展开式的通项公式是迅速作答的关键,属于中档题.10.【点击此处回目录】(2016•四川)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为()A.24B.48C.60D.72【考点】排列、组合及简单计数问题.【分析】用1、2、3、4、5组成无重复数字的五位奇数,可以看作是填5个空,要求个位是奇数,其它位置无条件限制,因此先从3个奇数中任选1个填入,其它4个数在4个位置上全排列即可.【解答】解:要组成无重复数字的五位奇数,则个位只能排1,3,5中的一个数,共有3种排法,然后还剩4个数,剩余的4个数可以在十位到万位4个位置上全排列,共有=24种排法.由分步乘法计数原理得,由1、2、3、4、5组成的无重复数字的五位数中奇数有3×24=72个.故选:D.【点评】本题考查了排列、组合及简单的计数问题,此题是有条件限制排列,解答的关键是做到合理的分布,是基础题.11.【点击此处回目录】(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9【考点】分步乘法计数原理;排列、组合及简单计数问题.【分析】从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,由组合数可得最短的走法,同理从F到G,最短的走法,有C31=3种走法,利用乘法原理可得结论.【解答】解:从E到F,每条东西向的街道被分成2段,每条南北向的街道被分成2段,从E到F最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有C42C22=6种走法.同理从F到G,最短的走法,有C31C22=3种走法.∴小明到老年公寓可以选择的最短路径条数为6×3=18种走法.故选:B.【点评】本题考查排列组合的简单应用,得出组成矩形的条件和最短走法是解决问题的关键,属基础题12.【点击此处回目录】(2015•湖北)已知(1+x)n的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为()A.212B.211C.210D.29【考点】二项式定理.【分析】直接利用二项式定理求出n,然后利用二项式定理系数的性质求出结果即可.【解答】解:已知(1+x)n的展开式中第4项与第8项的二项式系数相等,可得,可得n=3+7=10.(1+x)10的展开式中奇数项的二项式系数和为:=29.故选:D.【点评】本题考查二项式定理的应用,组合数的形状的应用,考查基本知识的灵活运用以及计算能力.13.【点击此处回目录】(2015•新课标Ⅰ)(x2+x+y)5的展开式中,x5y2的系数为()A.10B.20C.30D.60【考点】二项式定理.【分析】利用展开式的通项,即可得出结论.【解答】解:(x2+x+y)5的展开式的通项为T r+1=,令r=2,则(x2+x)3的通项为=,令6﹣k=5,则k=1,∴(x2+x+y)5的展开式中,x5y2的系数为=30.故选:C.【点评】本题考查二项式定理的运用,考查学生的计算能力,确定通项是关键.14.【点击此处回目录】(2015•陕西)二项式(x+1)n(n∈N+)的展开式中x2的系数为15,则n=()A.7B.6C.5D.4【考点】二项式定理.【分析】由题意可得==15,解关于n的方程可得.【解答】解:∵二项式(x+1)n(n∈N+)的展开式中x2的系数为15,∴=15,即=15,解得n=6,故选:B.【点评】本题考查二项式定理,属基础题.15.【点击此处回目录】(2015•广东)若集合E={(p,q,r,s)|0≤p<s≤4,0≤q<s≤4,0≤r<s≤4且p,q,r,s∈N},F={(t,u,v,w)|0≤t<u≤4,0≤v<w≤4且t,u,v,w∈N},用card(X)表示集合X中的元素个数,则card(E)+card(F)=()A.200B.150C.100D.50【考点】子集与交集、并集运算的转换;Venn图表达集合的关系及运算;排列、组合及简单计数问题.【分析】对于集合E,s=4时,p,q,r从0,1,2,3任取一数都有4种取法,从而构成的元素(p,q,r,s)有4×4×4=64个,再讨论s=3,2,1的情况,求法一样,把每种情况下元素个数相加即可得到集合E的元素个数,而对于集合F,需讨论两个数:u,w,方法类似,最后把求得的集合E,F元素个数相加即可.【解答】解:(1)s=4时,p,q,r的取值的排列情况有4×4×4=64种;s=3时,p,q,r的取值的排列情况有3×3×3=27种;s=2时,有2×2×2=8种;s=1时,有1×1×1=1种;∴card(E)=64+27+8+1=100;(2)u=4时:若w=4,t,v的取值的排列情况有4×4=16种;若w=3,t,v的取值的排列情况有4×3=12种;若w=2,有4×2=8种;若w=1,有4×1=4种;u=3时:若w=4,t,v的取值的排列情况有3×4=12种;若w=3,t,v的取值的排列情况有3×3=9种;若w=2,有3×2=6种;若w=1,有3×1=3种;u=2时:若w=4,t,v的取值的排列情况有2×4=8种;若w=3,有2×3=6种;若w=2,有2×2=4种;若w=1,有2×1=2种;u=1时:若w=4,t,v的取值的排列情况有1×4=4种;若w=3,有1×3=3种;若w=2,有1×2=2种;若w=1,有1×1=1种;∴card(F)=100;∴card(E)+card(F)=200.故选:A.【点评】考查描述法表示集合,分布计数原理的应用,注意要弄清讨论谁,做到不重不漏.16.【点击此处回目录】(2015•四川)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个【考点】排列、组合及简单计数问题.【分析】根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;进而对首位数字分2种情况讨论,①首位数字为5时,②首位数字为4时,每种情况下分析首位、末位数字的情况,再安排剩余的三个位置,由分步计数原理可得其情况数目,进而由分类加法原理,计算可得答案.【解答】解:根据题意,符合条件的五位数首位数字必须是4、5其中1个,末位数字为0、2、4中其中1个;分两种情况讨论:①首位数字为5时,末位数字有3种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有A43=24种情况,此时有3×24=72个,②首位数字为4时,末位数字有2种情况,在剩余的4个数中任取3个,放在剩余的3个位置上,有A43=24种情况,此时有2×24=48个,共有72+48=120个.故选:B.【点评】本题考查计数原理的运用,关键是根据题意,分析出满足题意的五位数的首位、末位数字的特征,进而可得其可选的情况.17.【点击此处回目录】(2015•湖南)已知(﹣)5的展开式中含的项的系数为30,则a=()A.B.﹣C.6D.﹣6【考点】二项式定理.【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;展开式中含的项的系数为30,∴,∴r=1,并且,解得a=﹣6.故选:D.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.18.【点击此处回目录】(2014•全国)(x﹣)9的展开式中x3的系数是()A.336B.168C.﹣168D.﹣336【考点】二项式定理.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于3,求得r的值,即可求得展开式中的x3的系数.【解答】解:∵(x﹣)9的展开式的通项公式为T r+1=•(﹣1)r••x9﹣r,令9﹣r=3,求得r=6,故展开式中x3的系数是•1•22=336,故选:A.【点评】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.19.【点击此处回目录】(2014•大纲版)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有()A.60种B.70种C.75种D.150种【考点】排列、组合及简单计数问题.【分析】根据题意,分2步分析,先从6名男医生中选2人,再从5名女医生中选出1人,由组合数公式依次求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,先从6名男医生中选2人,有C62=15种选法,再从5名女医生中选出1人,有C51=5种选法,则不同的选法共有15×5=75种;故选:C.【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同.20.【点击此处回目录】(2014•安徽)从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有()A.24对B.30对C.48对D.60对【考点】排列、组合及简单计数问题;异面直线及其所成的角.【分析】利用正方体的面对角线形成的对数,减去不满足题意的对数即可得到结果.【解答】解:正方体的面对角线共有12条,两条为一对,共有=66条,同一面上的对角线不满足题意,对面的面对角线也不满足题意,一组平行平面共有6对不满足题意的直线对数,不满足题意的共有:3×6=18.从正方体六个面的对角线中任取两条作为一对.其中所成的角为60°的共有:66﹣18=48.故选:C.【点评】本题考查排列组合的综合应用,逆向思维是解题本题的关键.21.【点击此处回目录】(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144B.120C.72D.24【考点】计数原理的应用.【分析】使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理可得结论.【解答】解:使用“插空法“.第一步,三个人先坐成一排,有种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有种办法.根据分步计数原理,6×4=24.故选:D.【点评】本题考查排列知识的运用,考查乘法原理,先排人,再插入椅子是关键.22.【点击此处回目录】(2014•重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72B.120C.144D.168【考点】计数原理的应用.【分析】根据题意,分2步进行分析:①、先将3个歌舞类节目全排列,②、因为3个歌舞类节目不能相邻,则分2种情况讨论中间2个空位安排情况,由分步计数原理计算每一步的情况数目,进而由分类计数原理计算可得答案.【解答】解:分2步进行分析:1、先将3个歌舞类节目全排列,有A33=6种情况,排好后,有4个空位,2、因为3个歌舞类节目不能相邻,则中间2个空位必须安排2个节目,分2种情况讨论:①将中间2个空位安排1个小品类节目和1个相声类节目,有C21A22=4种情况,排好后,最后1个小品类节目放在2端,有2种情况,此时同类节目不相邻的排法种数是6×4×2=48种;②将中间2个空位安排2个小品类节目,有A22=2种情况,排好后,有6个空位,相声类节目有6个空位可选,即有6种情况,此时同类节目不相邻的排法种数是6×2×6=72种;则同类节目不相邻的排法种数是48+72=120,故选:B.【点评】本题考查计数原理的运用,注意分步方法的运用,既要满足题意的要求,还要计算或分类简便.23.【点击此处回目录】(2014•浙江)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45B.60C.120D.210【考点】二项式定理.【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.24.【点击此处回目录】(2014•湖北)若二项式(2x+)7的展开式中的系数是84,则实数a=()A.2B.C.1D.【考点】二项式定理.【分析】利用二项式定理的展开式的通项公式,通过x幂指数为﹣3,求出a即可.【解答】解:二项式(2x+)7的展开式即(+2x)7的展开式中x﹣3项的系数为84,所以T r+1==,令﹣7+2r=﹣3,解得r=2,代入得:,解得a=1,故选:C.【点评】本题考查二项式定理的应用,特定项的求法,基本知识的考查.。
数学模块2-3排列组合概率测试含答案

.故选:D.
∴Eξ= (a+b+c);
设 t= (a+b+c),则 Dξ= [(a-t)2+(b-t)2+(c-t)2]
= [a2+b2+c2-2(a+b+c)t+3t2]= [a2+b2+c2-6t+3t2];
随机变量 η 取值为
的概率都是 ,
∴Eη= ( + + )= (a+b+c),
Dη= [
则 P(A)= = ,P(AB)=
=,
∴在第一次抽到次品的条件下,第二次抽到次品的概率 P(A|B)=
= = .故选 A.
11.【答案】D 解:∵E(X)= ,∴由随机变量 X 的分布列的性质得:
,解得 x= ,y= ,
∴D(X)=(1- )2×0.5+(2- )2× +(3- )2× = 12.【答案】B 解:随机变量 ξ 取值为 a,b,c 的概率都是 ,
=
第 4 页,共 9 页
故选 C. 9.【答案】C 解:∵甲、乙、丙三人独立地去译一个密码,分别译出的概率为 , , ,
∴此密码不能译出的概率(1- )(1- )(1- )= ,
故此密码能译出的概率 P=1- = , 故选:C 10.【答案】A 解:设第一次抽到次品为事件 A,第二次抽到次品为事件 B,
)
A. −4
B. −3
C. 2
D. 3
5. 设有编号为 1,2,3,4,5 的五个茶杯和编号为 1,2,3,4,5 的五个杯盖,将五个杯盖盖在五个茶杯
上,至少有两个杯盖和茶杯的编号相同的盖法有( )
A. 30 种
排列组合概率选择题.

概率测试题一、选择题:(5分×6)1、 书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为()A 、1/15B 、1/120C 、1/90D 、1/302、 停车场可把12辆车停放在一排上,当有8辆车已停放后而恰有4个空位连在一起,这样的事件发生的概率为()A 、8127CB 、8128C C 、8129CD 、81210C 3、 甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的,现从甲乙两盒中各任取一个,则能配成A 型的螺栓的概率为()A 、1/20B 、15/16C 、3/5D 、19/204、 一个小孩用13个字母:3个A ,2个I ,2个M ,2个J 其它C 、E 、H 、N 各一个作组字游戏,恰好组成“MATHEMA TICIAN ”一词的概率为()A 、!824B 、!848C 、!1324D 、!1348 5、 袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是()A 、颜色全相同B 、颜色不全相同C 、颜色全不同D 、颜色无红色6、 某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为()A 、P 3B 、(1—P)3C 、1—P 3D 、1—(1-P)3二、填空题:(5分×4)1、某自然保护区内有几只大熊猫,从中捕捉t 只体检并加上标志再放回保护区,1年后再从这个保护区内捕捉m 只大熊猫(设该区内大熊猫总数不变)则其中有s 只大熊猫是第2次接受体检的概率是 。
2、某企业正常用水(1天24小时用水不超过一定量)的概率为3/4,则在5天内至少有4天用水正常的概率为。
3、有6群鸽子任意分群放养在甲、乙、丙3片不同的树林里,则甲树林恰有3群鸽子的概率为。
4、今有标号为1、2、3、4、5的五封信,另有同样标号的五个信封,现将五封信任意地装入五个信封中,每个信封一封信,则恰有两封信与信封标号一致的概率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率测试题一、选择题:(5分×6)1、 书架上同一层任意立放着不同的10本书,那么指定的3本书连在一起的概率为()A 、1/15B 、1/120C 、1/90D 、1/302、 停车场可把12辆车停放在一排上,当有8辆车已停放后而恰有4个空位连在一起,这样的事件发生的概率为()A 、8127CB 、8128C C 、8129CD 、81210C 3、 甲盒中有200个螺杆,其中有160个A 型的,乙盒中有240个螺母,其中有180个A 型的,现从甲乙两盒中各任取一个,则能配成A 型的螺栓的概率为()A 、1/20B 、15/16C 、3/5D 、19/204、 一个小孩用13个字母:3个A ,2个I ,2个M ,2个J 其它C 、E 、H 、N 各一个作组字游戏,恰好组成“MATHEMA TICIAN ”一词的概率为()A 、!824B 、!848C 、!1324D 、!1348 5、 袋中有红球、黄球、白球各1个,每次任取一个,有放回地抽取3次,则下旬事件中概率是8/9的是()A 、颜色全相同B 、颜色不全相同C 、颜色全不同D 、颜色无红色6、 某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为()A 、P 3B 、(1—P)3C 、1—P 3D 、1—(1-P)3二、填空题:(5分×4)1、某自然保护区内有几只大熊猫,从中捕捉t 只体检并加上标志再放回保护区,1年后再从这个保护区内捕捉m 只大熊猫(设该区内大熊猫总数不变)则其中有s 只大熊猫是第2次接受体检的概率是 。
2、某企业正常用水(1天24小时用水不超过一定量)的概率为3/4,则在5天内至少有4天用水正常的概率为。
3、有6群鸽子任意分群放养在甲、乙、丙3片不同的树林里,则甲树林恰有3群鸽子的概率为。
4、今有标号为1、2、3、4、5的五封信,另有同样标号的五个信封,现将五封信任意地装入五个信封中,每个信封一封信,则恰有两封信与信封标号一致的概率为。
三、解答题1、(15分)对贮油器进行8次独立射击,基第一次命中只能使汽油流出而不燃烧,第二次命中才能使汽油燃烧起来,每次射击命中目标的概率为0.2,求汽油燃烧起来的概率。
(结果保留3个有效数字)2、(20分)飞机俯冲时,每支步枪射击飞机的命中率为P=0.004。
求:(1)250支步枪同时独立地进行一次射击,飞机被击中的概率;(2)要求步枪击中飞机的概率达到99%,需要多少支步枪同时射击?(lg996≈2.9983)4、(附加题)(20分)甲乙两人轮流投一枚均匀硬币,甲先投,谁先得到正面则谁获胜,求:(1)投币不超过4次即决定胜负的概率;(2)在第4次时决定胜负的概率;(3)甲获胜的概率;(4)乙获胜的概率。
答案:一、ACCDBC 二、1、m ns m t n s t C C C -- 2、81/128 3、160/729 4、1/6 三、1、13/16 2、0.497 3、(1)o.6329 (2)n ≥1176.5 故n=11774、(1)15/16 (2)1/16 (3)2/3 (4)1/3专题训练七基础训练1.将10个相同的小球装入3个编号为1,2,3的盒子(10个球全部装完),要求每个盒子里的球的个数不少于盒子的编号数,这样的装法总数是2.四张不同的高校录取通知书,分发给三位同学,每人至少一张,则不同的发放种数是3.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有4.若把英语单词“error ”中字母的拼写顺序写错了,则可能出现的错误的种数是A.20B.19C.10D.95.A={1,2,3,4,5},B={6,7,8},从集合A 到集合B 的映射中,满足)5()4()3()2()1(f f f f f ≤≤≤≤ 的映射有 ( )A.27B.9C.21D.126.以平行六面体的8个顶点中任意3个为顶点的所有三角形中,最多可能有锐角三角形7.对总数为N 的一批零件抽取一个容量为30的样本,若每个零件被抽取的概率为0.25,则N 等于 A.150 B.200 C.120 D.1008.为了保证分层抽样时,每个个体等可能地被抽取,必须要求 ( )A.不同的层以不同的抽样比例抽样B.每层等可能抽样C.每层等可能地抽取n o 个样本,n o =kn ,k 为层数,n 为样本容量D.第i 层等可能地抽取n i =NN i 个样本,I=1,2…,k ,N 为个体总数,n 为样本容量 9.已知一容量为10的一组样本方差s 2=3.6,则s *=10.9支足球队参加亚洲地区2000年奥运会足球预选赛,把9支球队任意均匀分为3组,则中韩两队恰好分在同一组的概率为11.连续掷两次骰子,以先后得到的点数m,n 为点P(m,n)的坐标,那么点P 在圆x 2+y 2=17外部的概率应为 A.1/3 B.2/3 C.11/18 D.13/1812.某人有n 把钥匙,其中一把是开门的,现随机抽取一把,取后不放回,那么第k 次能打开能打开门的概率是 ,如果取后又放回,则第k 次首次打开门的概率6.有外形相同的球分装在三个不同的盒子中,每个盒子10个球,其中第一个盒子中7个球标有字母A ,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中有红球8个,白球2个,试验按如下规则进行:先在第一个盒子中任取一球,若取得标有字母A 的球,则在第二个盒子中任取一球;若第一次取得标有字母B 的球,则在第三个盒子中任取一球,如果第二次取出的是红球,则称试验成功,求试验成功的概率 .1.已知集合M={-1,0,1},N={2,3,4,5},映射f:M N ,且当x ∈M 时,x+f(x)+xf(x)为奇数。
则这样的映射的个数是 ( )A .20 B.18 C.32 D.242.若某停车场能把12辆车排成一列停放,当有8个车位停放了车,而4个空位连在一起,这种事件发生的概率等于3.用5种不同的颜色去涂正四面体的4面,每面只能涂一色,不允许不涂,有 种着色方案.4.一个容量为20的样本数据,分组后,组距与频数如下:(10,]20,2;(20, ]30,3;(30,]40,4;(40,]50,5;(50,]60,4;(60,]70,2,则样本在(-∞,]50上的概率为例10、某数学家有两盒火柴,每盒都有n 根火柴,每次用火柴时他在两盒中任取一盒并从中抽出一根,求他发现用完一盒时另一盒还有r 根(1≤r ≤n )的概率。
解析:由题意知:数学家共用了2n-r 根火柴,其中n 根取自一盒火柴,n-r 根取自另一盒火柴。
由于数学家取火柴时,每次他在两盒中任取一盒并从中抽取一根,故他用完的那一盒取出火柴的概率是21,他不从此盒中取出一根火柴的概率也是21。
由于所取的2n-r 根火柴,有n 根取自用完的那一盒的概率为:r n 2n r n 2r n n n r n 2)21(C )211()21(C ----=- 16.(本小题满分13分)箱内有大小相同的6个白球,4个黑球,从中任取1个,记录它的颜色后再放回箱内,搅拌后再任意取出一个,记录它的颜色后有放回箱内搅拌。
假设这样的抽取共进行了三次,使回答下列问题:(1) 求事件A :“第一次取出黑球,第二次取出白球,第三次又取黑球”的概率;(2) 若取出一只白球得2分,取出一只黑球得1分,求三次取球总得分ξ的数学期望。
1.甲、乙、丙三位同学独立完成6道数学自测题,他们答及格的概率依次为54,53,107. 求(1)三人中有且只有2人答及格的概率;(2)三人中至少有一人不及格的概率.1.某人最初有256元,和人打赌8次,结果赢4次输4次,唯有次序随意,若赌金是每一次打赌前的余钱的一半,则最后的结果是( )CA .不输不赢B .赢了81元C .输了175元D .输赢同输与赢的次序有关2.13.某学生在楼梯上做上下楼梯的跳动,每次向上或向下只跳动一级,上下可任意跳动7次以上,现经过7次跳动以后,发现上升了3级,则产生这一结果的所有不同的跳动方法种数有( )A .14B .20C .21D .421.设棋子在正四面体ABCD 的表面从一个顶点移向另外三个顶点是等可能的。
现投掷色子根据其点数决定棋子是否移动:若投出的点数是偶数,则棋子不动;若投出的点数是奇数,棋子移动到另一个顶点。
若棋子的初始位置在顶点A ,回答下列问题:(1)若投了2次色子,棋子才到达顶点B 的概率是多少?(若投了n 次呢?)(2)若投了3次色子,棋子恰巧在顶点B 的概率是多少?(若投了n 次呢?)答案:(1)536 ;(?); (2)1354;(11136n n P P -=+) 2.从集合{1,2,3,…,10}中任意选出三个不同的数,其中这三个数成等差数列的概率是( ) A.12 B.16 C.512 D.9561.设I ={1,2,3,4,5,6},A 与B 是I 的子集,若A B ={1,3,5},则称(A ,B )为“理想配集”,所有“理想配集”的个数是( )A .9B .6C .27D .85.从一幅52张牌中取出5张,恰好是三张同点,另两张也同点的概率是( )A .321313552C C CB .15413552C C C C .121313552C C CD .2321344552A C C C 12.将1,2,…,9这9个数平均分成三组,则每组的三个数都成等差数列的概率为( a )A .561B .701C .3361D .4201 高三数学选择题分章强化训练(六)(排列组合和概率)1.从自然数1,2,3,…,99,100这100个数中任取两个数,其和为偶数的不同取法有( )(A )1225种 (B )2450种(C )2475种 (D )3725种2.若5人排成一行,要求甲、乙两人之间至少有1人,则不同的排法有( )(C )196 (D )1443.以0,1,2,3,4中每次取出3个不同的数字组成三位数,则这些三位数的个位之和等于( )(A )80 (B )90(C )110 (D )1204.某小组有8名同学,从中选出2名男生、1名女生,分别参加数理化单科竞赛,每人参加一种共有90种不同的参赛方案,则男女生的个数应是( )(A )男6女2 (B )男5女3(C )男3女5 (D )男2女65.从集合{1,2,3,…,10}中选出5个数组成的子集,使得这5个数中任何两个的和不等于11。
这样的子集共有( )(A )10个 (B )16个(C )20个 (D )32个6.在()8123x x-的展开式中的常数项是( ) (A )7 (B )-7(C )28 (D )-287.式子n nn n n n C C C C 1321393-++++ 的值等于( ) (A )4n (B )3-4n(C )134-n (D )314-n8.在()()653121--x x 的展开式中3x 的系数是( )(A )-760 (B )7609.在()n x x 2212+的展开式中,2x 的系数是224,则21x 的系数是( )(A )14 (B )28(C )56 (D )11210.在()n a a 3241-的展开式中,倒数第三项的系数的绝对值是45,则展开式中3a 的项的系数是( )(A )120 (B )-120(C )210 (D )-21011.用1,2,3,4,5组成无重复数字的五位数,要求组成的数比20000大且百位数字不是3,共可组成这样的五位数的个数是( )(A )96 (B )78(C )72 (D )6412.某班上午要上语文、数学、英语、体育各一节,体育课既不在第一节也不在第四节,共有不同的排法数为( )(A )24 (B )22(C )20 (D )1213.从a 、b 、c 、d 、e 中选一名组长、一名副组长,组长和副组长不能兼任,a 不能当副组长,选法共有( )(A )20 (B )16(C )10 (D )814.a 、b 、c 、d 、e 五人排纵队,a 在b 前边(可相邻也可不相邻)不同的排法数是( )(A )120 (B )6015.3辆汽车、6名售票员、3名司机,每辆汽车配1名司机两名售票员就可以工作,所有的安排方法数是( )(A )540 (B )270(C )135 (D )324016.从1,2,…,21中取若干个(一个或任意多个),把取出的数加起来,总和为偶数的取法有( )(A )11220- (B )202(C )()1221110- (D )1220-17.a 、b 、c 、d 、e 五人应分别参加54321,,,,P P P P P 五种不同的考试,考场中恰有1人得到了自己应考的试卷,另外4个人的试卷与自己要考的内容都不同。