塑性变形

合集下载

塑性变形名词解释

塑性变形名词解释

塑性变形名词解释塑性变形是指物质在受外力作用下发生不可逆的形变现象,其过程中原子或分子之间的排列和结构发生变化。

与弹性变形不同,塑性变形一旦发生,物质会永久性地保留其新的形状,无法恢复到原来的状态。

塑性变形广泛应用于材料科学、工程设计和制造等领域。

塑性变形的机制主要包括滑移、位错、扩散和相变等。

滑移是指晶格中的层状或面状结构在外力作用下沿着特定的晶面滑动,使晶体形成一种新的排列方式。

位错是晶格中原子位置的不连续和错位,是塑性变形的主要因素。

位错可以通过滑移、扩散或界面运动等方式发生移动,从而导致物质发生形变。

扩散是指物质中原子、离子或分子在固态中的移动,可以促使位错发生移动并引起塑性变形。

相变是一种物质由一个物态转变为另一个物态的过程,通过控制相变条件,可以实现塑性变形。

塑性变形对于材料的物理性质和力学性能具有重要影响。

塑性变形可以提高材料的延展性和塑性,降低其脆性和硬度,使其更适合于各种加工工艺。

塑性变形还可以改善材料的强度、硬度和韧性等机械性能,使之更适合于工程设计和制造。

此外,塑性变形还可以提高材料的导电性、导热性和耐腐蚀性等物理性质,扩大其应用领域。

塑性变形可以通过多种方式实现,包括热变形、冷变形、压力变形和拉力变形等。

热变形是在高温下进行的塑性变形,利用高温使材料的形变性能得以改善。

冷变形是在室温下进行的塑性变形,适用于各种类型的材料加工。

压力变形是通过在材料表面施加压力,使材料在局部区域内发生塑性变形。

拉力变形是通过对材料施加拉力,使其在延伸方向上发生塑性变形。

总之,塑性变形是物质在外力作用下发生不可逆形变的过程,其机制包括滑移、位错、扩散和相变等。

塑性变形对于材料的物理性质和力学性能具有重要影响,可以改善材料的延展性、韧性和均匀性,使之适应不同的工程需求。

塑性变形可以通过热变形、冷变形、压力变形和拉力变形等方式实现,广泛应用于材料科学、工程设计和制造等领域。

3.1-3.2-塑性变形(共76张)

3.1-3.2-塑性变形(共76张)
从原子尺度变化解释塑性形变:当构成晶体的一部 分原子相对于另一部分原子转移到新平衡位置时, 晶体出现永久形变,晶体体积没有变化,仅是形状 发生变化。
如果所有原子同时移动,需要很大能量才出现滑动, 该能量接近于所有这些键同时断裂时所需的离解能 总和;由此推断产生塑变所需能量与晶格能同一数 量级;
实际测试结果:晶格能超过产生塑变所需能量几个 数量级。这只能通过位错的产生及运动来解释。
(1) 滑移系统
滑移系统(xìtǒng):包括滑移方向和滑移面,即滑移按一定的晶 面和方向进行。
滑移方向与原子最密堆积的方向一致,滑移面是原子最密堆积 面。
第5页,共76页。
[110]


(111)






滑移面(111)
滑移面(112)
体 心(tǐ
xīn)
格 子
滑移面(110)
体 心 格 子
A
B
第28页,共76页。
未滑移区
•A 位错线 B•
•A
B•
• 图中刃型位错AB的两端被位错网点钉住不能运动。若 沿柏氏
矢量b方向施加一切(yīqiè)应力,使位错沿滑移面向前滑移 运动。由于AB两端固定,所以位错线只能发生弯曲。而单位 长度位错线所受的滑移力Fd=τb,它总是与位错线本身垂直, 所以弯曲后的位错每一小段继续受到τb的作用沿它的法线 方向向外扩展,其两端则分别绕节点A,B发生回转。

•• •
•• • ••

••

••
12 3 4
1 2 3 4 ••••• ••••• •••• ••••• •••• ••••• •••• ••••
1234

材料的塑性变形1

材料的塑性变形1
滑移:指晶体的一部分沿一定的晶面(滑移面)和晶向 (滑移方向)相对于另一部分发生滑动的现象。
8
2、滑移系 金属材料在切应力作用下,沿滑移面和滑移方向进行的切变
过程。 滑移面:面间距最大原子最密排晶面。 滑移方向:原子最密排的方向。 一个滑移面与其上的一个滑移方向组成一个滑移系。
滑移系越多,金属的塑性越好,但并不是唯一因素。 金属的塑性还受温度、成分和预先变形程度等的影响。
24
滑移:是靠位错沿滑移面的运动而实现的。 当位错移动到晶体表面时,便产生大小为 b 的滑移台阶,若
有大量位错沿滑移面上运动到表面,宏观上,晶体的一部分 相对另一部份沿滑移面发生了相对位移,这便是滑移。 滑移矢量与柏氏矢量 b 平行。
刃位错的滑移过程 a)原始态晶体,b,c)位错滑移中间阶段;d)位错移出晶体表面,形成一个台阶
上有2个滑移方向,共有6×2=12 滑移系。
11
bcc金属的滑移系:除{110}晶面族外,也可为{112}和 {123}晶面族,此三种滑移面及其共同的滑移方向<111> 的组合,总共有48个可能的滑移系。
bcc金属滑移系虽较多(为fcc 4 倍多),但其滑移面原子密 排程度不如 fcc ,滑移方向数目也较少,故其塑性不如fcc金 属好。
即为滑移的临界分切应力定律。
c-临界切应力,为材料常数,
与晶体取向无关。
22
转动原因:晶体滑移后使正应力和切应力分量组成了力偶。 转动结果:使滑移面法线与外力轴夹角φ增大,使外力与滑
移方向夹角λ变小。
23
6、滑移机理: 若将滑移设想为刚性整体滑动,所
需理论临界切应力值比实测临界切 应力值大3~4个数量级。 实际上,滑移是通过滑移面上位错 的运动来实现的。

塑性变形产生的影响因素

塑性变形产生的影响因素
式中Y为金属的变形抗力,由抗拉试验或抗压试验测定。上式表示金属坯料内任意一点开始塑性变形时三个方向主应力所应达到的条件,称为屈服准则。在锻压过程中,坯料内某些面上各点都会发生塑性变形,这时所加的外力称为变形力。 影响变形力P 的主要因素有4个,即 公式2
式中Y为金属的静载变形抗力,它与化学成分、温度、变形过程等有关。低碳钢的变形抗力低,高合金钢的变形抗力高;低温时变形抗力高,高温时变形抗力低; 塑性变形
再结晶和回复
经过冷变形的金属,如加热到一定温度并保持一定的时间,原子的激活能增加到足够的活动力时,便会出现新的晶核,并成长为新的晶粒,这种现象称为再结晶。经过再结晶处理后,冷变形引起的晶粒畸变以及由此引起的加工硬化、残余应力等都会完全消除。 再结晶温度 通常以经一小时保温完成再结晶的温度为金属的再结晶温度。各种金属的再结晶温度,按绝对温度(K)计大约相当于该金属熔点的40~50%。 低碳钢的再结晶温度约460℃。当变形程度较小时,在再结晶过程中,尤其是当温度偏高时,再结晶的晶粒特别粗大。因此如要晶粒细小,金属材料在再结晶处理前会有较大的变形量。 再结晶温度对金属材料的塑性加工非常重要。在再结晶温度以上进行的塑性加工和变形称为热加工和热变形;在再结晶温度以下进行的塑性加工和变形称为冷加工和冷变形。热变形时,金属材料在变形过程中不断地发生再结晶,不引起加工硬化,假如缓慢地冷却,也不出现内应力。 回复 冷变形后的金属,当加热到稍低于再结晶温度时,通过原子的扩散会减少晶体的缺陷,降低晶体的畸变能,从而减小内应力;但是不出现新的晶粒,金属仍保留加工硬化和各向异性,这就是金属的回复。这样的热处理称为去应力退火。
内应力
塑性变形在金属体内的分布是不均匀的,所以外力去除后,各部分的弹性恢复也不会完全一样,这就使金属体内各部分之间产生相互平衡的内应力,即残余应力。残余应力降低零件的尺寸稳定性,增大应力腐蚀的倾向。

《塑性变形》课件

《塑性变形》课件
详细描述
当物体受到外力作用时,物体内部会产生应力,使得物体发生塑性变形。在这个过程中,物体总是沿着阻力最小 的方向发生变形,这是因为阻力最小的方向所需的力最小,因此物体更容易沿着这个方向发生变形。
流动法则
总结词
在塑性变形过程中,物体的流动方向与最大主应力的方向一致。
详细描述
在塑性变形过程中,物体的流动方向与最大主应力的方向是一致的。这是因为最大主应力决定了物体 变形的难易程度,当最大主应力较大时,物体更容易沿着这个方向发生变形。同时,物体的流动也受 到最小阻力定律的影响,使得物体更容易沿着阻力最小的方向发生变形。
拉拔
通过拉拔机将金属材料拉制成所需形 状和尺寸的工艺,用于制造线材、管 材等。
塑料的加工成型
注塑成型
挤出成型
将塑料原料加热熔化后注入模具中,冷却 固化后得到所需形状和尺寸的塑料制品。
将塑料原料加热熔化后通过挤出机挤出成 所需形状和尺寸的塑料制品,如塑料管、 塑料薄膜等。
压延成型
吹塑成型
将塑料原料加热熔化后通过压延机压制成 所需厚度和宽度的塑料制品,如塑料板材 、塑料片材等。
塑性变形过程的数值模拟与优化
有限元分析
利用有限元方法对塑性变形过程 进行数值模拟,预测材料的变形
行为、应力分布和应变场等。
优化设计
基于数值模拟结果,对塑性变形过 程进行优化设计,提高材料的塑性 变形能力、减少缺陷和节约成本。
工艺参数优化
通过调整塑性变形过程中的工艺参 数,如温度、压力、变形速度等, 实现更佳的塑性变形效果。
04
CATALOGUE
塑性变形过程中的力学行为
应力状态对塑性的影响
应力状态对塑性变形的影响主 要体现在不同应力分量对材料

ANSYS-塑性变形

ANSYS-塑性变形

塑性变形中文名称:塑性变形英文名称:plastic deformation定义:岩体、土体受力产生的、力卸除后不能恢复的那部分变形。

应用学科:水利科技(一级学科);岩石力学、土力学、岩土工程(二级学科);土力学(水利)(三级学科)塑性变形(Plastic Deformation),的定义是物质-包括流体及固体在一定的条件下,在外力的作用下产生形变,当施加的外力撤除或消失后该物体不能恢复原状的一种物理现象。

材料在外力作用下产生而在外力去除后不能恢复的那部分变形塑性变形。

材料在外力作用下产生应力和应变(即变形)。

当应力未超过材料的弹性极限时,产生的变形在外力去除后全部消除,材料恢复原状,这种变形是可逆的弹性变形。

当应力超过材料的弹性极限,则产生的变形在外力去除后不能全部恢复,而残留一部分变形,材料不能恢复到原来的形状,这种残留的变形是不可逆的塑性变形。

在锻压、轧制、拔制等加工过程中,产生的弹性变形比塑性变形要小得多,通常忽略不计。

这类利用塑性变形而使材料成形的加工方法,统称为塑性加工。

机理固态金属是由大量晶粒组成的多晶体,晶粒内的原子按照体心立方、面心立方或紧密六方等方式排列成有规则的空间结构。

由于多种原因,晶粒内的原子结构会存在各种缺陷。

原塑性变形子排列的线性参差称为位错。

由于位错的存在,晶体在受力后原子容易沿位错线运动,降低晶体的变形抗力。

通过位错运动的传递,原子的排列发生滑移和孪晶(图1)。

滑移是一部分晶粒沿原子排列最紧密的平面和方向滑动,很多原子平面的滑移形成滑移带,很多滑移带集合起来就成为可见的变形。

孪晶是晶粒一部分相对于一定的晶面沿一定方向相对移动,这个晶面称为孪晶面。

原子移动的距离和孪晶面的距离成正比。

两个孪晶面之间的原子排列方向改变,形成孪晶带。

滑移和孪晶是低温时晶粒内塑性变形的两种基本方式。

多晶体的晶粒边界是相邻晶粒原子结构的过渡区。

晶粒越细,单位体积中的晶界面积越大,有利于晶间的移动和转动。

塑性变形_精品文档

塑性变形_精品文档

塑性变形1. 引言塑性变形是固体力学中的一个基本概念,指的是材料在超过其弹性限度后,可以继续变形而不恢复原状的能力。

塑性变形可以发生在金属、塑料、陶瓷等材料中,常见于制造、建筑和工程领域。

本文旨在介绍塑性变形的基本原理、影响因素以及常见的塑性变形工艺。

2. 塑性变形的基本原理塑性变形与材料的内部结构和原子之间的相互作用有关。

在塑性变形过程中,材料中的晶体结构发生变化,原子之间的接触位置发生滑移。

这种滑移可以改变原子之间的相互作用,从而使材料继续变形。

塑性变形的基本原理可以归纳如下:•内部滑移:在材料中存在众多晶体结构,滑移发生时,晶体结构中的原子沿滑移面移动,发生形变。

•位错运动:位错是晶体结构中的缺陷,可以像滑行带一样在晶体中移动。

位错的运动是塑性变形的基本过程。

•变形时的晶界滑移:晶界是不同晶粒之间的边界,当材料变形时,晶界也会发生滑移,使晶粒相对于彼此发生位移。

3. 影响塑性变形的因素塑性变形的程度和方式受到多种因素的影响,以下是几个重要的影响因素:3.1 物质本身的性质不同材料的塑性变形性能不同。

金属通常具有良好的塑性,可以在大变形下发生塑性变形。

而一些脆性材料如陶瓷通常只能发生很小的变形,容易发生破裂。

此外,合金、塑料等材料也具有独特的塑性变形性质。

3.2 变形速率变形速率指的是材料在单位时间内发生的变形量。

较高的变形速率往往会导致材料在塑性变形过程中发生更大的变形。

这是因为较高的变形速率会加快位错的运动和晶界的滑动,使材料更容易发生塑性变形。

3.3 温度温度对塑性变形也有很大影响。

较高的温度能够使材料中的原子更容易滑动,从而促进塑性变形的发生。

相反,较低的温度会使材料变得更加脆性,减少塑性变形的程度。

3.4 应力状态材料受到的应力状态也会影响其塑性变形。

在拉伸应力作用下,材料会发生延伸变形;而在剪切应力作用下,材料会发生屈服变形。

不同应力状态下,材料的塑性变形方式有所不同。

4. 常见的塑性变形工艺塑性变形工艺是一种通过对材料施加力来改变其形状和尺寸的方法。

弹性变形及塑性变形

弹性变形及塑性变形

一、弹性和塑性的概念可变形固体在外力作用下将发生变形。

根据变形的特点,固体在受力过程中的力学行为可分为两个明显不同的阶段:当外力小于某一限值〔通常称之为弹性极限荷载〕时,在引起变形的外力卸除后,固体能完全恢复原来的形状,这种能恢复的变形称为弹性变形,固体只产生弹性变形的阶段称为弹性阶段;当外力一旦超过弹性极限荷载时,这时再卸除荷载,固体也不能恢复原状,其中有一局部不能消失的变形被保存下来,这种保存下来的永久变形就称为塑性变形,这一阶段称为塑性阶段。

根据上述固体受力变形的特点,所谓弹性,就定义为固体在去掉外力后恢复原来形状的性质;而所谓塑性,那么定义为在去掉外力后不能恢复原来形状的性质。

“弹性[Elasticity]"和“塑性〔Plasticity〕〃是可变形固体的根本属性,两者的主要区别在于以下两个方面:1]变形是否可恢复:弹性变形是可以完全恢复的,即弹性变形过程是一个可逆的过程;塑性变形那么是不可恢复的,塑性变形过程是一个不可逆的过程。

2〕应力和应变之间是否一一对应:在弹性阶段,应力和应变之间存在一一对应的单值函数关系,而且通常还假设是线性关系;在塑性阶段,应力和应变之间通常不存在一一对应的关系而且是非线性关系〔这种非线性称为物理非线性〕。

工程中,常把脆性和韧性也作为一对概念来讲,它们之间的区别在于固体破坏时的变形大小,假设变形很小就破坏,这种性质称为脆性;能够经受很大变形才破坏的,称为韧性或延性。

通常,脆性固体的塑性变形能力差,而韧性固体的塑性变形能力强。

二、弹塑性力学的研究对象及其简化模型弹塑性力学是固体力学的一个分支学科,它由弹性理论和塑性理论组成。

弹性理论研究理想弹性体在弹性阶段的力学问题,塑性理论研究经过抽象处理后的可变形固体在塑性阶段的力学问题。

因此,弹塑性力学就是研究经过抽象化的可变形固体,从弹性阶段到塑性阶段、直至最后破坏的整个过程的力学问题。

构成实际固体的材料种类很多,它们的性质各有差异,为便于研究,往往根据材料的主要性质做出某些假设,忽略一些次要因素,将它抽象为理想的“模型〞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑性变形是金属在外力作用下发生的一种重要变形方式,与弹性变形不同,塑性变形是不可逆的。本章主要探讨了金属塑性变形的主要特点及本质,揭示了其对金属组织和性能的重要影响。其中,拉伸曲线是研究塑性变形的重要手段,能够反映金属在拉伸过程中的力学阐述了加工硬化的本质及实际意义。在塑性变形方式中,滑移是一种重要的机制,它是指晶体相邻两部分在外力作用下沿一定晶面、一定晶向产生的相对平行滑动。滑移的发生与晶体的结构密切相关,滑移面和滑移方向往往是晶体中原子最密排的晶面和晶向。滑移系则表明了晶体滑移时的可能空间取向,对材料的塑性有着重要影响。滑移系愈多,材料发生滑移的可能性便愈大,塑性也就愈好。
相关文档
最新文档