2018-2019年上海市各区县中考数学一模压轴题图文解析第24、25题
2019年上海初三所有区一模数学压轴题详解

25题汇编1. 相似三角形的分类讨论(宝山)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图10,已知:梯形ABCD 中,∠ABC =90°,∠A =45°,AB ∥DC ,DC =3,AB =5,点 P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若,求DE 的长; (2)联结CP ,若CP=EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似,若相似,求FG 的值;若不相似,请说明理由.【答案】(1) DE =1;(2);(3) 【解析】(1)过点A 作AG ⊥CD 交CD 的延长线于点M ……………………… … …1分梯形ABCD 中,∠ABC =90°,∠A =45°∴∠DAM =45°∵AB //CD ,AM=CD 且∠ADM =∠DAM =45°,DM=AM =2……… … …1分 ∴Rt △AEM 中,AE=AP =√13,ME =√AE 2−AG 2=3…………… ……1分 ∴DE =1 ……………………………………………………………… ……1分 (2)过点P 作PH ⊥CD ,垂足是点H∵CP=EP ∴EC =2CH ……………………………………… …… 1分 设AE=AP=x ,PB =5-x ,EC =10-2x , BC =2∴Rt △PBC 中,PE=PC=√PB 2+BC 2=√(5−x )2+22=√x 2−10x +29 …… 1分由题意可知AE=AP ,∴∠AEP =∠APE ,∵CP=EP ,∴∠PEC =∠PCE …… …1分13AP =31310+133-PEABCDF(图10)∵AB //CD ∴∠PEC =∠APE ,∴∠PEC =∠APE 且∠PCE =∠AEP ∴△APE ∽△PCE …………………………………………………………1分∴ 即 ……………… ……1分化简得解得,(不合题意舍去) ………………………1分∴当CP=EP 时,AD 为. (3)∵△ADE 是钝角三角形,当点G 在CF 上时,∠GEF 、∠F 必是锐角,∴若△ADE ∽△FGE ,只能∠ADE =∠FGE =135°…………………………… ……1分 ∵Rt △PBF 中,∠F +∠FPB =90° 又∵∠EAP +∠APE +∠AEP =180° ∵∠FPB =∠APE ,∠APE =∠AEP ∴∠EAP =2∠F ∵AB//CD ∴∠DEA =∠EAP ∴∠DEA =2∠F∴必有∠DAE =∠F …………………………………………………………… …… …1分 ∴∠EAP =2∠DAE ∴∠EAP =30°,∠F=∠DAE =15°∴AE=AP =2AM =4,PB =1,EM =,CG=CE=……………… ………1分 ∴EG=∵△ADE ∽△FGE∴∴FG=………………………………1分 ∴当FG =时,△ADE ∽△FGE .ECEPEP AP =x x x x x x2102910291022-+-=+-0292032=+-x x 313101+=x 313-102=x 31310+3232-56225-FGADEG DE =133-133-(奉贤)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =4,26AB CD ==,E 是边BC 上一点,过点D 、E 分别作BC 、CD 的平行线交于点F ,联结AF 并延长,与射线DC 交于点G . (1)当点G 与点C 重合时,求:CE BE 的值;(2)当点G 在边CD 上时,设CE m =,求△DFG 的面积;(用含m 的代数式表示) (3)当AFD ∆∽ADG ∆时,求∠DAG 的余弦值.【答案】(1) :1CE BE;(2)26255DFGm S m∆=-;(3) 3cos 5DAG ∠= 【解析】(1)∵CD ∥EF ,DF ∥CE ,∴四边形DFEC 是平行四边形. ······················································ (1分) ∴EF=DC . ················································································ (1分) ∵26AB CD ==,∴3CD EF ==.∵AB ∥CD ,∴AB ∥EF . ∵点G 与点C 重合,∴12EF CE AB BC ==.∴:1CE BE . ····················· (2分) (2)过点C 作CQ ∥AG ,交AB 于点Q ,交EF 于点P . 过点C 作CM ⊥AB ,交AB 于点M ,交EF 于点N . 在Rt △BCM 中,90CMB ,4CM AD ==,3BM AB CD =-=,∴5BC =.∵AB ∥EF ∥CD ,∴GC=PF =AQ . ∴EP CEBQ BC =.又3EF =,∴365GC m CG -=-. ∴1565mGC m-=-.········································································ (2分) ∴35mDG DC GC m=-=-. ····························································· (1分)∵NE ∥MB ,∴CN CECM BC=. 又4CM AD ==,∴45CN m =,45mCN =. ········································ (1分) 图11ABC D FEG 备用图ABCD∴2113462254255DFGm m m S DG CN m m∆=••=••=--. ································· (1分) (3)当AFD ∆∽ADG ∆时,∵∠DAB =90°,∴ADG ∆是直角三角形,∴AFD ∆也是直角三角形. ∵90DAF ,90FDA ,∴90DFA. ····························· (1分) ∵90FADADF,90FDC ADF,∴FAD FDC .∵AB ∥EF ,∴BCEF .∵四边形DFEC 是平行四边形,∴FDC CEF .∴BFDC FAD . ······························································ (1分) 在Rt △BCM 中, 90CMB ,3BM AB CD =-=,5BC =,∴3cos 5BM B BC ==. ········································································ (2分) ∴3cos 5DAG ∠=. ·········································································· (1分)(嘉定)25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在矩形ABCD 中,6=AB ,8=AD ,点E 是边AD 上一点,EC EM ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项. (1)如图8,求证:DCE ANE ∠=∠;(2)如图9,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长; (3)联结AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.【答案】(1) 略;(2) 2449=MN ;(3) 29或3【解析】(1)证明:∵AE 是AM 和AN 的比例中项∴ANAEAE AM =……………………1分 ∵A A ∠=∠∴△AME ∽△AEN ∴ANE AEM ∠=∠……………………1分 ∵︒=∠90D ∴︒=∠+∠90DEC DCE ∵EC EM ⊥∴︒=∠+∠90DEC AEM ∴DCE AEM ∠=∠……………………1分 ∴DCE ANE ∠=∠ ………1分(2)∵AC 与NE 互相垂直∴︒=∠+∠90AEN EAC ∵︒=∠90BAC ∴︒=∠+∠90AEN ANE ∴EAC ANE ∠=∠ 由(1)得DCE ANE ∠=∠ ∴EAC DCE ∠=∠ ∴DAC DCE ∠=∠tan tan∴ADDCDC DE =……………………1分 ∵6==AB DC , 8=AD , ∴29=DE∴27298=-=AE ……………………1分A 图8BMEDCNA备用图BDCM ENA 图9BDC由(1)得DCE AEM ∠=∠ ∴DCE AEM ∠=∠tan tan ∴DCDEAE AM =∴821=AM ……………………1分 ∵AN AE AE AM = ∴314=AN ……………………1分 ∴2449=MN ……………………1分(3)∵AEM MAE NME ∠+∠=∠,DCE D AEC ∠+∠=∠又︒=∠=∠90D MAE ,由(1)得DCE AEM ∠=∠∴ NME AEC ∠=∠ …………………………1分 当△AEC 与以点E 、M 、N 为顶点所组成的三角形相似时 1)EAC ENM ∠=∠,如图9 ∴EAC ANE ∠=∠ 由(2)得:29=DE ……………………2分 2)ECA ENM ∠=∠,如图10 过点E 作AC EH ⊥,垂足为点H由(1)得DCE ANE ∠=∠ ∴DCE ECA ∠=∠ ∴DE HE =又86tan ===∠AD DC AH HE HAE 设x DE 3=,则x HE 3=,x AH 4=,x AE 5= 又AD DE AE =+ ∴835=+x x ,解得1=x∴33==x DE ……………………2分综上所述,DE 的长分别为29或3.A 图10B MEDCNH25(青浦).(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.【答案】(1) 略;(2)()22096x y x x =<≤+;(3) 3或2 【解析】(1)∵AD//BC ,∴=AD DE BG EB ,=AD DFCH FC. ····················································· (2分) ∵DB =DC =15,DE =DF =5, ∴12==DE DF EB FC ,∴=AD ADBG CH. ············································· (1分) ∴BG =CH . ············································································ (1分) (2)过点D 作DP ⊥BC ,过点N 作NQ ⊥AD ,垂足分别为点P 、Q .∵DB =DC =15,BC =18,∴BP = CP =9,DP =12. ······························ (1分)∵12==AD DE BG EB ,∴BG = CH =2x ,∴BH =18+2x . ·························· (1分) ∵AD ∥BC ,∴=AD DN BH NB ,∴182=+x DN x NB ,∴182+15==++x DN DNx x NB DN , ∴56=+xDN x . ······································································ (1分)∵AD ∥BC ,∴∠ADN =∠DBC ,∴sin ∠ADN =sin ∠DBC , ∴=NQ PD DN BD ,∴46=+xNQ x . ················································· (1分) NHG FEDC AB (第25题图)∴()21142092266=⋅=⋅=<≤++x x y AD NQ x x x x .························· (2分) (3)∵AD ∥BC ,∴∠DAN =∠FHG .(i )当∠ADN =∠FGH 时,∵∠ADN =∠DBC ,∴∠DBC =∠FGH ,∴BD ∥FG , ············································································ (1分) ∴=BG DF BC DC ,∴51815=BG ,∴BG =6,∴AD =3.·························· (1分) (ii )当∠ADN =∠GFH 时, ∵∠ADN =∠DBC=∠DCB , 又∵∠AND =∠FGH ,∴△ADN ∽△FCG . ································································· (1分) ∴=AD FC DN CG ,∴()5182106⋅-=⋅+xx x x ,整理得23290--=x x ,解得 =x =x . ································· (1分)综上所述,当△HFG 与△ADN 相似时,AD 的长为3(长宁)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为53,点C 在射线BN 上,25=BC ,点A 在MBN ∠的内部, 且︒=∠90BAC ,MBN BCA ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E . 点F 在线段BE 上(点F 不与点B 重合),且MBN EAF ∠=∠. (1)如图1,当BN AF ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设x BF =,y BD =,求y 关于x 的函数解析式并写出函数定义域;(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.【答案】(1) 16=EF ;(2)157400x y -=(2250≤<x );(3) 596或 1172000【解析】(1)∵在 BAC Rt ∆中 ︒=∠90BAC∴53cos cos ==∠=∠BC AC MBN BCA ∵25=BC ∴15=AC2022=-=AC BC AB∵AF BC AC AB S ABC ⋅=⋅=∆2121 ∴12=AF ∵BC AF ⊥ ∴︒=∠90AFC ∴ 34tan tan ==∠=∠AF EF BCA FAE ∴16=EF (2)过点A 作EF AH ⊥于点H ∴ ︒=∠90AHB ∴ 1622=-=AH AB BH∵x BF =,x FH -=16,x FC -=25第25题图如图2BF EC N DA MB FC E N AD M如图1备用图BC NAM∴ 40032)16(122222+-=-+=x x x AF ∵ BCA MBN ∠=∠,EAF MBN ∠=∠∴BCA EAF ∠=∠ 又∵CFA AFE ∠=∠ ∴AFE ∆∽CFA ∆ ∴AFEFCF AF =,FAC AEF ∠=∠, ∴EF FC AF ⋅=2∴EF x x x ⋅-=+-)25(400322∴xx x EF -+-=25400322,xxx x x x BF EF BE --=+-+-=+=25740025400322∵ ACB MBN ∠=∠,FAC AEF ∠=∠,∴BDE ∆∽CFA ∆∴ACBEFC BD =∴1525740025x x x y --=- ∴157400x y -=(2250≤<x )(3)596或 11720002. 等腰三角形的分类讨论(虹口)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =10,点E 为边AD 上一点,将△ABE 沿BE 翻折,点A 落在对角线BD 上的点G 处,联结EG 并延长交射线BC 于点F . (1)如果cos ∠DBC =23,求EF 的长;(2)当点F 在边BC 上时,联结AG ,设AD=x ,ABG BEF S y S ∆∆= ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CG ,如果△FCG 是等腰三角形,求AD 的长.【答案】(1) 9;(2)2236x y x =+(92x ≥);(3) 454AD =或189191【解析】(1)根据题意得△ABE ≌△GBE ∴BG=AB=6在Rt △BGF 中,BF = 9cos BGDBC=∠ …………………………………………(2分)由△ABE ≌△GBE得∠AEB =∠BEG ∵AD ∥BC ∴∠AEB =∠EBF∴∠BEF =∠EBF∴FE=FB =9………………………………………………………………………(2分) (2)∵AD ∥BC ∴∠ADB =∠GBF 又∵∠A =∠BGF =90° ∴△ABD ∽△GFB∴AD BD BG BF =即2366x x BF+= ∴2636x BF x +=………………………………………………………………(2分)EABCFG∵AD ∥BC ∠A =90° ∴∠ABF =90° ∴∠ABG+∠GBF=90° 又∵∠GBF+∠EFB =90° ∴∠ABG =∠EFB 根据题意得AB=BG 又∵FE=FB∴AB BG FB FE =∴△ABG ∽△EFB …………………………………………………………………(1分)∴2222236()36(36)36ABG BEF S AB x x S BF x x ∆∆===++…………………………………(1分)∴2236x y x =+(92x ≥) ………………………………………………(1分,1分)(3)①点F 在BC 上 ∵∠GFC =∠AEG >90°∵△FCG 是等腰三角形 ∴FG=FC 设FG=FC=a ,则BF=10-a由题意得a 2+62=(10-a )2 解得165a =∵∠ADB=∠GBF ∴tan ∠ADB = tan ∠GBF即16656AD = 解得454AD = ………………………………………………(2分)②点F 在BC 的延长线上 ∵∠GCF >∠DCF >90°∵△FCG 是等腰三角形 ∴CG=CF∴易得在Rt △BGF 中,BC=CF =10∴FG =∵∠ADB=∠GBF ∴tan ∠ADB = tan ∠GBF即6AD =解得AD =…………………………………………(2分)综合①②,454AD =(黄浦)25.(本题满分14分)在ABC ∆中,90ACB ∠=︒,3BC =,4AC =,点O 是AB 的中点,点D 是边AC 上一点,DE BD ⊥,交BC 的延长线于点E ,OD DF ⊥,交BC 边于点F ,过点E 作EG AB ⊥,垂足为点G ,EG 分别交BD 、DF 、DC 于点M 、N 、H .(1)求证:DE NEDB OB=; (2)设CD x =,NE y =,求y 关于x 的函数关系式及其定义域; (3)当DEF ∆是以DE 为腰的等腰三角形时,求线段CD 的长.【答案】(1) 略;(2);(3) 或【解析】(1)证明:∵,,,,.------------------------------------------------------------------------------------------(1分),,,又,∴,-------------------------------------------------------------------------------------(1分) ∽,---------------------------------------------------------------------------------------(1分).---------------------------------------------------------------------------------------------------(1分) (2),在Rt 中,tan DEDBE BD∠=,在Rt 中,tan DC DBE BC ∠=,.----------------------------------------------------(1分) 又,.--------------------------------------------------------------------------------(1分)∵,,,,,.-------------(2分) (3)∵,,,∵,90ADO FDC ∴∠+∠=︒, ∵90ACB ∠=︒,90CFD FDC ∴∠+∠=︒,ADO CFD ∴∠=∠,∽.---(1分) ()5026y x x ∴=<≤7843OD DF ⊥90ODB BDF ∴∠+∠=︒DE BD ⊥90EDF BDF ∴∠+∠=︒ODB EDF ∴∠=∠DE BD ⊥EG AB ⊥90BGM EDM ∴∠=∠=︒GMB DME ∠=∠GBM DEM ∠=∠∴NDE ∆ODB ∆DE NEDB OB∴=90BDE BCD ∠=∠=︒BDE ∆BCD ∆DE DC DB BC ∴=DE NEDB OB =NE DC OB BC∴=3BC =4AC =CD x =NE y =532y x∴=()5026y x x ∴=<≤EG AB ⊥90ACB ∠=︒GEB A ∴∠=∠OD DF ⊥∴AOD ∆ENF ∆ABCDOEF HGM N(第25题图),∵∽,,,.------------(1分)若,,90AOD DNF ∴∠=∠=︒,,∴.-----(2分) 若,∴点H 是重心,.∵tan tan CEH A ∠=∠,,,,,.-----------------------(2分)综上所述,线段CD 的长为或.(徐汇)25. (本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:在梯形ABCD 中,AD //BC ,AC =BC =10,54cos =∠ACB ,点E 在对角线AC 上(不与点A 、C 重合),EDC ACB ∠=∠,DE 的延长线与射线CB 交于点F ,设AD 的长为x . (1)如图1,当DF BC ⊥时,求AD 的长;(2)设EC 的长为y ,求y 关于x 的函数解析式,并直接写出定义域; (3)当△DFC 是等腰三角形时,求AD 的长.【答案】(1) 72AD =;(2)21610010x x y -+=(016x <<且10)x ≠;(3) 3964或.【解析】(1)过A 作AH ⊥BC ,垂足为H ,∵=CH AHC ACB AC ∆∠在Rt 中,cos ,且4=,105ACB AC ∠=cos ,∴8CH =. ∵222AHC AH CH AC ∆+=在Rt 中,,∴6AH = ……………………………(1分) ∴34AHC ACB ∆∠在Rt 中,tan =,∵AD ∥,,BC DF BC AH BC ⊥⊥且, ∴90AHF HFD DFH ∠=∠=∠=︒,∴四边形AHFD 是矩形,∴6DF AH ==AO OD EN NF ∴=NDE ∆ODB ∆BO ODEN ND∴=AO BO =NF ND ∴=DE EF =NE DF ∴⊥OA AC AD AB ∴=78CD =DE DF =1133HC CD x ==HC BCCE AC∴=49CE x ∴=tan tan CDE DBE ∠=∠CE DC DC BC ∴=43CD ∴=7843(第25题图1)(第25题图)CBB∵,CFDFC DEC EDC ACB DF∆∠∠=∠在Rt 中,tan =且…………………………(1分) ∴39tan ,42CF ACB CF DF =∠==得: ……………………………………………(1分) ∴97822AD HF ==-= ……………………………………………………………(1分)(2)∵AD ∥BC ,∴DAC ACB ∠=∠. ∵EDC ACB ∠=∠,∴EDC DAC ∠=∠.∵ACD ACD ∠=∠,∴CAD ∽CDE ………………………………………(1分) ∴CA CDCD CE=, ∵10,AC EC y ==,∴210CD CA CE y =⋅= …………………………………(1分) ∵222226(8)DFC CD DF FC x ∆=+=+-在Rt 中,∴221610010(8)36,10x x y x y -+=-+=即(016x <<且10)x ≠ ……………(2分)(3)由EDC ACB ∠=∠,EFC EFC ∠=∠得:FCE ∆∽FDC ∆, 又AD ∥BC 有FCE ∆∽DAE ∆,∴DAE ∆∽FDC ∆∴当FDC ∆是等腰三角形时,DAE ∆也是等腰三角形 ………………………(1分)∴1,DA DE ︒=当时不存在; ………………………………………………………(1分)2,10AD AE x y ︒==-当时得:120(),6x x ==解得:舍……………………………………………………………(2分)3,sin AMEA ED AME MAE ACB AE︒=∆∠=∠当时在Rt 中由=sin 12143920(),1054xx x y ===-得:,解得:舍………………………………………(2分)∴综上所述,当DFC ∆是等腰三角形时,AD 的长是3964或.3. 直角三角形存在性分类讨论 (静安)25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图11,在ABC ∆中,6AB =,9AC =,tan 22ABC ∠=.过点B 作BM //AC ,动点P 在射线BM 上(点P 不与点B 重合),联结PA 并延长到点Q ,使AQC ABP ∠=∠. (1)求ABC ∆的面积;(2)设BP x =,AQ y =,求y 关于x 的函数解析式,并写出x 的取值范围; (3)联结PC ,如果PQC ∆是直角三角形,求BP 的长.【答案】(1) 略;(2);(3) 或【解析】(1)过点A 作AH ⊥BC ,交BC 于点H . ············· (1分)在Rt ABH ∆中,tan 22AHABC BH∠==. 设22,AH x BH x ==,由勾股定理得36AB x ==.∴2,42BH x AH === ····················· (1分) 在Rt AHC ∆中,∴22229(42)7HC AC AH =-=-=,∴279BC BH HC =+=+=, ·················· (1分) ∴1194218222ABC S BC AH ∆=⋅=⨯⨯=.…………………(1分) (2) 过点A 作AG ⊥BM ,交BM 于点G . ∵AC BC =, ∴CAB CBA ∠=∠ ∵BM //AC , ∴ABP CAB ∠=∠∴ABP CBA ∠=∠∴42AG AH ==,即2BG BH ==………(1分) ∴2PG x =- 在Rt AGP ∆中,22222(42)(2)436AP AG PG x x x =+=+-=-+(1分)∵BAQ BAC CAQ ∠=∠+∠,BAQ ABP APB ∠=∠+∠,∴APB CAQ ∠=∠又AQC ABP ∠=∠ ················ (1分)()5026y x x ∴=<≤7843 图11ABCPQM第25题ABCPQM GH∴ABP ∆∽CQA ∆ ∴AP BPAC AQ=∴9x y=, 即0)y x => ·········· (2分)(3) 由题意得PQ AP AQ =+=2=由ABP ∆∽CQA ∆得AB APCQ AC= 得 CQ = ········ (1分)如果PCQ ∆是直角三角形,又90AQC ABP ∠=∠≠,故只有两种可能:……(1分) ①90PCQ ∠=,则1cos 3CQ AQC PQ ∠==,即3PQ CQ =, 23=,解得129,14x x ==-(舍); (2分)②90CPQ ∠=,则1cos 3PQ AQC CQ ∠==,即3CQ PQ =, 23=(1分)综上所述,如果PCQ ∆是直角三角形,BP 的长为9.4. 其他求线段长或线段之比 (闵 行)25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD 中,AD // BC ,AB = CD ,AD = 5,BC = 15,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF // BE ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE = x ,AGy DG=. (1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果23ABEF ABCDS S =四边形四边形,求线段CE 的长.【答案】(1) AB = 13;(2)3923x y x -=(3902x <<);(3) 136522CE =或【解析】(1)分别过点A 、D 作AM ⊥BC 、DN ⊥BC ,垂足为点M 、N .∵ AD // BC ,AB = CD ,AD = 5,BC = 15,∴ 11()(155)522BM BC AD =-=-=.……………………………(2分)在Rt △ABM 中,∠AMB = 90°,∴ 55cos 13BM ABM AB AB ∠===. ∴ AB = 13.……………………………………………………………(2分) (2)∵AG y DG =,∴ 1AG DGy DG+=+.即得 51DG y =+.………(1分) ∵ ∠AFD =∠BEC ,∠ADF =∠C .∴ △ADF ∽△BCE . ∴51153FD AD EC BC ===.……………………………………………(1分) 又∵ CE = x ,13FD x =,AB = CD = 13.即得 1133FC x =+.ABCDEFG(第25题图)ABCD(备用图)∵ AD // BC ,∴ FD DGFC BC =.∴ 5113115133x y x +=+.……………(1分) ∴ 3923xy x-=. ∴ 所求函数的解析式为3923x y x -=,函数定义域为3902x <<.(2分) (3)在Rt △ABM 中,利用勾股定理,得12AM =.∴ 11()(515)1212022ABCD S AD BC AM =+⋅=+⨯=梯形.∵23ABEF ABCDS S =四边形四边形,∴ 80ABEF S =四边形. …………………………(1分) 设ADFS S =.由 △ADF ∽△BCE ,13FD EC =,得 9BECS S =.过点E 作EH ⊥BC ,垂足为点H . 由题意,本题有两种情况:(ⅰ)如果点G 在边AD 上,则 840ABCD ABEF S S S -==四边形四边形.∴ S = 5.∴ 945BECS S ==.∴ 11154522BECSBC EH EH =⋅=⨯⋅=.∴ 6EH =. 由 DN ⊥BC ,EH ⊥BC ,易得 EH // DN . ∴61122CE EH CD DN ===. 又 CD = AB = 13,∴ 132CE =.…………………………………(2分) (ⅱ)如果点G 在边DA 的延长线上,则 9ADFABCD ABEF S S SS ++=四边形四边形.∴ 8200S =.解得 25S =.∴ 9225BECS S ==.∴ 111522522BECS BC EH EH =⋅=⨯⋅=.解得 30EH =. ∴305122CE EH CD DN ===.∴ 652CE =.……………………………(2分) ∴ 136522CE =或.(松江)25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E . (1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD =,且CE =2,ED =3,求线段PD 的长.【答案】(1) 241333BE BP ==;(2)6cos 3A =;(3) 15=PD 【解析】(1)∵P 为AC 的中点,AC =8,∴CP =4……………………………(1分)∵∠ACB =90°,BC =6,∴BP =213……………………………………………(1分) ∵D 是边AB 的中点,P 为AC 的中点,∴点E 是△ABC 的重心……………(1分) ∴241333BE BP ==…………………………………………………………(1分) (2)过点B 作BF ∥CA 交CD 的延长线于点F ………………………………(1分) ∴CABFDC FD DA BD ==………………………………(1分) ∵BD=DA ,∴FD=DC ,BF=AC …………………(1分) ∵CE=2,ED=3,则CD =5,∴EF =8∴4182===EF CE BF CP …………………………(1分) ∴41=CA CP ,∴13CP PA =,设CP=k ,则P A=3k ,∵PD ⊥AB ,D 是边AB 的中点,∴P A=PB=3k∴k BC 22=,∴k AB 62=,∵k AC 4=,∴6cos 3A =…………(1分) (3)∵∠ACB =90°,D 是边AB 的中点,∴12CD BD AB ==∵222BP CD =,∴22BP CD CD BD AB =⋅=⋅……………(1分)(备用图2)ABCD(备用图1)ABCD(第25题图)ABPC DEPE (备用图ABCD F∵∠PBD=∠ABP ,∴△PBD ∽△ABP …………………………(1分) ∴∠BPD=∠A ……………………………………………………(1分) ∵∠A=∠DCA ,∴∠DPE=∠DCP ,∵∠PDE=∠CDP ,△DPE ∽△DCP ,∴DC DE PD ⋅=2…………………………(1分) ∵DE=3,DC=5,∴15=PD …………………………………(1分)(普陀)25.(本题满分14分)如图11,点O 在线段AB 上,22AO OB a ==,60BOP ∠=︒,点C 是射线OP 上的一个动点. (1)如图11①,当90ACB ∠=︒,2OC =,求a 的值;(2)如图11②,当AC =AB 时,求OC 的长(用含a 的代数式表示);(3)在第(2)题的条件下,过点A 作AQ ∥BC ,并使∠QOC=∠B ,求:AQ OQ 的值.【答案】(1) 1334a +=;(2)6OC a a =-+;(3) 165AQ OQ +=【解析】(1)过点C 作CH AB ⊥,H 为垂足. ············································· (1分)∴90CHO CHB ∠=∠=.在Rt △COH 中,60COB ∠=,2OC =.∴1OH =,3CH =. ································································ (1分) ∵22AO OB a ==, ∴21AH a =+,1BH a =-.∵90ACB ∠=,∴90ACH HCB ∠+∠=.A BCPOABCPO图11①图11②∵CH AB ⊥,∴90ACH A ∠+∠=. ∴A HCB ∠=∠.∵90CHA BHC ∠=∠=︒,∴△ACH ∽△CBH . ·································································· (1分) ∴AH CHCH BH=. ∴2CH AH BH =⋅.∴2(21)(1)a a =+⋅-. ···························································· (1分)∴a =,a =.∴14a =. ············································································ (1分)(2)过点C 作CH AB ⊥,H 为垂足.设OC m =. 在Rt △COH 中,60COB ∠=,OC m =.∴12OH m =,2CH =. ·························································· (2分) 在Rt △ACH 中,90CHA ∠=︒, ∴222AC AH CH =+.∴2221(3)(2)()22a a m =++. ···················································· (2分)得m a =-,m a =-(不合题意,舍去).即OC a =-. ······································································ (1分) (3)延长QA 、CO 交于点E . ∵AQ //BC ,∴E OCB ∠=∠.∵COA AOQ QOC ∠=∠+∠,COA OCB B ∠=∠+∠,QOC B ∠=∠, ∴AOQ OCB ∠=∠.∵QOA E ∠=∠.又∵Q Q ∠=∠,∴△QOA ∽△QEO . ············································ (1分) ∴AQ AOOQ OE=. ············································································ (1分) ∵AQ //BC ,∴AO EO OB OC =.∴AO OBEO OC=.∴AQ OB OQ OC =. ················· (1分)。
上海市2019届初三数学一模提升题汇编第24题(二次函数综合)(含2019上海中考试题答案)

22213-3)(第24题图)题图)∵抛物线21:C y ax bx A B=+经过点、,∴可得:342033233a a b a b b ì=-+=ìïïíí-=-ïî=ïî解得:………………………………………………(1分)分)∴这条抛物线的表达式为232333y x x=-+…………………………………………(1分)分)(2)过M 作MG ⊥x 轴,垂足为G ,∵232333y x x =-+∴顶点M 是31,3æöç÷ç÷èø,得33MG = ……………………………………………………(1分)分)∵(1,3)A--,M 31,3æöç÷ç÷èø.∴得:直线AM 为23333y x =- …………………………………………………(1分)分) ∴直线AM 与x 轴的交点N 为1,02æöç÷èø……………………………………………………(1分)分)∴1122AOM SON MG ON AH D =×+×11311322322=´´+´´33=…………………………………………………………………………(1分)分)(3)∵)33,1(M 、)0,2(B ,∴33MG Rt BGM MBG BG D Ð=在中,中,tan tan =,∴MBG а=30.∴MBF 150Ð=°.由抛物线的轴对称性得:MO=MB ,∴MBO MOB=150Ð=а. ∵OB=120A а,∴OM=150A а ∴OM=MBF A ÐÐ.∴BM BFOA OM 或BF BM OA OM 相似时,有:AOM 与MBF 当==D D 即332BF 2332或BF 3322332==,∴32BF 或2BF ==. ∴)0,38)或(0,4(F ………………………………………………(2分)分)设向上平移后的抛物线kx x y ++-=33233:为C 22,当)0,4(F 时,338=k ,∴抛物线33833233:为C 22++-=x x y …(1分)分)当)0,38(F 时,27316=k ,抛物线22323163:3327C y x x =-++…….(1分)】【2019届一模浦东】届一模浦东】24. (本题满分12分,其中每小题各4分)分)已知:如图9,在平面直角坐标系xOy 中,直线12y x b=-+与x 轴相交于点A ,与y 轴相交于点B. 抛物线(1)求抛物线的表达式; (2)求证: △BOD ∽△AOB; (3)如果点P 在线段AB 上,且∠BCP=∠DBO , 求点P 的坐标. xBOAy【24、(1)211482y x x =-++;(2)证明略;(3)1612,55æöç÷èø】【2019届一模杨浦】届一模杨浦】24.(本题满分12分,每小题各4分)分)在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++?与y 轴交于点C (0,2),它的顶点为D (1,m ),且1tan 3COD?. (1)求m 的值及抛物线的表达式;的值及抛物线的表达式;(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA=OB.若点A 是由原抛物线上的点E 平移所得,求点E 的坐标;的坐标;(3)在(2)的条件下,的条件下,点点P 是抛物线对称轴上的一点是抛物线对称轴上的一点(位于(位于x 轴上方),且∠APB=45°.求P 点的坐标. O xy1 2 3 4 1 2 3 4 5 -1 -2 -3 -1 -2 -3 (第24题图)【24.解:(1)作DH ⊥y 轴,垂足为H ,∵D (1,m )(0m >),∴DH= m ,HO=1. ∵1tan 3COD?,∴13OH DH =,∴m=3. m=3. · ····················································· (1分)分)∴抛物线2y ax bx c =++的顶点为D (1,3). 又∵抛物线2y ax bx c =++与y 轴交于点C (0,2),∴3,1,22.a b c b a c ì++=ïïïïï-=íïïïï=ïî(2分)∴1,2,2.a b c ì=-ïïï=íïï=ïïî∴抛物线的表达式为222y x x =-++. ······ (1分)分) (2)∵将此抛物线向上平移,)∵将此抛物线向上平移,∴设平移后的抛物线表达式为222(0)y x x k k =-+++>,. ···························· (1分)分) 则它与y 轴交点B (0,2+k ). ∵平移后的抛物线与x 轴正半轴交于点A ,且OA=OB ,∴A 点的坐标为(2+k,0). .(1分)分)∴20(2)2(2)2k k k =-+++++.∴122,1k k =-=. ∵0k >,∴1k =. ∴A (3,0),抛物线222y x x =-++向上平移了1个单位. . ······························ (1分)分)∵点A 由点E 向上平移了1个单位所得,∴E (3,-1). . ··································· (1分)分) (3)由(2)得A (3,0),B (0, 3),∴32AB =. ∵点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB=45°,原顶点D (1,3), ∴设P (1,y ),设对称轴与AB 的交点为M ,与x 轴的交点为H ,则H (1,0). ∵A (3,0),B (0, 3),∴∠OAB=45°, ∴∠AMH=45°. ∴M (1,2). ∴2BM =. ∵∠BMP=∠AMH, ∴∠BMP=45°. ∵∠APB=45°, ∴∠BMP=∠APB. ∵∠B=∠B ,∴△BMP ∽△ A. ·BP A. ··································································· (2分)分)B A PyO M H∴BP BA BMBP =.∴23226BP BA BM =??∴221(3)6BP y =+-=.∴123535y y,=+=-(舍).. ···························· (1分)分)∴(1,35)P+. . ····················································································· (1分)】【2019届一模普陀】届一模普陀】 24.(本题满分12分)分) 如图10,在平面直角坐标系中,抛物线23y ax bx =+-(0)a ¹与x轴交于点A()1,0-和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D .(1)求抛物线的表达式及点D 的坐标;的坐标;(2)如果点E 是y轴上的一点(点E 与点C 不重合),当BE DE ^时,求点E 的坐标;的坐标;(3)如果点F 是抛物线上的一点,且,求点F 的坐标.的坐标.135FBD Ð=xOy图10 C BAOyx【24.解:.解:(1)∵抛物线与x 轴交于点A ()1,0-和点,且3OB OA =,∴点的坐标是()3,0. ··········································································· (1分)分)解法一:由抛物线23y ax bx =+-经过点()1,0-和()3,0.得03,093 3.a b a b =--ìí=+-î 解得1,2.a b =ìí=-î ······························································ (1分)分)∴抛物线的表达式是223y x x =--. ······················································ (1分)分)点D 的坐标是()1,4-. ············································································· (1分)分) 解法二:由抛物线23y ax bx =+-经过点()1,0-和()3,0.可设抛物线的表达式为(1)(3)y a x x =+-, 由抛物线与y轴的交点C 的坐标是()0,3-,得3(01)(03)a -=+-,解得1a =. ······························································ (1分)分) ∴抛物线的表达式是223y x x =--. ························································ (1分)分)点D 的坐标是()1,4-. ············································································· (1分)分) (2)过点D 作DH OC ^,H 为垂足.为垂足. ∴90DHO Ð=.∴90DEH EDH Ð+Ð=. ∵BE DE ^,∴90DEH BEO Ð+Ð=. ∴BEO EDH Ð=Ð.又∵BOE EHDÐ=Ð,∴△BOE∽△E H D . ········································· (1分)分)∴BO OEEH HD =. ∵点D 的坐标是()1,4-,∴1DH =,4OH =.B B∵点的坐标是()3,0,∴3OB =.∴341OEOE=-. ·············································································· (1分)分) ∴1OE =或3OE =. ················································································ (1分)分) ∵点E 与点C 不重合,∴1OE =.∴点E 的坐标是()0,1-. ··········································································· (1分)分)(3)过点F 作FG x ^轴,G 为垂足.为垂足.作45DBM Ð=,由第(2)题可得,点M 与点E 重合.重合. ∵1OE =,1DH =,∴OE DH =. 可得△BOE ≌△E H D . ∴BE ED =. ∵90BED Ð=,∴45DBE Ð=. ∵135FBD Ð=,∴90FBE Ð=. ················································································ (1分)分) ∴OBE GFB Ð=Ð.∴在Rt △BOE 中,90BOE Ð=,∴cot 3OBE Ð=∴cot 3GFB Ð=. ·········· (1分)分) ∴3FG BG =.设点F 点的坐标为()2,23m m m --.∴223FG m m =--,3BG m =-. ∴2233(3)m m m --=-. ··································································· (1分)分)解得3m =,4m =-. ∵3m =不合题意舍去,∴4m =-. 点F 的坐标是()4,21-. ·········································································· (1分)】【2019届一模奉贤】届一模奉贤】24.(本题满分12分,每小题满分6分)分)B如图10,在平面直角坐标系中,直线AB 与抛物线2y ax bx=+交于点A(6,0)和点B(1,-5).(1)求这条抛物线的表达式和直线AB 的表达式;的表达式;(2)如果点C 在直线AB 上,且∠BOC 的正切值是32,求点C 的坐标.的坐标.【24.解:(1)由题意得,抛物线2y ax bx=+经过点A(6,0)和点B(1,-5),代入得3660,5.a b a b ì+=ïïíï+=-ïî 解得解得 1,6.a b ì=ïïíï=-ïî ∴抛物线的表达式是26y x x =-. ······ (4分)分)由题意得,设直线AB 的表达式为y kx b=+,它经过点A(6,0)和点B(1,-5),代入得60,5.k b k b ì+=ïïíï+=-ïî 解得解得 1,6.k b ì=ïïíï=-ïî ∴直线AB 的表达式是6y x =-. ········ (2分)分)(2)过点O 作OH AB ^,垂足为点H . 设直线AB 与y 轴交点为点D ,则点D 坐标为()0,6-. ∴45ODA OAD??,cos4532DH OH OD ==·°=. ∵2BD =,∴22BH =. 在Rt △OBH 中,90OHB?,3tan 2OH OBHBH ?=. ······························· (2分)分)∵∠BOC 的正切值是32,∴BOCCBO ?. ··············································· (1分)分)①当点C 在点B 上方时,BOCCBO ?.∴CO CB =.设点C(,6)x x -, 2222(6)(1)(65)x x x x +-=-+-+xOy图10 ABxyo解得解得 174x =,1776644x -=-=-.--------------------------------------------------------------------(2分)分)所以点D坐标为177,44æö-ç÷èø. ②当点C 在点B 下方,BOC CBO ?时,OC//AB. 点C 不在直线AB 上. ········ (1分)分)综上所述,如果∠BOC 的正切值是32,点C 的坐标是177,44æö-ç÷èø.】【2019届一模松江】届一模松江】24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)分)如图,抛物线cbx x y ++-=221经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;的坐标; (3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO=2OF ,求m 的值. 【24.解:(1)∵抛物线经过点A (﹣2,0),点B (0,4)∴îíì==+--4022c c b …………(1分), 解得14b c =ìí=î………………………(1分)分) ∴抛物线解析式为2142y x x =-++ …………………………………………(1分)分)(第24题图) y xOBA(2)()2912142122+--=++-=xxxy…………………………………(1分)分)∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G ∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,∴PG BOBG AO=……………………………………………(1分)分)∴121BG=,∴12BG=…………………………………(1分)分)∴72OG=,∴P(1,27)………………………………(1分)分)(3)设新抛物线的表达式为2142y x x m=-++-…(1分)分)则()0,4D m-,()2,4E m-,DE=2……………………(1分)分)过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF ∴2=1DE EO DOFH OF OH==,∴FH=1……………………………………………(1分)分)点D在y轴的正半轴上,则51,2F mæö--ç÷èø,∴52OH m=-∴42512DO mOH m-==-,∴m=3……………………………………………………(1分)分)点D在y轴的负半轴上,则91,2F mæö-ç÷èø,∴92OH m=-∴42912DO mOH m-==-,∴m=5……………………………………………………(1分)分)∴综上所述m的值为3或5.】(第24题图) yx OBAEDF H的面积;的面积; D ,点E 的坐标.的坐标. 2)O 1 1 x y--∴点C 的坐标为)0,2(, ……………………1分 过点M 作y MH ^轴,垂足为点H∴AOC MHCAOHMAMCSSSSD D D --= (1)分∴42211412149)41(21´´-´´-´+´=D AMC S∴23=D AMC S …………1分 (3)联结OB过点B 作x BG ^轴,垂足为点G∵点B 的坐标为)2,2(,点A 的坐标为)0,4(∴2=BG ,2=GA∴△BGA 是等腰直角三角形∴°=Ð45BAO 同理:°=Ð45BOA∵点C 的坐标为)0,2(∴2=BC ,2=OC 由题意得,△OCB 是等腰直角三角形是等腰直角三角形 ∴°=Ð45DBO ,22=BO ∴DBO BAO Ð=Ð∵°=Ð45DOE ∴°=Ð+Ð45BOE DOB ∵°=Ð+Ð45EOA BOE ∴DOB EOA Ð=Ð ∴△AOE ∽△BOD∴BO AO BD AE = …………1分 ∵抛物线221412++-=x x y 的对称轴是直线1=x ,∴点D 的坐标为)2,1(∴1=BD …………1分∴2241=AE∴2=AE …………1分过点E 作x EF ^轴,垂足为点F 易得,△AFE 是等腰直角三角形是等腰直角三角形 ∴1==AF EF∴点E 的坐标为)1,3( …………1分】分】 【2019届一模青浦】届一模青浦】24.(本题满分12分,分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)分)在平面直角坐标系xOy 中,将抛物线2y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图). (1)求平移后的抛物线的表达式;)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CD=2,求∠CAD 的正弦值;的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.的坐标.【24.解:(1)设平移后的抛物线的解析式为2+=-+y x bx c. ······················· (1分)分)将A (-1,0)、B (4,0),代入得,代入得C B A xy O CB A xyO (第24题图)题图) (备用图)(备用图)101640.,--+=ìí-++=îb c b c ··············································································· (1分)分) 解得:34.,=ìí=îb c所以,2+34=-+y x x . ·········································································· (1分)分)(2)∵2+34=-+y x x ,∴点C 的坐标为(0,4) ····································· (1分). 设直线BC 的解析式为y= kx+4,将B (4,0),代入得kx+4=0,解得k=-1,∴y= -x+4. ········································································································ 设点D 的坐标为(m ,4- m ).∵CD=2,∴22=2m ,解得=1m 或=1-m (舍去),∴点D 的坐标为(1,3). ········································································· (1分)分) 过点D 作DM ⊥AC ,过点B 作BN ⊥AC ,垂足分别为点M 、N .∵1122×=×AC BN AB OC,∴1754×=´BN ,∴202017=1717=BN . ········ (1分)分) ∵DM ∥BN ,∴=DM CD BN CB ,∴242=DM BN ,∴51717=DM . ···················· (1分)分) ∴51715221sin =1722113Ð=´=DM CAD AD . ············································· (1分)分)(3)设点Q 的坐标为(n ,2+34-+n n ).如果四边形ECPQ 是菱形,则0>n ,PQ ∥y 轴,PQ=PC ,点P 的坐标为(n ,4-+n ).∵22+3444=-++-=-PQ n n n n n,2=PC n , ····································· (2分)分)∴24=2-n n n,解得=42-n 或=0n (舍). ·········································· (1分)分)∴点Q 的坐标为(42-,522-). ···················································· (1分)】【2019届一模静安】届一模静安】24.(本题满分12分,其中第(1)小题4分,第(2)小题3分,第(3)小题5分)分)在平面直角坐标系xOy 中(如图10),已知抛物线2(0)y ax bx c a =++¹的图像经过点(40)B ,、(53)D ,,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD D 的面积是3.(1)求该抛物线的表达式;)求该抛物线的表达式; (2)求A D B Ð的正切值;的正切值;(3)若抛物线与y 轴交于点C ,直线CD 交x 轴于点E ,点P 在射线AD 上,当APE D 与ABD D 相似时,求点P 的坐标.的坐标.【24.解:.解:(1)过点D 作DH ⊥x 轴,交x 轴于点H .∵132ABDSAB DHD =×=,又∵(5,3)D∴2AB =.····························································································· (1分)分) ∵(4,0)B ,点A 在点B 的左侧,的左侧,∴(2,0)A . ····························································································· (1分)分)把(2,0)A ,(4,0)B ,(5,3)D 分别代入2y ax bx c =++,得04201643255a b c a b c a b c =++ìï=++íï=++î 解得168a b c =ìï=-íï=î . ···························································· (1分)分)∴抛物线解析式是268y x x =-+. ······························································ (1分)分) (2)过点B 作BG AD ^,交AD 于点G . ··················································· (1分)分)B D O 图10 x y ﹒ ﹒由(2,0)A ,(5,0)H ,(5,3)D,得A D H D 是等腰直角三角形,且45HAD Ð=∵3AH DH ==,∴32AD =. ································································ (1分)分) ∴在等腰直角AGB D 中,由2AB =,得2AG BG ==, ∴22DG AD AG =-=,∴在Rt DGB D 中,1tan 2BG ADB DGÐ==. ·················································· (1分)分) (3)∵抛物线268y x x =-+与y轴交于点(0,8)C ,又(5,3)D ,∴直线CD 的解析式为8y x=-+,∴(8,0)E. ···························································································· (1分)分)当点P 在线段AD 上时,APE D ∽ABD D ,点,,A P E 分别与点,,A B D 对应,则对应,则AP AE AB AD =,即262232AB AE AP AD ´´===.………………………………………(1分)··························································································································· 过点P 作PQ ^∴2AQ PQ ==,即(4,2)P . ····································································· (1分)分)②当点P 在线段AD 延长线上时,APE A D B Ð=Ð, ·················································· ∴EP //D B过点P 作PR x ^轴于点R ,·················································································· 13AH AD AB AR AP AE ===,∴9AR PR ==, ······················································································ (1分)分)即(11,9)P. ···························································································· (1分)分)∴APE D 与ABD D 相似时,点P 的坐标为的坐标为 (4,2)或 (11,9).】 【2019届一模宝山】届一模宝山】24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)分)如图9,已知:二次函数的图像交x 轴正半轴于点A ,顶点为P,一次函数2y x bx=+。
完整word版,2018上海初三数学一模压轴题汇总(各区23~25题)

崇明 23.(此题满分 12 分,每题各 6 分)如图,点 E 是正方形 ABCD的边 BC延伸线上一点,联络DE,过极点 B 作BF DE ,垂足为 F, BF 交边 DC于点 G.C ( 1)求证: GD AB DF BG;B E( 2)联络 CF,求证:CFB 45.G FA D(第 23 题图)崇明 24.(此题满分12 分,每题各 4 分)如图,抛物线 y4x2bx c 过点A(3,0),B (0, 2).M ( m, 0)为线段 OA 上一个动点3(点 M 与点 A 不重合),过点 M 作垂直于 x 轴的直线与直线AB 和抛物线分别交于点P、N.( 1)求直线 AB 的分析式和抛物线的分析式;( 2)假如点 P 是 MN 的中点,那么求此时点N 的坐标;( 3)假如以 B, P, N 为极点的三角形与△ APM 相像,求点 M 的坐标.y yNB BPAx O M x OA(第 24 题图)(备用图)崇明 25.(此题满分14 分,第 (1) 小题 4 分,第 (2) 小题 5 分,第 (3) 小题 5 分)如图,已知△ ABC 中,ACB 90 , AC 8 , cos A 4,D是AB边的中点,E是AC 5边上一点,联络DE,过点 D 作DF DE 交BC边于点F,联络EF.(1)如图 1,当DE AC 时,求EF的长;(2)如图 2,当点 E 在 AC边上挪动时,DFE 的正切值能否会发生变化,假如变化请说出变化状况;假如保持不变,恳求出DFE 的正切值;(3)如图 3,联络 CD 交 EF于点 Q,当△ CQF 是等腰三角形时,请直接写出 BF 的长.....BDFA CE(第 25 题图 1)BDFA CE(第 25 题图 2)BDFA CE(第 25 题图 3)金山 23. (此题满分12 分,每题 6 分)如图,已知在 Rt△ABC 中,∠ ACB=90 °,AC > BC,CD是 Rt△ ABC 的高,E是AC的中点, ED 的延伸线与 CB 的延伸线订交于点 F .(1)求证:DF是BF和CF的比率中项;(2)在AB上取一点G,假如 AE : AC=AG :AD ,求证: EG: CF=ED : DF.金山 24. (此题满分 12 分,每题 4 分)平面直角坐标系 xOy 中(如图),已知抛物线 y = ax 2+ bx + 3 与 y 轴订交于点 C ,与x 轴正半轴订交于点 A, OA= OC,与 x 轴的另一个交点为B,对称轴是直线x = 1,顶点为 P .(1)求这条抛物线的表达式和极点 P 的坐标;( 2)抛物线的对称轴与 x 轴订交于点 M ,求∠ PMC 的正切值;( 3)点 Q 在 y 轴上,且△ BCQ 与△ CMP 相像,求点 Q 的坐标.金山25.(此题满分14 分,第(1)小题 3 分,第(2)小题 5 分,第(3)小题 6 分)如图,已知在△ABC中,AB = AC = 5,cos B =4,P是边AB 一点,以 P 为圆心,5PB 为半径的 e P 与边 BC 的另一个交点为 D ,联络 PD 、 AD .(1)求△ ABC 的面积;(2)设 PB =x ,△ APD 的面积为y,求y对于x的函数关系式,并写出定义域;(3)假如△ APD 是直角三角形,求PB的长.青浦 23.(此题满分12 分,第( 1)小题 4 分,第( 2)小题 8 分)如图 8,已知点 D 、E 分别在△ ABC 的边 AC、 BC 上,线段BD 与 AE 交于点F,且CD CA CE CB.A( 1)求证:∠ CAE=∠ CBD;DBE AB F ( 2)若,求证: AB AD AF AE .EC ACB E C图 8青浦24.(此题满分12 分,第(1)小题 3 分,第(2)小题 4 分,第(3)小题 5 分)如图9,在平面直角坐标系xOy中,抛物线y ax2bx c a0与 x 轴订交于点A( - 1, 0)和点B,与y 轴交于点C,对称轴为直线x 1.(1)求点 C 的坐标(用含 a 的代数式表示);(2)联络 AC、BC,若△ ABC 的面积为 6,求此抛物线的表达式;( 3)在第(2)小题的条件下,点Q 为x 轴正半轴上一点,点G 与点C,点F 与点A 对于点Q 成中心对称,当△CGF为直角三角形时,求点Q 的坐标.yA OB xC图 9青浦 25.(此题满分14 分,第( 1)小题 5 分,第( 2)小题 5 分,第( 3)小题 4 分)如图10,在边长为 2 的正方形ABCD中,点P 是边AD上的动点(点P 不与点A、点D 重合),点Q 是边CD上一点,联络PB、 PQ,且∠PBC=∠ BPQ.(1)当 QD = QC 时,求∠ ABP 的正切值;(2)设 AP=x, CQ=y,求 y 对于 x 的函数分析式;(3)联络 BQ,在△ PBQ 中能否存在度数不变的角,若存在,指出这个角,并求出它的度数;若不存在,请说明原因.A P D A DQB C B C图 10备用图黄浦 23、(此题满分12分)如图, BD 是△ABC 的角均分线,点 E 位于边 BC 上,已知 BD 是 BA 与 BE 的比率中项.(1)求证: CDE 1ABC 2(2)求证:AD CD AB CEBEA D C黄浦24、(此题满分12 分)在平面直角坐标系xOy中,对称轴为直线x 1 的抛物线y ax2bx8 过点2,0.(1)求抛物线的表达式,并写出其极点坐标;(2)现将此抛物线沿y 方向平移若干个单位,所得抛物线的极点为 D ,与y 轴的交点为 B ,与 x 轴负半轴交于点 A ,过点B 作x 轴的平行线交所得抛物线于点 C ,若 AC∥BD ,试求平移后所得抛物线的表达式.yxO黄浦 25、(此题满分14 分)BE 均分ABC 如图,线段 AB 5 , AD 4 , A 90 ,DP∥AB ,点 C 为射线 DP 上一点,交线段 AD 于点 E (不与端点 A 、 D 重合).(1)当ABC 为锐角,且tan ABC 2 时,求四边形ABCD 的面积;(2)当△ABE与△BCE相像时,求线段CD 的长;(3)设DC x ,DE y ,求y对于 x 的函数关系式,并写出定义域.D C P D PEA B A B松江 23.(此题满分 12 分,每题 6 分)已知四边形 ABCD 中,∠ BAD=∠ BDC=90 °,BD2AD BC .(1)求证: AD∥ BC;(2)过点 A 作 AE∥ CD 交 BC 于点 E.请完美图形并求证:CD 2BE BC.松江24.(此题满分12 分,每题 4 分)如图,在平面直角坐标系xOy中,抛物线y x2bx c 的对称轴为直线x=1,抛物线与x 轴交于 A、 B 两点(点 A 在点 B 的左边),且 AB =4,又 P 是抛物线上位于第一象限的点,直线 AP 与 y 轴交于点D,与对称轴交于点E,设点 P 的横坐标为t .(1)求点 A 的坐标和抛物线的表达式;(2)当 AE:EP =1:2 时,求点 E 的坐标;(3)记抛物线的极点为 M,与 y 轴的交点为 C,当四边形 CDEM是等腰梯形时,求 t 的值.松江 25.(此题满分14 分,第( 1)小题 4 分,第( 2)小题 5 分,第( 3)小题 5 分)如图,已知△ ABC 中,∠ ACB=90°, AC=1,BC=2 ,CD 均分∠ ACB 交边 AB 与点 D ,P 是射线 CD 上一点,联络AP.(1)求线段CD 的长;(2)当点(3)记点P 在 CD 的延伸线上,且∠M 为边 AB 的中点,联络PAB=45 °时,求CP 的长;CM 、 PM ,若△ CMP 是等腰三角形,求CP 的长.闵行 23.(此题共 2 小题,每题 6 分,满分 12 分)如图,已知在△ ABC中,∠ BAC=2∠B, AD 均分∠ BAC,DF// BE,点 E 在线段 BA 的延伸线上,联络 DE,交 AC 于点 G,且∠ E E =∠ C.A ( 1)求证: AD 2AF AB ;( 2)求证:AD BE GDE AB.FB D C(第 23 题图)闵行 24.(此题共 3 题,每题 4 分,满分 12分)抛物线 y ax2bx 3 (a0) 经过点 A(1,0),B(3,0),y 2且与 y 轴订交于点 C.C (1)求这条抛物线的表达式;(2)求∠ ACB的度数;(3)设点 D 是所求抛物线第一象限上一点,且在对称轴的右边,点 E 在线段 AC 上,且 DE⊥ AC,当△ DCE与△ AOC相像时,求点 D 的坐标.A O B x(第 24 题图)闵行 25.(共 3 小题,第( 1)小题 4 分,第( 2)小题 6 分,第( 3)小题 4 分,满分14 分)如图,在 Rt△ ABC中,∠ ACB=90°, AC=4,BC=3,CD 是斜边上中线,点 E 在边 AC上,点 F 在边 BC 上,且∠ EDA=∠ FDB,联络 EF、DC交于点 G.(1)当∠ EDF=90°时,求 AE 的长;x 的取值范围;( 2) CE = x,CF = y,求 y 对于 x 的函数关系式,并指出(3)假如△CFG是等腰三角形,求CF 与CE的比值.C CFGEA DB A D B(第 25 题图)(备用图)浦东 23.(此题满分 12 分,此中第( 1)小题 6 分,第( 2)小题 6 分)如图,已知,在锐角△ ABC中, CE⊥ AB 于点 E,点 D 在边 AC上,A联络 BD 交 CE于点 F,且EF FC FB DF.(1)求证: BD⊥AC;E(2)联络 AF,求证:AF BE BC EF.DFB C(第 23 题图)浦东 24.(此题满分12 分,每题 4 分)已知抛物线 y= ax2+ bx+ 5 与 x 轴交于点 A(1, 0)和点 B(5,0),极点为 M .点 C 在 x 轴的负半轴上,且 AC= AB,点 D 的坐标为 (0, 3),直线 l 经过点 C、 D.(1)求抛物线的表达式;(2)点 P 是直线 l 在第三象限上的点,联络 AP,且线段 CP是线段 CA、 CB 的比率中项,求tan∠CPA的值;(3)在( 2)的条件下,联络 AM 、BM,在直线 PM 上能否存在点 E,使得∠ AEM=∠ AMB.若存在,求出点 E 的坐标;若不存在,请说明原因.y54321–5 –4 –3 –2 –1 O 1 2 3 4 5x–1–2–3–4–5(第 24 题图)浦东 25.(此题满分14 分,此中第( 1)小题 4 分,第( 2)小题 5 分,第( 3)小题 5 分)如图,已知在△ ABC 中,∠ ACB=90°,BC=2,AC=4,点 D 在射线 BC上,以点 D 为圆心,BD 为半径画弧交边 AB 于点 E,过点 E 作 EF⊥ AB 交边 AC于点 F,射线 ED 交射线 AC于点 G.(1)求证:△ EFG∽△ AEG;(2)设 FG=x,△ EFG的面积为 y,求 y 对于 x 的函数分析式并写出定义域;(3)联络 DF,当△ EFD是等腰三角形时,请直接写出FG的长度...A A AEFB DC B C B C(第 25 题图)G(第 25 题备用图)(第 25题备用图)虹口 23.(此题满分12 分,第( 1)题满分如图,在△ ABC 中,点D、 E 分别在边6 分,第( 2)题满分AB、 AC 上, DE 、BC6 分)的延伸线订交于点F,且EF DF BF CF.(1)求证AD AB AE AC;(2)当 AB=12, AC=9 , AE=8 时,求 BD 的长与S△ADE的值.S△ECF虹口24.(此题满分12 分,第(1)小题满分 4 分,第(2)小题满分 4 分,第(3)小题满分4分)如图,在平面直角坐标系xOy中,抛物线与x 轴订交于点A(-2,0)、 B( 4,0),与y 轴交于点 C( 0,-4), BC 与抛物线的对称轴订交于点D.(1)求该抛物线的表达式,并直接写出点 D 的坐标;(2)过点 A 作 AE⊥ AC 交抛物线于点 E,求点 E 的坐标;(3)在( 2)的条件下,点 F 在射线 AE 上,若△ ADF ∽△ ABC,求点 F 的坐标.虹口 25.(此题满分 14 分,第( 1)小题满分 5 分,第( 2)小题满分 5 分,第( 3)小题满分4分)已知 AB=5,AD =4,AD ∥ BM,cosB 3(如图),点 C、E 分别为射线 BM 上的动点(点 C、5E 都不与点 B 重合),联络 AC、 AE,使得∠ DAE=∠ BAC,射线 EA 交射线 CD 于点 F.设AFBC=x,y .AC(1)如图 1,当 x=4 时,求 AF 的长;(2)当点 E 在点 C 的右边时,求 y 对于 x 的函数关系式,并写出函数的定义域;(3)联络 BD 交 AE 于点 P,若△ ADP 是等腰三角形,直接写出x 的值.普陀 23. (此题满分12 分)已知:如图9,四边形ABCD的对角线 AC和BD订交于点E,AD DC,DC2DE DB .求证:( 1)VBCE∽VADE;( 2)AB·BC BD·BE .ADEB C图 9普陀 24.(此题满分12 分,每题满分各 4 分)如图 10,在平面直角坐标系中,已知抛物线y ax22ax c(此中a、c为常数,且a0 )与 x 轴交于点 A ,它的坐标是( 3, 0 ) ,与y轴交于点B,此抛物线极点 C 到 x 轴的距离为 4 .(1)求该抛物线的表达式;(2)求CAB的正切值;( 3)假如点P 是抛物线上的一点,且ABP CAO ,试直接写出点P 的坐标.y1O 1x–1普陀 25.(此题满分 14 分,第( 1)小题满分 3 分,第( 1)小题满分 5 分,第( 1)小题满分6分)如图 11,BAC 的余切值为2,AB 2 5 ,点D是线段AB上的一动点(点 D 不与点 A、 B 重合),以点 D 为极点的正方形DEFG的另两个极点E、F 都在射线AC 上,且点F 在点(1)点E 的右边.联络BG ,并延伸 BG ,交射线 EC 于点 P .D 在运动时,以下的线段和角中,______是一直保持不变的量(填序号);① AF;② FP;③ BP;④BDG;⑤GAC ;⑥BPA;(2)设正方形的边长为x ,线段AP 的长为y ,求y 与x 之间的函数关系式,并写出定义域;(3)假如VPFG与VAFG相像,但面积不相等,求此时正方形的边长.B BD GCE FPCA图 11备用图嘉定 23.(此题满分 12 分,每题 6 分)如图 6 ,已知梯形ABCD中,AD∥BC,AB CD ,点 E 在对角线 AC 上,且知足ADE BAC .A D (1)求证:CD AE DE BC;E (2)以点A为圆心,AB长为半径画弧交边BC于点F ,联络 AF .CB F求证: AF 2CE CA.图 6嘉定 24.(此题满分 12 分,每题 4 分)已知在平面直角坐标系(如图)中,已知抛物线y22bx c点经过A(1,0) 、xOy3B(0,2) .(1)求该抛物线的表达式;(2)设该抛物线的对称轴与x 轴的交点为C,B第四象限内的点D在该抛物线的对称轴上,假如1以点A、 C 、D所构成的三角形与△AOB 相像,AO1求点D的坐标;(3)设点E在该抛物线的对称轴上,它的纵坐标是 1,联络 AE 、 BE ,求 sin ABE .图 7嘉定 25.(满分 14 分,第( 1)小题 4 分,第( 2)、( 3)小题各 5 分)在正方形 ABCD 中, AB8,点 P 在边 CD 上, tan PBC 3,点 Q 是在射线BP 4上的一个动点,过点Q 作AB的平行线交射线AD 于点 M ,点 R 在射线 AD 上,使RQ始终与直线 BP 垂直.(1)如图 8,当点R与点D重合时,求PQ 的长;(2)如图9,尝试究:RM的比值能否随点Q的运动而发生变化?如有变化,请说明你MQ的原因;若没有变化,恳求出它的比值;(3)如图 10,若点Q在线段BP上,设PQ x , RM y ,求y对于 x 的函数关系式,并写出它的定义域.A D(R) M A R D M A R M DP Q P QPQB C B C B C图 8图 9图 10静安 23. (此题满分12 分,此中第 1 小题 6 分,第 2 小题 6 分)已知:如图,梯形 ABCD 中,DC / / AB, AD BD, AD DB ,点 E 是腰 AD 上一点,作 EBC 45o,联络CE,交DB于点F.(1)求证:VABE∽VDBC;(2)假如BC5,求SV BCE的值.BD6S V BDA静安 24. (此题满分12分,第 1小题 4分,第 2小题 8分)在平面直角坐标系xOy 中(如图),已知抛物线 y ax2bx5经过点 A(1,0) 、3B(5,0) .(1)求此抛物线极点 C 的坐标;( 2)联络AC交y轴于点D,联络BD、BC,过点C作CH BD ,垂足为点 H ,抛物线对称轴交 x 轴于点G,联络HG,求HG的长.静安 25. (此题满分14 分,第 1 小题 4 分,第 2 小题 6 分,第 3 小题 4 分)已知:如图,四边形ABCD 中,0o BAD 90o, AD DC , AB BC, AC 均分BAD .(1)求证:四边形ABCD是菱形;(2)假如点E在对角线AC上,联络BE并延伸,交边DC于点G,交线段AD的延伸线于点 F (点 F 可与点 D 重合),AFB ACB ,设AB长度是 a ( a 实常数,且 a 0),AC x, AF y ,求y对于x 的函数分析式,并写出定义域;VCGE 是等腰三角形时,求AC 的长.(计算结果用含a (3)在第( 2)小题的条件下,当的代数式表示)长宁 23.(此题满分12 分,第( 1)小题 6 分,第( 2)小题 6 分)如图,在ABC 中,点 D 在边 BC上,联络 AD,∠ADB=∠CDE,DE交边 AC 于点 E,DE交 BA 延伸线于点 F,且AD2DE DF.( 1)求证:BFD ∽CAD ;B ( 2)求证:BF DE AB AD.FAED C 第23题图长宁 24.(此题满分 12 分,每题4 分)在直角坐标平面内,直线y1x 2 分别与 x轴、 y 轴交于点A 、 C. 抛物线1 x 22ybx c 经过点 A 与点 C ,且与 x 轴的另一个交点为点 B. 点 D 在该抛物线上,2且位于直线 AC 的上方.( 1)求上述抛物线的表达式;( 2)联络 BC 、BD ,且 BD 交 AC 于点 E ,假如ABE 的面积与ABC 的面积之比为 4:5,求∠ DBA 的余切值;( 3)过点 D 作 DF ⊥ AC ,垂足为点 F ,联络 CD. 若CFD 与 AOC 相像,求点 D 的坐标.第 24 题图 备用图长宁 25.(此题满分14 分,第( 1)小题 3 分,第( 2)小题 6 分,第( 3)小题 5 分)已知在矩形 ABCD中, AB=2, AD=4. P 是对角线 BD 上的一个动点(点 P 不与点 B、 D 重合),过点 P 作 PF⊥ BD,交射线 BC于点 F. 联络 AP,画∠ FPE=∠ BAP,PE 交 BF 于点 E.设 PD=x, EF=y.(1)当点 A、 P、 F 在一条直线上时,求ABF 的面积;(2)如图 1,当点 F 在边 BC 上时,求 y 对于 x 的函数分析式,并写出函数定义域;(3)联络 PC,若∠ FPC=∠ BPE,请直接写出 PD 的长.A D A DA DPB E FC B CB C图 1备用图备用图第25题图徐汇 23.(此题满分12 分,第( 1)小题满分 5 分,第( 2)小题满分7 分)如图在△ ABC中, AB=AC,点 D、E、 F 分别在边BC、AB、 AC 上,且∠ ADE=∠ B,∠A DF=∠ C,线段 EF 交线段 AD 于点 G.(1)求证: AE=AF;(2)若DF CF,求证:四边形 EBDF是平行四边形.DE AE徐汇 24.(此题满分12 分,第( 1)小题满分 3 分,第(分5分)如图,在平面直角坐标系xOy 中,直线 y=kx( k≠ 0)沿着2)小题满分y 轴向上平移4 分,第( 3)小题满3 个单位长度后,与x 轴交于点B(3,0),与 y 轴交于点C,抛物线点为 A.y x2bx c 过点B、 C且与x 轴的另一个交(1)求直线 BC 及该抛物线的表达式;(2)设该抛物线的极点为 D,求△ DBC的面积;(3)假如点 F 在 y 轴上,且∠ CDF=45°,求点 F 的坐标.徐汇 25.(此题满分14 分,第( 1)小题 3 分,第( 2)小题 7 分,第( 3)小题 4 分)已知,在梯形 ABCD 中, AD∥ BC,∠ A=90°, AD=2, AB=4,BC=5,在射线 BC 任取一点 M ,联络 DM,作∠ MDN=∠ BDC,∠ MDN 的另一边 DN 交直线 BC 于点 N(点 N 在点 M 的左边).(1)当 BM 的长为 10 时,求证: BD⊥ DM ;(2)如图( 1),当点 N 在线段 BC 上时,设 BN=x,BM=y,求 y 对于 x 的函数关系式,并写出它的定义域;( 3)假如△ DMN 是等腰三角形,求BN 的长.杨浦 23.(此题满分12 分,第( 1)小题 5 分,第( 2)小题 7 分)已知:梯形ABCD中, AD// BC, AD=AB,对角线 AC、 BD 交于点 E,点 F 在边 BC上,且∠BEF=∠ BAC.A D(1)求证:△ AED∽△ CFE;(2)当 EF// DC时,求证: AE=DE.EB F C(第 23 题图)杨浦 24.(此题满分 12分,第( 1)小题 3 分,第( 2)小题 5 分,第( 3)小题 4 分)在平面直角坐标系xOy 中,抛物线y x22mx m2m 1交y轴于点为A,极点为 D,对称轴与 x 轴交于点 H.y(1)求极点 D 的坐标(用含 m 的代数式表示);(2)当抛物线过点( 1,- 2 ),且不经过第一象限时,平移此抛物线到抛物线 y x2 2x 的地点,求平移的方向和距离;(3)当抛物线极点 D 在第二象限时,假如∠ ADH=∠ AHO,求 m 的值 .54321-3 -2 -1 O1 2 3 4 x -1-2-3(第 24 题图)杨浦 25.(此题满分 14 分,第( 1)、( 2)小题各 6 分,第( 3)小题 2 分)已知:矩形 ABCD 中, AB=4,BC=3,点 M 、 N 分别在边 AB 、 CD 上,直线 MN 交矩形对角线 AC 于点 E ,将△ AME 沿直线 MN 翻折,点 A 落在点 P 处,且点 P 在射线 CB 上.( 1)如图 1,当 EP ⊥ BC 时,求 CN 的长;( 2)如图 2,当 EP ⊥ AC 时,求 AM 的长; (3)请写出线段 CP 的长的取值范围,及当CP 的长最大时 MN 的长 .AD ADADNEEMMNBPCP BCB C(图 1)(图 2)(备用图)(第 25 题图)奉贤 23.(此题满分12 分,每题满分各已知:如图8,四边形ABCD,DCB6 分)90 ,对角线BD⊥AD ,点 E 是边AB的中点,CE与BD订交于点F,BD2AB·BC.(1)求证:BD均分⊥ABC;(2 )求证:BE·CF=BC·EF.奉贤 24. (此题满分12 分,每题满分各 4 分)如图 9 ,在平面直角坐标系xOy 中,抛物线 y 3 x2bx c 与 x 轴订交于点 A( 2,0)8和点 B ,与 y 轴订交于点 C (0,3) ,经过点 A 的射线 AM 与 y 轴订交于点 E ,与抛物线的另一个交点为点 F ,且AE1.EF3(1)求这条抛物线的表达式,并写出它的对称轴;(2)求FAB的余切值;(3)点D是点C对于抛物线对称轴的对称点,点P是y轴上一点,且AFP DAB ,求点P 的坐标.奉贤 25.(此题满分题满分 6 分)14 分,第(1)小题满分 3 分,第(1)小题满分 5 分,第(1)小已知:如图10,在梯形ABCD 中,AB / /CD ,D90o, AD CD2,点 E 在边AD 上(不与点 A 、D 重合),CEB45o , EB 与对角线AC 订交于点F,设DE x .(1)用含x 的代数式表示线段CF的长;(2)假如把VCAE 的周长记作C VCAE, VBAF的周长记作C VBAF,设C VCAEy ,求y关C V BAF于 x 的函数关系式,并写出它的定义域;(3)当ABE 的正切值是3时,求AB的长.5宝山23、(满分12 分,每题各 6 分)如图,VABC中,AB AC ,过点C 作 CF / / AB交 VABC的中位线DE的延伸线于 F,联络BF,交AC 于点G .( 1)求证:AE EG;AC CG(2)若AH均分BAC ,交BF于 H,求证: BH是 HG和HF 的比率中项.宝山 24、(满分 12 分,每题各 4 分)设 a, b 是随意两个不等实数,我们规定:知足不等式 a x b 的实数x的全部取值的全体叫做闭区间,表示为a,b ,对于一个函数,假如它的自变量x 与函数值 y 知足:当 m x n 时,有 m y n ,我们就此称此函数是闭区间m,n 上的“闭函数”。
2018-2019上海黄浦区九年级数学一模试题及解答

又∵已知 CF· CE=CD· BC ∴ CF· CE=AC2
∵∠ACE 共用,
∴△ACF∽△ECA
(2) 当 CE 平分∠ACB 时,求证:
=
【证明】∵∠CEA=∠CHD
∴△CHD∽Hale Waihona Puke CAE22∴
2
∠DCH=∠ECA (已知)
【方法二】∵
∴
∴
2
∴
2
2
又∵
2
24. (1)A(-1,0),对称轴直线 x=1,则 B(3,0) → BE=2
10.已知两个三角形相似,如果其中一个三角形的两个内角分别是 45º、60º,那么另外一 个三角形的最大内角是_____º. 11.抛物线 y=x2-4 x +8 的顶点坐标是_____.
12.如果点 A(-1,m)、B 2 是抛物线 y=-(x-1)2 +3 上的两个点,那么 m 和 n 的大小关系是 m_____n(填“>”或“<”或“=”). 13.如图,已知 AE 与 CF 相交于点 B,∠C=∠E=90º,AC=4,BC=3,BE=2,则 BF=_____.
25.在△ABC 中,∠ACB=90º,BC=3,AC=4,点 O 是 AB 的中点,点 D 是边 AC 上一点, DE ⊥BD,交 BC 的延长线于点 E,OD⊥DF,交 BC 边于点 F,过点 E 作 EG⊥AB, 垂足为点 G,EG 分别交 BD、DF、DC 于点 M、N、H .
(1)求证:
(A)
(B)
(C)
(D)
(第 6 题图)
二、填空题(本大题共 12 题,每题 4 分,满分 48 分)
【请将结果直接填入答题纸的相应位置】 7.如果线段 a=4 厘米,c=9 厘米,那么线段 a、c 的比例中项 b=_____厘米. 8.如果向量 与单位向量 方向相反,且长度为 2,那么向量 =_____(用单位向量 表示). 9.在 Rt△ABC 中,∠C=90º,如果 AB=6,cosB 2,那么 BC=_____.
2018学年上海市各区一模考第25题

已知:梯形 ABCD 中,AD//BC,AB⊥BC,AD=3,AB=6,DF⊥DC 分别交射线 AB、射
线 CB 于点 E、F.
(1)当点 E 为边 AB 的中点时(如图 1),求 BC 的长;
(2)当点 E 在边 AB 上时(如图 2),联结 CE,试问:∠DCE 的大小是否确定?若确定,
请求出∠DCE 的正切值;若不确定,则设 AE=x,∠DCE 的正切值为 y,请求出 y 关于 x 的
(1)求 ABC 的面积; (2)设 BP x , AQ y ,求 y 关于 x 的函数解析式,并写出 x 的取值范围; (3)联结 PC ,如果 PQC 是直角三角形,求 BP 的长.
7
2018 学年上海市各区一模考第 25 题
(闵行)25.(本题满分 14 分,其中第(1)小题 4 分、第(2)、(3)小题各 5 分) 如图,在梯形 ABCD 中,AD // BC,AB = CD,AD = 5,BC = 15, cos ABC 5 .E 13
且 BAC 90 , BCA MBN .过点 A 的直线 DE 分别交射线 BM 、射线 BN 于点
D、E. 点 F 在线段 BE 上(点 F 不与点 B 重合),且 EAF MBN .
(1)如图 1,当 AF BN 时,求 EF 的长; (2)如图 2,当点 E 在线段 BC 上时,设 BF x , BD y ,求 y 关于 x 的函数解析式
并写出函数定义域;
(3)联结 DF ,当 ADF 与 ACE 相似时,请直接写出 BD 的长.
M
M
M
D
D A
A
A
B
F C ENB F
E C NB
CN
如图 1
精品2019届上海中考数学各区一模汇编-03提升题(18、23、24、25题)

2019届一模提升题汇编目录2019届一模提升题汇编目录 (1)Ⅰ第18题(填空小压轴) (3)【2019届一模徐汇】 (3)【2019届一模浦东】 (3)【2019届一模杨浦】 (3)【2019届一模普陀】 (4)【2019届一模奉贤】 (4)【2019届一模松江】 (4)【2019届一模嘉定】 (5)【2019届一模青浦】 (5)【2019届一模青浦】 (5)【2019届一模静安】 (6)【2019届一模宝山】 (6)【2019届一模长宁】 (6)【2019届一模金山】 (7)【2019届一模闵行】 (7)【2019届一模虹口】 (7)Ⅱ第23题(几何证明题) (9)【2019届一模徐汇】 (9)【2019届一模浦东】 (9)【2019届一模杨浦】 (10)【2019届一模普陀】 (10)【2019届一模奉贤】 (11)【2019届一模松江】 (11)【2019届一模嘉定】 (12)【2019届一模青浦】 (12)【2019届一模静安】 (13)【2019届一模宝山】 (13)【2019届一模长宁】 (14)【2019届一模金山】 (14)【2019届一模闵行】 (15)【2019届一模虹口】 (15)Ⅲ第24题(二次函数综合) (16)【2019届一模徐汇】 (16)【2019届一模浦东】 (17)【2019届一模普陀】 (19)【2019届一模奉贤】 (20)【2019届一模松江】 (21)【2019届一模嘉定】 (22)【2019届一模青浦】 (23)【2019届一模静安】 (24)【2019届一模宝山】 (25)【2019届一模长宁】 (26)【2019届一模金山】 (27)【2019届一模闵行】 (28)【2019届一模虹口】 (29)Ⅳ第25题(压轴题) (30)【2019届一模徐汇】 (30)【2019届一模浦东】 (31)【2019届一模杨浦】 (32)【2019届一模普陀】 (33)【2019届一模奉贤】 (34)【2019届一模松江】 (35)【2019届一模嘉定】 (36)【2019届一模青浦】 (37)【2019届一模静安】 (38)【2019届一模宝山】 (39)【2019届一模长宁】 (40)【2019届一模金山】 (41)【2019届一模闵行】 (42)【2019届一模虹口】 (43)Ⅰ第18题(填空小压轴)【2019届一模徐汇】18.在梯形ABCD 中,AB ∥DC ,∠B =90°,BC=6,CD =2,3tan 4A =.点E 为BC 上一点,过点E 作EF ∥AD 交边AB 于点F .将△BEF 沿直线EF 翻折得到△GEF ,当EG 过点D 时,BE 的长为 ▲ . 【答案请加QQ 群712018203见Word 教师版】【2019届一模浦东】18. 将矩形纸片ABCD 沿直线AP 折叠,使点D 落在原矩形ABCD 的边BC 上的点E 处,如果∠AED 的余弦值为35,那么ABBC =__________.【答案请加QQ 群712018203见Word 教师版】 【2019届一模杨浦】18.Rt △ABC 中,∠C =90°,AC =3,BC =2,将此三角形绕点A 旋转,当点B 落在直线BC 上的点D 处时,点C 落在点E 处,此时点E 到直线BC 的距离为 ▲ .【 答案请加QQ 群712018203见Word 教师版】GEABC DF (第18题图)ACB(第18题图)18.如图5,△ABC 中,8AB AC ==,3cos 4B =,点D 在边BC 上,将△ABD 沿直线AD 翻折得到△AED ,点B 的对应点为点E ,AE 与边BC 相交于点F ,如果2BD =,那么EF = ▲ .【答案请加QQ 群712018203见Word 教师版】【2019届一模奉贤】18.如图5,在△ABC 中,AB =AC =5,3sin =5C ,将△ABC 绕点A 逆时针旋转得到△ADE ,点B 、C 分别与点D 、E 对应,AD 与边BC 交于点F .如果AE //BC ,那么BF 的长是 ▲ . 【答案请加QQ 群712018203见Word 教师版】【2019届一模松江】18.如图,在直角坐标平面xoy 中,点A 坐标为(3,2),∠AOB =90°,∠OAB =30°,AB 与x 轴交于点C ,那么AC :BC 的值为______.【 答案请加QQ 群712018203见Word 教师版】图5ABCD图5 ABC(第18题图)xyC BOA18.在△ABC 中,︒=∠90ACB ,点D 、E 分别在边BC 、AC 上,AE AC 3=,︒=∠45CDE (如图3),△DCE 沿直线DE 翻折,翻折后的点C 落在△ABC 内部的点F ,直线AF 与边BC 相交于点G ,如果AE BG =,那么=B tan ▲ .【答案请加QQ 群712018203见Word 教师版】【2019届一模青浦】17.如图,在Rt △ABC 中,∠ACB=90°,AC=1,tan ∠CAB=2,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D ,点C 落在点E ,DE 与直线BC 相交于点F ,那么CF= ▲ . 【答案请加QQ 群712018203见Word 教师版】【2019届一模青浦】18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的 点S 称为“亮点”. 如图,对于封闭图形ABCDE ,S 1是 “亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC , AB=2,AE=1,∠B=∠C= 60°,那么该图形中所有“亮点” 组成的图形的面积为 ▲ . 【答案请加QQ 群712018203见Word 教师版】 EDCBAS 2S 1(第18题图)18.如图6,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,联结AE .如果2tan 3DFC ∠=,那么BD AE的值是 ▲ . 【 答案请加QQ 群712018203见Word 教师版】【2019届一模宝山】18.如图4,Rt △ABC 中,∠ACB =90°,AC =4,BC =5,点P 为AC 上一点,将△BCP 沿直线BP 翻折,点C落在C ’处,连接AC ’,若AC ’∥BC ,则CP 的长为 ▲ . 【 答案请加QQ 群712018203见Word 教师版】【2019届一模长宁】18.如图,点P 在平行四边形ABCD 的边BC 上,将ABP ∆沿直线AP 翻折,点B 恰好落在边AD 的垂直平分线上,如果5=AB ,8=AD ,34tan =B ,那么BP 的长为 ▲ .【答案请加QQ 群712018203见Word 教师版】AC(图4)B图6F BA CD EBACD第18题图18.如图,在ABC Rt ∆中,o90=∠C ,8=AC ,6=BC .在边AB 上取一点O ,使BC BO =,以点O为旋转中心,把ABC ∆逆时针旋转90,得到C B A '''∆(点A 、B 、C 的对应点分别是点A '、B '、C '),那么ABC ∆与C B A '''∆的重叠部分的面积是 ▲ .【 答案请加QQ 群712018203见Word 教师版】【2019届一模闵行】18.如图,在Rt △ABC 中,∠ACB = 90°,BC = 3,AC = 4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE // CD ,那么BE = ▲ . 【答案请加QQ 群712018203见Word 教师版】【2019届一模虹口】18.如图,正方形ABCD 的边长为4,点O 为对角线AC 、BD 的交点,点E 为边AB 的中点,△BED 绕着点B 旋转至△BD 1E 1,如果点D 、E 、D 1在同一直线上,那么EE 1的长为 ▲ .ABC第18题OABC (第18题图)C第18题图A BDE O【】答案请加QQ群712018203见Word教师版Ⅱ第23题(几何证明题)【2019届一模徐汇】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知菱形ABCD ,点E 是AB 的中点,AF BC ⊥于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且2AE EG ED =⋅.(1) 求证:DE EF ⊥; (2) 求证:22BC DF BF =⋅.【答案请加QQ 群712018203见Word 教师版】【2019届一模浦东】23. (本题满分12分,其中每小题各6分)已知:如图8,在平行四边形ABCD 中,M 是边BC 的中点,E 是边BA 延长线上的一点,联结EM ,分别交线段AD 于点F 、AC 于点G .(1)求证:GF EFGM EM=; (2)当22BC BA BE =⋅时,求证:∠EMB =∠ACD .【答案请加QQ 群712018203见Word 教师版】GD EF BCA (第23题图)(图8)DCM BAF GE【2019届一模杨浦】23.(本题满分12分,每小题各6分)已知:如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE. (1)求证:AD DEBC AC=; (2)当点E 为CD 中点时,求证:22AE ABCE AD=.【答案请加QQ 群712018203见Word 教师版】【2019届一模普陀】23.(本题满分12分)已知:如图9,△ADE 的顶点E 在△ABC 的边BC 上,DE 与AB 相交于点F ,AE AF AB =⋅2,DAF EAC ∠=∠.(1)求证:△ADE ∽△ACB ;(2)求证:DF CEDE CB=.【答案请加QQ 群712018203见Word 教师版】(第23题图)EABCDF图9ABCDE23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图9,在△ABC 中,点D 在边AC 上,BD 的垂直平分线交CA 的延长线于点E , 交BD 于点F ,联结BE ,EC EA ED •=2. (1)求证:∠EBA =∠C ;(2)如果BD =CD ,求证:AC AD AB •=2.【答案请加QQ 群712018203见Word 教师版答案请加QQ 群712018203见Word 教师版答案请加QQ 群712018203见Word 教师版答案请加QQ 群712018203见Word 教师版】【2019届一模松江】23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC ·CE=AD ·BC . (1)求证:∠DCA=∠EBC ;(2)延长BE 交AD 于F ,求证:AB 2=AF ·AD .【答案请加QQ 群712018203见Word 教师版】AB CDEF图9 (第23题图)EDCBAF(第23题图)EDCBA23.(本题满分12分,每小题6分)如图6,已知点D 在△ABC 的外部,AD //BC ,点E 在边AB 上,AE BC AD AB ⋅=⋅. (1)求证:AED BAC ∠=∠;(2)在边AC 取一点F ,如果D AFE ∠=∠, 求证:ACAFBC AD =.【答案请加QQ 群712018203见Word 教师版】【2019届一模青浦】23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .【答案请加QQ 群712018203见Word 教师版】图6BCDAE FABCDEF(第23题图)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)已知:如图9,在ABC ∆中,点D 、E 分别在边BC 和AB 上,且AD AC =,EB ED =,分别延长ED 、AC 交于点F .(1)求证:ABD ∆∽FDC ∆; (2)求证:2AE BE EF =⋅.【答案请加QQ 群712018203见Word 教师版答案请加QQ 群712018203见Word 教师版】【2019届一模宝山】23.(本题满分12分)地铁10号线某站点出口横截面平面图如图8所示,电梯AB 的两端分别距顶部9.9米和2.4米,在距电梯起点A 端6米的P 处,用1.5米的测角仪测得电梯终端B 处的仰角为14°,求电梯AB 的坡度与长度. 参考数据:24.014sin ≈︒,25.014tan ≈︒,97.014cos ≈︒.【答案请加QQ 群712018203见Word 教师版】Q 9.9米B出口顶部1.5米(图8)AP6米2.4米︒14图9 AC BDEF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,点D 、E 分别在ABC ∆的边AC 、AB 上,延长DE 、CB 交 于点F ,且AC AD AB AE ⋅=⋅. (1)求证:C FEB ∠=∠;(2)联结AF ,若FD CD AB FB =,求证:FB AC AB EF ⋅=⋅.【答案请加QQ 群712018203见Word 教师版】【2019届一模金山】23.如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:MH MF AM ⋅=2.(2)若DM BD BC ⋅=2,求证:ADC AMB ∠=∠.【答案请加QQ 群712018203见Word 教师版】第23题图CEDABF A BCD HF M第23题23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,点D 为边BC 上一点,且AD = AB ,AE ⊥BC ,垂足为点E .过点D 作DF // AB ,交边AC 于点F ,联结EF ,212EF BD EC =⋅.(1)求证:△EDF ∽△EFC ;(2)如果14EDF ADC S S =V V ,求证:AB = BD .【答案请加QQ 群712018203见Word 教师版】【2019届一模虹口】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,AB=AC ,D 是边BC 的中点,DE ⊥AC ,垂足为点E . (1)求证:DE CD AD CE ⋅=⋅;(2)设F 为DE 的中点,联结AF 、BE ,求证:=AF BC AD BE ⋅⋅.【 答案请加QQ 群712018203见Word 教师版】AB CDEF(第23题图)D 第23题图AECBⅢ第24题(二次函数综合)【2019届一模徐汇】24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xoy 中,顶点为M 的抛物线C 1:2(0)y ax bx a =+<经过点A 和x 轴上的点B ,AO =OB =2,120AOB ∠=o . (1)求该抛物线的表达式; (2)联结AM ,求AOM S V ;(3)将抛物线C 1向上平移得到抛物线C 2,抛物线C 2与x 轴分别交于点E 、F (点E 在点F 的左侧),如果△MBF 与△AOM 相似,求所有符合条件的抛物线C 2的表达式.【答案请加QQ 群712018203见Word 教师版】(第24题图)【2019届一模浦东】24.(本题满分12分,其中每小题各4分)已知:如图9,在平面直角坐标系xOy中,直线12y x b=-+与x轴相交于点A,与y轴相交于点B. 抛物线244y ax ax=-+经过点A和点B,并与x轴相交于另一点C,对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)求证: △BOD∽△AOB;(3)如果点P在线段AB上,且∠BCP=∠DBO,求点P的坐标.【答案请加QQ群712018203见Word教师版】(图9)x BOAy【2019届一模杨浦】24.(本题满分12分,每小题各4分)在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++?与y 轴交于点C (0,2), 它的顶点为D (1,m ),且1tan 3COD ?. (1)求m 的值及抛物线的表达式;(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA =OB .若点A 是由原抛物线上的点E 平移所得,求点E 的坐标;(3)在(2)的条件下,点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB =45°.求P 点的坐标.【答案请加QQ 群712018203见Word 教师版】O xy 1 2 3 4 1 2 3 45-1-2 -3 -1 -2 -3 (第24题图)24.(本题满分12分)如图10,在平面直角坐标系xOy 中,抛物线23y ax bx =+-(0)a ≠与x 轴交于点A ()1,0-和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D .(1)求抛物线的表达式及点D 的坐标;(2)如果点E 是y 轴上的一点(点E 与点C 不重合),当BE DE ⊥时,求点E 的坐标; (3)如果点F 是抛物线上的一点,且135FBD ∠=,求点F 的坐标.【答案请加QQ 群712018203见Word 教师版】图10C BAOyx24.(本题满分12分,每小题满分6分)如图10,在平面直角坐标系xOy 中,直线AB 与抛物线2y ax bx =+交于点A (6,0)和点B (1,-5). (1)求这条抛物线的表达式和直线AB 的表达式; (2)如果点C 在直线AB 上,且∠BOC 的正切值是32, 求点C 的坐标.【答案请加QQ 群712018203见Word 教师版】图10ABxyo24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,抛物线c bx x y ++-=221经过点A (﹣2,0),点B (0,4). (1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.【答案请加QQ 群712018203见Word 教师版】(第24题图)y xOBA24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,抛物线22++=bx ax y 经过点)0,4(A 、)2,2(B , 与y 轴的交点为C .(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M ,求△AMC 的面积; (3)如果这个抛物线的对称轴与直线BC 交于点D ,点E 在线段AB 上,且︒=∠45DOE ,求点E 的坐标.【答案请加QQ 群712018203见Word 教师版】图7 O 11 xy--24.(本题满分12分, 其中第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,将抛物线2y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CD =2,求∠CAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.【答案请加QQ 群712018203见Word 教师版】CB A xyOCB A xyO(第24题图)(备用图)24.(本题满分12分,其中第(1)小题4分,第(2)小题3分,第(3)小题5分)在平面直角坐标系xOy 中(如图10),已知抛物线2(0)y ax bx c a =++≠的图像经过点(40)B ,、(53)D ,,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD ∆的面积是3. (1)求该抛物线的表达式; (2)求ADB ∠的正切值;(3)若抛物线与y 轴交于点C ,直线CD 交x 轴于点E ,点P 在射线AD 上,当APE ∆与ABD ∆相似时,求点P 的坐标.【答案请加QQ 群712018203见Word 教师版】BD O图10xy﹒﹒24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图9,已知:二次函数2y x bx =+的图像交x 轴正半轴于点A ,顶点为P ,一次函数132y x =-的图像交x 轴于点B ,交y 轴于点C , ∠OCA 的正切值为23. (1)求二次函数的解析式与顶点P 坐标;(2)将二次函数图像向下平移m 个单位,设平移后抛物线顶点为P ’,若,求m 的值.【 答案请加QQ 群712018203见Word 教师版】A B C O yx(图9)24.(本题满分12分,每小题4分)如图,在直角坐标平面内,抛物线经过原点O 、点)3,1(B ,又与x 轴正半轴相交于点A ,︒=∠45BAO ,点P 是线段AB 上的一点,过点P 作OB PM //,与抛物线交于点M ,且点M 在第一象限内.(1)求抛物线的表达式;(2)若AOB BMP ∠=∠,求点P 的坐标;(3)过点M 作x MC ⊥轴,分别交直线AB 、x 轴于点N 、C ,若ANC ∆的面积等于PMN ∆的面积的2倍,求NCMN 的值.【答案请加QQ 群712018203见Word 教师版】第24题图xO A By备用图xO A By24.已知抛物线c bx x y ++=2经过点()6,0A ,点()3,1B ,直线1l :()0≠=k kx y ,直线2l :2--=x y ,直线1l 经过抛物线c bx x y ++=2的顶点P ,且1l 与2l 相交于点C ,直线2l 与x 轴、y 轴分别交于点D 、E .若把抛物线上下平移,使抛物线的顶点在直线2l 上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线1l 上(此时抛物线的顶点记为N ). (1)求抛物线c bx x y ++=2的解析式.(2)判断以点N 为圆心,半径长为4的圆与直线2l 的位置关系,并说明理由.(3)设点F 、H 在直线1l 上(点H 在点F 的下方),当MHF ∆与OAB ∆相似时,求点F 、H 的坐标(直接写出结果).【答案请加QQ 群712018203见Word 教师版】第24题yxO24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy中,抛物线2y a x b x=+经过点A(5,0)、B(-3,4),抛物线的对称轴与x轴相交于点D.(1)求抛物线的表达式;(2)联结OB、BD.求∠BDO的余切值;(3)如果点P在线段BO的延长线上,且∠P AO =∠BAO,求点P的坐标.【答案请加QQ群712018203见Word教师版】x yO(第24题图)24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴; (2)求tan ∠OAB 的值;(3)点D 在抛物线的对称轴上,如果∠BAD =45°,求点D 的坐标.【答案请加QQ 群712018203见Word 教师版】OAy 第24题图xBF EA CB DF E A CB DⅣ第25题(压轴题)【2019届一模徐汇】25. (本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:在梯形ABCD 中,AD //BC ,AC =BC =10,54cos =∠ACB ,点E 在对角线AC 上(不与点A 、C 重合),EDC ACB ∠=∠,DE 的延长线与射线CB 交于点F ,设AD 的长为x . (1)如图1,当DF BC ⊥时,求AD 的长; (2)设EC 的长为y ,求y 关于x 的函数解析式,并直接写出定义域; (3)当△DFC 是等腰三角形时,求AD 的长.【答案请加QQ 群712018203见Word 教师版】(第25题图1) (第25题图)25. (本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将大小两把含30°角的直角三角尺按如图10-1位置摆放,即大小直角三角尺的直角顶点C 重合,小三角尺的顶点D 、E 分别在大三角尺的直角边AC 、BC 上, 此时小三角尺的斜边DE 恰好经过大三角尺的重心G . 已知∠A =∠CDE =30°,AB =12. (1)求小三角尺的直角边CD 的长;(2)将小三角尺绕点C 逆时针旋转,当点D 第一次落在大三角尺的边AB 上时(如图10-2),求点B 、E 之间的距离;(3)在小三角尺绕点C 旋转的过程中,当直线DE 经过点A 时,求∠BAE 的正弦值.【答案请加QQ 群712018203见Word 教师版】G(图10-1)(图10-2)E DCABDCBAE25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)已知:梯形ABCD 中,AD //BC ,AB ⊥BC ,AD =3,AB =6,DF ⊥DC 分别交射线AB 、射线CB 于点E 、F .(1)当点E 为边AB 的中点时(如图1),求BC 的长; (2)当点E 在边AB 上时(如图2),联结CE ,试问:∠DCE 的大小是否确定?若确定,请求出∠DCE 的正切值;若不确定,则设AE =x ,∠DCE 的正切值为y ,请求出y 关于x 的函数解析式,并写出定义域; (3)当△AEF 的面积为3时,求△DCE 的面积.【 答案请加QQ 群712018203见Word 教师版】A BC D EF (图1) (第25题图) A B C D E F (图2)25.(本题满分14分)如图11,点O 在线段AB 上,22AO OB a ==,60BOP ∠=︒,点C 是射线OP 上的一个动点. (1)如图11①,当90ACB ∠=︒,2OC =,求a 的值;(2)如图11②,当AC =AB 时,求OC 的长(用含a 的代数式表示);(3)在第(2)题的条件下,过点A 作AQ ∥BC ,并使∠QOC=∠B ,求:AQ OQ 的值.【 答案请加QQ 群712018203见Word 教师版】A BCPOABCPO图11①图11②25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =4,26AB CD ==,E 是边BC 上一点,过点D 、E 分别作BC 、CD 的平行线交于点F ,联结AF 并延长,与射线DC 交于点G . (1)当点G 与点C 重合时,求:CE BE 的值;(2)当点G 在边CD 上时,设CE m =,求△DFG 的面积;(用含m 的代数式表示) (3)当AFD ∆∽ADG ∆时,求∠DAG 的余弦值.【答案请加QQ 群712018203见Word 教师版】图11ABC D F E G 备用图ABC D25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E . (1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长; (2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值; (3)联结PD ,如果222BP CD ,且CE =2,ED =3,求线段PD 的长.【答案请加QQ 群712018203见Word 教师版】(备用图2)ABCD(备用图1)ABCD(第25题图)ABPC D E25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在矩形ABCD 中,6=AB ,8=AD ,点E 是边AD 上一点,EC EM ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项. (1)如图8,求证:DCE ANE ∠=∠;(2)如图9,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长; (3)联结AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.【答案请加QQ 群712018203见Word 教师版】A备用图BD CA 图8B M E DC N A 备用图 BD C ME N A 图9 B D C25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD 中,AD//BC ,BC =18,DB =DC =15,点E 、F 分别在线段BD 、CD 上,DE =DF =5. AE 的延长线交边BC 于点G , AF 交BD 于点N 、其延长线交BC 的延长线于点H . (1)求证:BG =CH ;(2)设AD =x ,△ADN 的面积为y ,求y 关于x 的函数解析式,并写出它的定义域; (3)联结FG ,当△HFG 与△ADN 相似时,求AD 的长.【答案请加QQ 群712018203见Word 教师版】NHG FEDC AB (第25题图)图11ABCPQM25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图11,在ABC ∆中,6AB =,9AC =,tan 22ABC ∠=.过点B 作BM //AC ,动点P 在射线BM 上(点P 不与点B 重合),联结PA 并延长到点Q ,使AQC ABP ∠=∠. (1)求ABC ∆的面积;(2)设BP x =,AQ y =,求y 关于x 的函数解析式,并写出x 的取值范围; (3)联结PC ,如果PQC ∆是直角三角形,求BP 的长.【 答案请加QQ 群712018203见Word 教师版】25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图10,已知:梯形ABCD 中,∠ABC =90°,∠A =45°,AB ∥DC ,DC =3,AB =5,点 P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若13AP ,求DE 的长; (2)联结CP ,若CP=EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似,若相似,求FG 的值;若不相似,请说明理由.【答案请加QQ 群712018203见Word 教师版】备用图A BCD PEABCDF(图10)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为53,点C 在射线BN 上,25=BC ,点A 在MBN ∠的内部, 且︒=∠90BAC ,MBN BCA ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E . 点F 在线段BE 上(点F 不与点B 重合),且MBN EAF ∠=∠. (1)如图1,当BN AF ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设x BF =,y BD =,求y 关于x 的函数解析式并写出函数定义域;(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.【答案请加QQ 群712018203见Word 教师版】第25题图如图2BF EC N DA MB FC E N AD M如图1备用图BC NAM25.已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作CH MH ⊥交CD 的延长线于点M ,设⊙O 的半径为()0>r r . (1)求证:四边形ACDF 是矩形.(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).(3)设()900<<=∠ααHCD ,求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示).【答案请加QQ 群712018203见Word 教师版】A B C D EF G O HM第25题图第25题备用图 ABCD E FO25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD 中,AD // BC ,AB = CD ,AD = 5,BC = 15,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF // BE ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE = x ,AGy DG=.(1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域; (3)如果23ABEF ABCDS S =四边形四边形,求线段CE 的长.【 答案请加QQ 群712018203见Word 教师版】ABCDEFG(第25题图)ABCD(备用图)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =10,点E 为边AD 上一点,将△ABE 沿BE 翻折,点A 落在对角线BD 上的点G 处,联结EG 并延长交射线BC 于点F . (1)如果cos ∠DBC =23,求EF 的长;(2)当点F 在边BC 上时,联结AG ,设AD=x ,ABG BEFS y S ∆∆= ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CG ,如果△FCG 是等腰三角形,求AD 的长.【 答案请加QQ 群712018203见Word 教师版】第25题备用图 AB C 第25题图 E A B C F D G。
2018年上海初三年级数学各区一模压轴题汇总[15套全]
![2018年上海初三年级数学各区一模压轴题汇总[15套全]](https://img.taocdn.com/s3/m/37ab745932687e21af45b307e87101f69f31fb52.png)
2018年上海初三年级数学各区一模压轴题汇总[15套全]2016~2017学年度上海市各区初三一模数学压轴题汇总(18+24+25)共15套整理廖老师宝山区一模压轴题18(宝山)如图,D 为直角ABC D 的斜边AB 上一点,DE AB ^交AC 于E ,如果AED D 沿着DE 翻折,A 恰好与B 重合,联结CD 交BE 于F ,如果8AC =,1tan 2A =,那么:___________.CF DF =24(宝山)如图,二次函数232(0)2y ax x a =-+?的图像与x 轴交于A B 、两点,与y 轴交于点,C 已知点(4,0)A -.(1)求抛物线与直线AC 的函数解析式;(2)若点(,)D m n 是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A C E F 、、、为顶点的四边形是平行四边形时,请直接写出满足条件的所有点E 的坐标.第18题第24题25(宝山)如图(1)所示,E 为矩形ABCD 的边AD 上一点,动点P Q 、同时从点B 出发,点P 以1/cm s 的速度沿着折线BE ED DC --运动到点C 时停止,点Q 以2/cm s 的速度沿着BC 运动到点C 时停止。
设P Q 、同时出发t 秒时,BPQ D 的面积为2ycm ,已知y 与t 的函数关系图像如图(2)(其中曲线OG 为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求05t(2)求出线段BC BE ED 、、的长度;(3)当t 为多少秒时,以B P Q 、、为顶点的三角形和ABE D 相似;(4)如图(3)过点E 作EF BC ^于F ,BEF D 绕点B 按顺时针方向旋转一定角度,如果BEF D 中E F 、的对应点H I 、恰好和射线BE CD 、的交点G 在一条直线,求此时C I 、两点之间的距离.(3)(2)(1)第25题BB崇明县一模压轴题18(崇明)如图,已知 ABC ?中,45ABC ∠=o ,AH BC ⊥于点H ,点D 在AH 上,且DH CH =,联结BD ,将B H D V 绕点H 旋转,得到EHF ?(点B 、D 分别与点E 、F 对应),联结AE ,当点F 落在AC 上时,(F 不与C 重合)如果4BC =,tan 3C =,那么AE 的长为;24(崇明)在平面直角坐标系中,抛物线235y x bx c =-++与y 轴交于点(0,3)A ,与x 轴的正半轴交于点(5,0)B ,点D 在线段OB 上,且1OD = ,联结AD 、将线段AD 绕着点D 顺时针旋转90?,得到线段DE ,过点E 作直线l x ⊥轴,垂足为H ,交抛物线于点F .(1)求这条抛物线的解析式;(2)联结DF ,求cot EDF ∠的值;(3)点G 在直线l 上,且45EDG ?∠=,求点G 的坐标.25(崇明)在ABC ?中,90ACB ?∠=,3cot 2A =,AC =,以BC 为斜边向右侧作等腰直角EBC ?,P 是BE 延长线上一点,联结PC ,以PC 为直角边向下方作等腰直角PCD ?,CD 交线段BE 于点F ,联结BD .(1)求证:PC CECD BC=;(2)若PE x =,BDP ?的面积为y ,求y 关于x 的函数解析式,并写出定义域;(3)当BDF ?为等腰三角形时,求PE 的长.奉贤区一模压轴题18(奉贤)如图3,在矩形ABCD 中,AB =6,AD =3,点P 是边AD 上的一点,联结BP ,将△ABP 沿着BP 所在直线翻折得到△EBP ,点A 落在点E 处,边BE 与边CD 相交于点G ,如果CG=2DG ,那么DP 的长是__ ____.24(奉贤)如图,在平面直角坐标系中xOy 中,抛物线2y x bx c =-++与x 轴相交于点A (-1,0)和点B ,与y 轴相交于点C (0,3),抛物线的顶点为点D ,联结AC 、BC 、DB 、DC .(1)求这条抛物线的表达式及顶点D 的坐标;(2)求证:△ACO ∽△DBC ;(3)如果点E 在x 轴上,且在点B 的右侧,∠BCE=∠ACO ,求点E 的坐标。
精品2019届上海中考数学各区一模汇编-03提升题(18、23、24、25题)

2019届一模提升题汇编目录2019届一模提升题汇编目录 (1)Ⅰ第18题(填空小压轴) (3)【2019届一模徐汇】 (3)【2019届一模浦东】 (3)【2019届一模杨浦】 (3)【2019届一模普陀】 (4)【2019届一模奉贤】 (4)【2019届一模松江】 (4)【2019届一模嘉定】 (5)【2019届一模青浦】 (5)【2019届一模青浦】 (5)【2019届一模静安】 (6)【2019届一模宝山】 (6)【2019届一模长宁】 (6)【2019届一模金山】 (7)【2019届一模闵行】 (7)【2019届一模虹口】 (7)Ⅱ第23题(几何证明题) (8)【2019届一模徐汇】 (8)【2019届一模浦东】 (8)【2019届一模杨浦】 (9)【2019届一模普陀】 (9)【2019届一模奉贤】 (10)【2019届一模松江】 (10)【2019届一模嘉定】 (11)【2019届一模青浦】 (11)【2019届一模静安】 (12)【2019届一模宝山】 (12)【2019届一模长宁】 (13)【2019届一模金山】 (13)【2019届一模闵行】 (14)【2019届一模虹口】 (14)Ⅲ第24题(二次函数综合) (15)【2019届一模徐汇】 (15)【2019届一模浦东】 (16)【2019届一模普陀】 (18)【2019届一模奉贤】 (19)【2019届一模松江】 (20)【2019届一模嘉定】 (21)【2019届一模青浦】 (22)【2019届一模静安】 (23)【2019届一模宝山】 (24)【2019届一模长宁】 (25)【2019届一模金山】 (26)【2019届一模闵行】 (27)【2019届一模虹口】 (28)Ⅳ第25题(压轴题) (29)【2019届一模徐汇】 (29)【2019届一模浦东】 (30)【2019届一模杨浦】 (31)【2019届一模普陀】 (32)【2019届一模奉贤】 (33)【2019届一模松江】 (34)【2019届一模嘉定】 (35)【2019届一模青浦】 (36)【2019届一模静安】 (37)【2019届一模宝山】 (38)【2019届一模长宁】 (39)【2019届一模金山】 (40)【2019届一模闵行】 (41)【2019届一模虹口】 (42)Ⅰ第18题(填空小压轴)【2019届一模徐汇】18.在梯形ABCD中,AB∥DC,∠B=90°,BC=6,CD=2,3 tan4A=.点E为BC上一点,过点E作EF ∥AD交边AB于点F.将△BEF沿直线EF翻折得到△GEF,当EG过点D时,BE的长为▲.【2019届一模浦东】18.将矩形纸片ABCD沿直线AP折叠,使点D落在原矩形ABCD的边BC上的点E处,如果∠AED的余弦值为35,那么ABBC=__________.【2019届一模杨浦】18.Rt△ABC中,∠C=90°,AC=3,BC=2,将此三角形绕点A旋转,当点B落在直线BC上的点D处时,点C落在点E处,此时点E到直线BC的距离为▲.(第18题图)ACB(第18题图)18.如图5,△ABC 中,8AB AC ==,3cos 4B =,点D 在边BC 上,将△ABD 沿直线AD 翻折得到△AED ,点B 的对应点为点E ,AE 与边BC 相交于点F ,如果2BD =,那么EF =▲.【2019届一模奉贤】18.如图5,在△ABC 中,AB =AC =5,3sin =5C ,将△ABC 绕点A 逆时针旋转得到△ADE ,点B 、C 分别与点D 、E 对应,AD 与边BC 交于点F .如果AE //BC ,那么BF 的长是▲.【2019届一模松江】18.如图,在直角坐标平面xoy 中,点A 坐标为(3,2),∠AOB =90°,∠OAB =30°,AB 与x 轴交于点C ,那么AC :BC 的值为______.图5AB CD图5ABC(第18题图)xyC BOA18.在△ABC 中,︒=∠90ACB ,点D 、E 分别在边BC 、AC 上,AE AC 3=,︒=∠45CDE (如图3),△DCE 沿直线DE 翻折,翻折后的点C 落在△ABC 内部的点F ,直线AF 与边BC 相交于点G ,如果AE BG =,那么=B tan ▲.【2019届一模青浦】17.如图,在Rt △ABC 中,∠ACB=90°,AC=1,tan ∠CAB=2,将△ABC 绕点A 旋转后,点B 落在AC 的延长线上的点D ,点C 落在点E ,DE 与直线BC 相交于点F ,那么CF=▲.【2019届一模青浦】18.对于封闭的平面图形,如果图形上或图形内的点S 到图形上的任意一点P 之间的线段都在图形内或图形上,那么这样的点S 称为“亮点”.如图,对于封闭图形ABCDE ,S 1是“亮点”,S 2不是“亮点”,如果AB ∥DE ,AE ∥DC ,AB=2,AE=1,∠B=∠C=60°,那么该图形中所有“亮点”组成的图形的面积为▲.(第18题图)18.如图6,将矩形ABCD 沿对角线BD 所在直线翻折后,点A 与点E 重合,且ED 交BC 于点F ,联结AE .如果2tan 3DFC ∠=,那么BD AE的值是▲.【2019届一模宝山】18.如图4,Rt △ABC 中,∠ACB =90°,AC =4,BC =5,点P 为AC 上一点,将△BCP 沿直线BP 翻折,点C落在C ’处,连接AC ’,若AC ’∥BC ,则CP 的长为▲.【2019届一模长宁】18.如图,点P 在平行四边形ABCD 的边BC 上,将ABP ∆沿直线AP 翻折,点B 恰好落在边AD 的垂直平分线上,如果5=AB ,8=AD ,34tan =B ,那么BP 的长为▲.AC(图4)B图6F BA CD EBACD第18题图18.如图,在ABC Rt ∆中,o90=∠C ,8=AC ,6=BC .在边AB 上取一点O ,使BC BO =,以点O为旋转中心,把ABC ∆逆时针旋转90,得到C B A '''∆(点A 、B 、C 的对应点分别是点A '、B '、C '),那么ABC ∆与C B A '''∆的重叠部分的面积是▲.【2019届一模闵行】18.如图,在Rt △ABC 中,∠ACB =90°,BC =3,AC =4,点D 为边AB 上一点.将△BCD 沿直线CD 翻折,点B 落在点E 处,联结AE .如果AE //CD ,那么BE =▲.【2019届一模虹口】18.如图,正方形ABCD 的边长为4,点O 为对角线AC 、BD 的交点,点E 为边AB 的中点,△BED 绕着点B 旋转至△BD 1E 1,如果点D 、E 、D 1在同一直线上,那么EE 1的长为▲.ABC第18题OABC (第18题图)C第18题图A BDE OⅡ第23题(几何证明题)【2019届一模徐汇】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知菱形ABCD ,点E 是AB 的中点,AF BC ⊥于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且2AE EG ED =⋅.(1)求证:DE EF ⊥;(2)求证:22BC DF BF =⋅.【2019届一模浦东】23.(本题满分12分,其中每小题各6分)已知:如图8,在平行四边形ABCD 中,M 是边BC 的中点,E 是边BA 延长线上的一点,联结EM ,分别交线段AD 于点F 、AC 于点G .(1)求证:GF EFGM EM=;(2)当22BC BA BE =⋅时,求证:∠EMB =∠ACD .(第23题图)23.(本题满分12分,每小题各6分)已知:如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE.(1)求证:AD DEBC AC=;(2)当点E 为CD 中点时,求证:22AE ABCE AD=.【2019届一模普陀】23.(本题满分12分)已知:如图9,△ADE 的顶点E 在△ABC 的边BC 上,DE 与AB 相交于点F ,AE AF AB =⋅2,DAF EAC ∠=∠.(1)求证:△ADE ∽△ACB ;(2)求证:DF CEDE CB=.(第23题图)EABCDF图9AB CDE23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图9,在△ABC 中,点D 在边AC 上,BD 的垂直平分线交CA 的延长线于点E ,交BD 于点F ,联结BE ,EC EA ED •=2.(1)求证:∠EBA =∠C ;(2)如果BD =CD ,求证:AC AD AB •=2.【2019届一模松江】23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:如图,在梯形ABCD 中,AD ∥BC ,AB=DC ,E 是对角线AC 上一点,且AC ·CE=AD ·BC .(1)求证:∠DCA=∠EBC ;(2)延长BE 交AD 于F ,求证:AB 2=AF ·AD .ABCDEF图9(第23题图)EDCBAF(第23题图)EDCBA23.(本题满分12分,每小题6分)如图6,已知点D 在△ABC 的外部,AD //BC ,点E 在边AB 上,AE BC AD AB ⋅=⋅.(1)求证:AED BAC ∠=∠;(2)在边AC 取一点F ,如果D AFE ∠=∠,求证:ACAFBC AD =.【2019届一模青浦】23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅.(1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .图6BCD AEF(第23题图)23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)已知:如图9,在ABC ∆中,点D 、E 分别在边BC 和AB 上,且AD AC =,EB ED =,分别延长ED 、AC 交于点F .(1)求证:ABD ∆∽FDC ∆;(2)求证:2AE BE EF =⋅.【2019届一模宝山】23.(本题满分12分)地铁10号线某站点出口横截面平面图如图8所示,电梯AB 的两端分别距顶部9.9米和2.4米,在距电梯起点A 端6米的P 处,用1.5米的测角仪测得电梯终端B 处的仰角为14°,求电梯AB 的坡度与长度.参考数据:24.014sin ≈︒,25.014tan ≈︒,97.014cos ≈︒.Q 9.9米B出口顶部1.5米(图8)AP6米2.4米︒14图9AC BDEF23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,点D 、E 分别在ABC ∆的边AC 、AB 上,延长DE 、CB 交于点F ,且AC AD AB AE ⋅=⋅.(1)求证:C FEB ∠=∠;(2)联结AF ,若FDCD AB FB =,求证:FB AC AB EF ⋅=⋅.【2019届一模金山】23.如图,M 是平行四边形ABCD 的对角线上的一点,射线AM 与BC 交于点F ,与DC 的延长线交于点H .(1)求证:MH MF AM ⋅=2.(2)若DM BD BC ⋅=2,求证:ADC AMB ∠=∠.第23题图CEDABFABCD HF M第23题23.(本题共2小题,每小题6分,满分12分)如图,在△ABC 中,点D 为边BC 上一点,且AD =AB ,AE ⊥BC ,垂足为点E .过点D 作DF //AB ,交边AC 于点F ,联结EF ,212EF BD EC =⋅.(1)求证:△EDF ∽△EFC ;(2)如果14EDF ADC S S =V V ,求证:AB =BD .【2019届一模虹口】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,在△ABC 中,AB=AC ,D 是边BC 的中点,DE ⊥AC ,垂足为点E .(1)求证:DE CD AD CE ⋅=⋅;(2)设F 为DE 的中点,联结AF 、BE ,求证:=AF BC AD BE ⋅⋅.ABCDE F(第23题图)D 第23题图AECBⅢ第24题(二次函数综合)【2019届一模徐汇】24.(本题满分12分,第(1)小题4分,第(2)小题4分,第(3)小题4分)如图,在平面直角坐标系xoy 中,顶点为M 的抛物线C 1:2(0)y ax bx a =+<经过点A 和x 轴上的点B ,AO =OB =2,120AOB ∠=o .(1)求该抛物线的表达式;(2)联结AM ,求AOM S V ;(3)将抛物线C 1向上平移得到抛物线C 2,抛物线C 2与x 轴分别交于点E 、F (点E 在点F 的左侧),如果△MBF 与△AOM 相似,求所有符合条件的抛物线C 2的表达式.(第24题图)【2019届一模浦东】24.(本题满分12分,其中每小题各4分)已知:如图9,在平面直角坐标系xOy 中,直线12y x b =-+与x 轴相交于点A ,与y 轴相交于点B .抛物线244y ax ax =-+经过点A 和点B ,并与x 轴相交于另一点C ,对称轴与x 轴相交于点D .(1)求抛物线的表达式;(2)求证:△BOD ∽△AOB ;(3)如果点P 在线段AB 上,且∠BCP =∠DBO ,求点P 的坐标.【2019届一模杨浦】24.(本题满分12分,每小题各4分)在平面直角坐标系xOy 中,抛物线2(0)y ax bx c a =++¹与y 轴交于点C (0,2),它的顶点为D (1,m ),且1tan COD Ð=.(1)求m 的值及抛物线的表达式;(2)将此抛物线向上平移后与x 轴正半轴交于点A ,与y 轴交于点B ,且OA =OB .若点A 是由原抛物线上的点E 平移所得,求点E 的坐标;(3)在(2)的条件下,点P 是抛物线对称轴上的一点(位于x 轴上方),且∠APB =45°.求P 点的坐标.Oxy 123412345-1-2-3-1-2-3(第24题图)24.(本题满分12分)如图10,在平面直角坐标系xOy 中,抛物线23y ax bx =+-(0)a ≠与x 轴交于点A ()1,0-和点B ,且3OB OA =,与y 轴交于点C ,此抛物线顶点为点D .(1)求抛物线的表达式及点D 的坐标;(2)如果点E 是y 轴上的一点(点E 与点C 不重合),当BE DE ⊥时,求点E 的坐标;(3)如果点F 是抛物线上的一点,且135FBD ∠=,求点F 的坐标.图1024.(本题满分12分,每小题满分6分)如图10,在平面直角坐标系xOy 中,直线AB 与抛物线2y ax bx =+交于点A (6,0)和点B (1,-5).(1)求这条抛物线的表达式和直线AB 的表达式;(2)如果点C 在直线AB 上,且∠BOC 的正切值是3,求点C 的坐标.图10ABxyo24.(本题满分12分,第(1)小题3分,第(2)小题4分,第(3)小题5分)如图,抛物线c bx x y ++-=21经过点A (﹣2,0),点B (0,4).(1)求这条抛物线的表达式;(2)P 是抛物线对称轴上的点,联结AB 、PB ,如果∠PBO=∠BAO ,求点P 的坐标;(3)将抛物线沿y 轴向下平移m 个单位,所得新抛物线与y 轴交于点D ,过点D 作DE ∥x 轴交新抛物线于点E ,射线EO 交新抛物线于点F ,如果EO =2OF ,求m 的值.(第24题图)y xOBA【2019届一模嘉定】24.(本题满分12分,每小题4分)在平面直角坐标系xOy (如图7)中,抛物线22++=bx ax y 经过点)0,4(A 、)2,2(B ,与y 轴的交点为C .(1)试求这个抛物线的表达式;(2)如果这个抛物线的顶点为M ,求△AMC 的面积;(3)如果这个抛物线的对称轴与直线BC 交于点D ,点E 在线段AB 上,且︒=∠45DOE ,求点E 的坐标.图7O11xy-1-1【2019届一模青浦】24.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分)在平面直角坐标系xOy 中,将抛物线2y x =-平移后经过点A (-1,0)、B (4,0),且平移后的抛物线与y 轴交于点C (如图).(1)求平移后的抛物线的表达式;(2)如果点D 在线段CB 上,且CD 2,求∠CAD 的正弦值;(3)点E 在y 轴上且位于点C 的上方,点P 在直线BC 上,点Q 在平移后的抛物线上,如果四边形ECPQ 是菱形,求点Q 的坐标.(第24题图)(备用图)24.(本题满分12分,其中第(1)小题4分,第(2)小题3分,第(3)小题5分)在平面直角坐标系xOy 中(如图10),已知抛物线2(0)y ax bx c a =++≠的图像经过点(40)B ,、(53)D ,,设它与x 轴的另一个交点为A (点A 在点B 的左侧),且ABD ∆的面积是3.(1)求该抛物线的表达式;(2)求ADB ∠的正切值;(3)若抛物线与y 轴交于点C ,直线CD 交x 轴于点E ,点P 在射线AD 上,当APE ∆与ABD ∆相似时,求点P 的坐标.BD O图10xy﹒﹒24.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图9,已知:二次函数2y x bx =+的图像交x 轴正半轴于点A ,顶点为P ,一次函数132y x =-的图像交x 轴于点B ,交y 轴于点C ,∠OCA 的正切值为23.(1)求二次函数的解析式与顶点P 坐标;(2)将二次函数图像向下平移m 个单位,设平移后抛物线顶点为P ’,若,求m 的值.A B C O yx(图9)24.(本题满分12分,每小题4分)如图,在直角坐标平面内,抛物线经过原点O 、点)3,1(B ,又与x 轴正半轴相交于点A ,︒=∠45BAO ,点P 是线段AB 上的一点,过点P 作OB PM //,与抛物线交于点M ,且点M 在第一象限内.(1)求抛物线的表达式;(2)若AOB BMP ∠=∠,求点P 的坐标;(3)过点M 作x MC ⊥轴,分别交直线AB 、x 轴于点N 、C ,若ANC ∆的面积等于PMN ∆的面积的2倍,求NCMN 的值.第24题图xO A By备用图xO A By24.已知抛物线c bx x y ++=2经过点()6,0A ,点()3,1B ,直线1l :()0≠=k kx y ,直线2l :2--=x y ,直线1l 经过抛物线c bx x y ++=2的顶点P ,且1l 与2l 相交于点C ,直线2l 与x 轴、y 轴分别交于点D 、E .若把抛物线上下平移,使抛物线的顶点在直线2l 上(此时抛物线的顶点记为M ),再把抛物线左右平移,使抛物线的顶点在直线1l 上(此时抛物线的顶点记为N ).(1)求抛物线c bx x y ++=2的解析式.(2)判断以点N 为圆心,半径长为4的圆与直线2l 的位置关系,并说明理由.(3)设点F 、H 在直线1l 上(点H 在点F 的下方),当MHF ∆与OAB ∆相似时,求点F 、H 的坐标(直接写出结果).第24题24.(本题共3小题,每小题4分,满分12分)已知:在平面直角坐标系xOy 中,抛物线2y a x b x =+经过点A (5,0)、B (-3,4),抛物线的对称轴与x 轴相交于点D .(1)求抛物线的表达式;(2)联结OB 、BD .求∠BDO 的余切值;(3)如果点P 在线段BO 的延长线上,且∠PAO =∠BAO ,求点P 的坐标.xyO(第24题图)24.(本题满分12分,第(1)小题满分4分,第(2)小题满分4分,第(3)小题满分4分)如图,在平面直角坐标系xOy 中,抛物线2y x bx c =-++与x 轴相交于原点O 和点B (4,0),点A (3,m )在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan ∠OAB 的值;(3)点D 在抛物线的对称轴上,如果∠BAD =45°,求点D 的坐标.OAy第24题图xBⅣ第25题(压轴题)【2019届一模徐汇】25.(本题满分14分,第(1)小题4分,第(2)小题4分,第(3)小题6分)已知:在梯形ABCD 中,AD //BC ,AC =BC =10,54cos =∠ACB ,点E 在对角线AC 上(不与点A 、C 重合),EDC ACB ∠=∠,DE 的延长线与射线CB 交于点F ,设AD 的长为x .(1)如图1,当DF BC ⊥时,求AD 的长;(2)设EC 的长为y ,求y 关于x 的函数解析式,并直接写出定义域;(3)当△DFC 是等腰三角形时,求AD 的长.(第25题图1)(第25题图)【2019届一模浦东】25.(本题满分14分,其中第(1)小题3分,第(2)小题5分,第(3)小题6分)将大小两把含30°角的直角三角尺按如图10-1位置摆放,即大小直角三角尺的直角顶点C重合,小三角尺的顶点D、E分别在大三角尺的直角边AC、BC上,此时小三角尺的斜边DE恰好经过大三角尺的重心G.已知∠A=∠CDE=30°,AB=12.(1)求小三角尺的直角边CD的长;(2)将小三角尺绕点C逆时针旋转,当点D第一次落在大三角尺的边AB上时(如图10-2),求点B、E 之间的距离;(3)在小三角尺绕点C旋转的过程中,当直线DE经过点A时,求∠BAE的正弦值.25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)已知:梯形ABCD 中,AD //BC ,AB ⊥BC ,AD =3,AB =6,DF ⊥DC 分别交射线AB 、射线CB 于点E 、F .(1)当点E 为边AB 的中点时(如图1),求BC 的长;(2)当点E 在边AB 上时(如图2),联结CE ,试问:∠DCE 的大小是否确定?若确定,请求出∠DCE 的正切值;若不确定,则设AE =x ,∠DCE 的正切值为y ,请求出y 关于x 的函数解析式,并写出定义域;(3)当△AEF 的面积为3时,求△DCE 的面积.A BC DE F(图1)(第25题图)A BCDEF (图2)25.(本题满分14分)如图11,点O 在线段AB 上,22AO OB a ==,60BOP ∠=︒,点C 是射线OP 上的一个动点.(1)如图11①,当90ACB ∠=︒,2OC =,求a 的值;(2)如图11②,当AC =AB 时,求OC 的长(用含a 的代数式表示);(3)在第(2)题的条件下,过点A 作AQ ∥BC ,并使∠QOC=∠B ,求:AQ OQ 的值.ABCP O ABCPO图11①图11②25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图11,已知梯形ABCD 中,AB ∥CD ,∠DAB =90°,AD =4,26AB CD ==,E 是边BC 上一点,过点D 、E 分别作BC 、CD 的平行线交于点F ,联结AF 并延长,与射线DC 交于点G .(1)当点G 与点C 重合时,求:CE BE 的值;(2)当点G 在边CD 上时,设CE m =,求△DFG 的面积;(用含m 的代数式表示)(3)当AFD ∆∽ADG ∆时,求∠DAG 的余弦值.图11ABCDFEG备用图ABCD25.(本题满分14分,第(1)小题4分,第(2)、(3)小题各5分)如图,已知△ABC 中,∠ACB =90°,D 是边AB 的中点,P 是边AC 上一动点,BP 与CD 相交于点E .(1)如果BC =6,AC =8,且P 为AC 的中点,求线段BE 的长;(2)联结PD ,如果PD ⊥AB ,且CE =2,ED =3,求cosA 的值;(3)联结PD ,如果222BP CD ,且CE =2,ED =3,求线段PD 的长.(备用图2)ABCD(备用图1)ABCD(第25题图)ABPCD E25.(满分14分,第(1)小题4分,第(2)、(3)小题各5分)在矩形ABCD 中,6=AB ,8=AD ,点E 是边AD 上一点,EC EM ⊥交AB 于点M ,点N 在射线MB 上,且AE 是AM 和AN 的比例中项.(1)如图8,求证:DCE ANE ∠=∠;(2)如图9,当点N 在线段MB 之间,联结AC ,且AC 与NE 互相垂直,求MN 的长;(3)联结AC ,如果△AEC 与以点E 、M 、N 为顶点所组成的三角形相似,求DE 的长.A备用图BDA 图8B M EDCNA备用图BDM ENA 图9BDC25.(本题满分14分,其中第(1)小题4分,第(2)小题6分,第(3)小题4分)如图,在梯形ABCD中,AD//BC,BC=18,DB=DC=15,点E、F分别在线段BD、CD上,DE=DF=5.AE 的延长线交边BC于点G,AF交BD于点N、其延长线交BC的延长线于点H.(1)求证:BG=CH;(2)设AD=x,△ADN的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)联结FG,当△HFG与△ADN相似时,求AD的长.(第25题图)25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图11,在ABC ∆中,6AB =,9AC =,tan 22ABC ∠=B 作BM //AC ,动点P 在射线BM 上(点P 不与点B 重合),联结PA 并延长到点Q ,使AQC ABP ∠=∠.(1)求ABC ∆的面积;(2)设BP x =,AQ y =,求y 关于x 的函数解析式,并写出x 的取值范围;(3)联结PC ,如果PQC ∆是直角三角形,求BP 的长.25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图10,已知:梯形ABCD 中,∠ABC =90°,∠A =45°,AB ∥DC ,DC =3,AB =5,点P 在AB 边上,以点A 为圆心AP 为半径作弧交边DC 于点E ,射线EP 与射线CB 交于点F .(1)若13AP ,求DE 的长;(2)联结CP ,若CP=EP ,求AP 的长;(3)线段CF 上是否存在点G ,使得△ADE 与△FGE 相似,若相似,求FG 的值;若不相似,请说明理由.备用图A BCD (图10)25.(本题满分14分,第(1)小题4分,第(2)小题6分,第(3)小题4分)已知锐角MBN ∠的余弦值为53,点C 在射线BN 上,25=BC ,点A 在MBN ∠的内部,且︒=∠90BAC ,MBN BCA ∠=∠.过点A 的直线DE 分别交射线BM 、射线BN 于点D 、E .点F 在线段BE 上(点F 不与点B 重合),且MBN EAF ∠=∠.(1)如图1,当BN AF ⊥时,求EF 的长;(2)如图2,当点E 在线段BC 上时,设x BF =,y BD =,求y 关于x 的函数解析式并写出函数定义域;(3)联结DF ,当ADF ∆与ACE ∆相似时,请直接写出BD 的长.第25题图如图2BFE C N DAMBFC E N ADM如图1备用图BC NA M25.已知多边形ABCDEF 是⊙O 的内接正六边形,联结AC 、FD ,点H 是射线AF 上的一个动点,联结CH ,直线CH 交射线DF 于点G ,作CH MH ⊥交CD 的延长线于点M ,设⊙O 的半径为()0>r r .(1)求证:四边形ACDF 是矩形.(2)当CH 经过点E 时,⊙M 与⊙O 外切,求⊙M 的半径(用r 的代数式表示).(3)设()900<<=∠ααHCD ,求点C 、M 、H 、F 构成的四边形的面积(用r 及含α的三角比的式子表示).ABCDEFGOHM第25题图第25题备用图ABCD EFO25.(本题满分14分,其中第(1)小题4分、第(2)、(3)小题各5分)如图,在梯形ABCD 中,AD //BC ,AB =CD ,AD =5,BC =15,5cos 13ABC ∠=.E 为射线CD 上任意一点,过点A 作AF //BE ,与射线CD 相交于点F .联结BF ,与直线AD 相交于点G .设CE =x ,AG y DG =.(1)求AB 的长;(2)当点G 在线段AD 上时,求y 关于x 的函数解析式,并写出函数的定义域;(3)如果2ABEFABCD S =四边形四边形,求线段CE 的长.A BC D EFG (第25题图)A B CD(备用图)25.(本题满分14分,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分4分)如图,在四边形ABCD 中,AD ∥BC ,∠A =90°,AB =6,BC =10,点E 为边AD 上一点,将△ABE 沿BE 翻折,点A 落在对角线BD 上的点G 处,联结EG 并延长交射线BC 于点F .(1)如果cos ∠DBC =23,求EF 的长;(2)当点F 在边BC 上时,联结AG ,设AD=x ,ABG BEFS y S ∆∆=,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结CG ,如果△FCG 是等腰三角形,求AD 的长.第25题备用图AB C第25题图E A B C FD G。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2018年上海市各区县中考数学一模压轴题图文解析
目录
例2016年上海市崇明县中考一模第24题如图1,在直角坐标系中,一条抛物线与x 轴交于A 、B
两点,与y 轴交于点C ,其中B (3, 0),C (0, 4),点A 在x 轴
的负半轴上,OC =4OA .
(1)求这条抛物线的解析式,并求出它的顶点坐标;
(2)联结AC 、BC ,点P 是x 轴正半轴上的一个动点,过点P 作PM //BC 交射线AC 于M ,联结CP ,若△CPM 的面积为2,则请求出点P 的坐标.动感体验
请打开几何画板文件名“16崇明一模24”,拖动点P 在x 轴的正半轴上运动,可以体验到,有两个时刻,△
CPM 的面积为2.
满分解答(1)由C (0, 4),OC =4OA ,得OA =1,A (-1, 0).
设抛物线的解析式为
y =a (x +1)(x -3),代入点C (0, 4),得4=-3a .解得4
3a .所以244
(1)(3)(23)33y x x x x 24
16
(1)33x .
顶点坐标为16(1)3
,.(2)如图2,设P (m , 0),那么AP =m +1.
所以S △CPA =1
2AP CO
=1(1)42m =2m +2.由PM //BC ,得CM
BP CA BA .又因为CPM
CPA S CM S CA △△,所以S △CPM =(22)BP
m BA .
①如图2,当点P 在AB 上时,BP =3-m .
解方程3(22)4m
m =2,得m =1.此时P (1, 0).
②如图3,当点P 在AB 的延长线上时,BP =m -3.
2 解方程3
(22)4m m =2,得122m .此时P (122,0).
图2 图3
例2016年上海市崇明县中考一模第25题
如图1,已知矩形ABCD 中,AB =6,BC =8,点E 是BC 边上一点(不与
B 、
C 重合)
,过点E 作EF ⊥AE 交AC 、CD 于点M 、F ,过点B 作BG ⊥AC ,垂足为G ,BG 交AE 于点H .
(1)求证:△ABH ∽△ECM ;
(2)设BE =x ,EH
EM =y ,求y 关于x 的函数解析式,并写出定义域;
(3)当△BHE 为等腰三角形时,求BE 的长.
图1
备用图
动感体验请打开几何画板文件名“16崇明一模25”,拖动点E 在BC 上运动,可以体验到,有三个时刻,△BHE 可以成为为等腰三角形.
满分解答
(1)如图2,因为∠1和∠2都是∠BAC 的余角,所以∠1=∠2.。