决定红外光谱普带频率和谱带强度的相关因素
红外吸收光谱

(1)红外辐射光量子具有的能量等于分子振动能级的 能量差;
(2)分子振动时,偶极距的大小和方向必须有一定的 变化。
(一)振动能级
hc
E分子 E振动 E转动 h(v振动 v转动 ) 振动 转动
ΔE振动 0.05~ 1ev,
λ振动 25 ~ 1.25m
特征峰:在特征区中凡能鉴定官能团是否存在的吸收峰
官能团区 4000~1300cm-1
x-H伸缩振动区 4000~2500cm-1 三键和积累双键区 2500~2000cm-1 双键伸缩振动区 2000~1300cm -1
指纹区 红外光谱图中的波数区在1333cm-1称为指纹区,其间出
现的谱带主要是C-C,C-N,C-O等单键伸缩振动及各种 弯曲振动。
CH2的反对称伸缩和对称伸缩振动分别出现在2926cm-1和 2853cm-1处。脂肪族以及无扭曲的脂环族化合物的这两个吸收带的 位置变化在10cm-1以内。一部分扭曲的脂环族化合物其CH2吸收频率 增大。
中红外区(4000~400cm-1)分成两部分: 官能团区(3700~1333 cm-1); 指纹区(1333~650 cm-1) 官能团的特征吸收大多出现在官能团区。 而有关的分子精细结构特征,如取代类型、几何异构、 同分异构在指纹区可以观察到。
2. 红外吸收峰强度的影响因素 振动能级的跃迁几率
称性越差,伸缩振动时偶极矩的变化越大,吸收峰也越强。
吸收峰强度: 反对称伸缩振动 > 对称伸缩振动 > 变形振 动
vC=O> vC=C
红外吸收光谱仪
一、色散型红外吸收光谱仪的基本组成 1.组成结构框图
硅碳棒 光源
吸收池参 比 样品单源自器切光器(斩波器) 检 测 器
红外光谱的影响因素和基团分析.

(2) . N-H
胺类: 游离:3500~3300cm-1, 缔合—吸收位置降低约100cm-1
中 等
伯胺:~ 3500,3400cm-1,(吸收强度比羟基弱)
强
度 吸
仲胺:~ 3400cm-1(吸收峰比羟基要尖锐)
收 叔胺:无吸收
1690 cm-1 3500 cm-1 1620-1590
1650 cm-1 3400 cm-11650-1620
HO O
C H3C
O-H 伸缩
OCH3 2835 cm-1
HO 3705-3125 cm-1
(正 氯丁 苯醇 中羟 )基
的 伸 缩 振 动 吸 收 位 置
(a) 1.4% (b) 3.4% (c) 7.1% (d) 14.3%
第二章 红外光谱
甲基的振动形式
伸缩振动
甲基: 对称 υ s(CH3) 2870 ㎝-1
不对称 υ as(CH3) 2960㎝-1
变形振动 甲基
对称δ s(CH3)1380㎝-1
不对称δ as(CH3)1460㎝-1
2.2 红外光谱的吸收强度及其影响因素
摩尔吸光系数 >200 75~200 25~75 5~25 0~5
酰胺: 伯酰胺:3350,3150cm-1 附近出现双峰
中 等
仲酰胺:3200cm-1 附近出现一条谱带
强
度 吸
叔酰胺:无吸收
收
铵盐:铵盐中N-H伸缩振动向低波数移动,位于更低波数 3200~2200cm-1,出现强、宽散吸收带。
C H2 C H2
1781cm -1 16 78 cm - 1
红外光谱影响因素分析

5 数据处理对谱图质量的影响
平滑:利用光谱平滑数据处理技术可以降低光谱的噪 声,通过平滑可以看清楚被噪声掩盖的真正的谱峰。 光谱平滑技术是对光谱中数据点Y值进行数据平均计 算[2,4]。光谱平滑后光谱的噪声降低的同时光谱的 分辨率也降低了。
基线校正:基线校正就是将光谱的基线人为的拉回到 0基线上。在校正之前通常转换成吸光度光谱,如果 是透光率光谱校正后应和100%线重合。在溴化钾压 片制样中,由于研磨不细锭片不透明,红外光产生散 射,使光谱的高频端基线抬高[8,10]。为使谱图美 观需要基线校正,谱图经过基线校正后会使峰面积增 大,定量分析一般不能基线校正。从图5可看出红外 谱图校正前与校正后面积明显增大。
图1 十二烷基硫酸钠样品适量与过量红外谱图的比较
对于聚合物的薄膜或者片状材料需要做衰减全反射(ATR),样品如果非常 光滑,光反射从而产生干涉条文,使谱图不光滑或影响谱带强度,定量分析 要特别注意。对于不同的聚合物样品有液体铸膜法、热压膜法、糊法、热裂 解法[6-7]。在红外光谱分析中选择适当的制样方法、掌握较高的制样技术是 红外光谱研究取得正确信息的关键。
。
2 扫描次数对谱图的影响
傅里叶变换红外光谱法通过测量干涉图并对其进行傅里叶积分 变换的方法测得的,检测器同时测量、记录所有的吸收信号, 比传统的色散光谱仪有较高的信噪比。但在实际的红外试验中 由于环境和操作等原因会有很多噪音信号,这些噪音信号会加 在样品的光谱信号中,信噪比与扫描次数的平方成正比[4,5]。 增加扫描次数降低分辨率可以提高光谱信噪比,同时降低水汽 吸收峰的影响。图2是十二烷基硫酸钠改变扫描次数时红外谱 图比较(由于天气潮湿所以有水峰)。从图不难看出随着扫描 次数的提高信噪比逐渐增大,红外谱图越来越光滑。
红外光谱图的纵坐标为解读

1、红外光谱图的纵坐标为吸收强度,横坐标为波长λ单位( m )(微米)或波数1/λ单位:cm-12、红外光谱图提供结构分析的四大信息为:峰数,峰位,峰形,峰强。
3、红外光谱的主要应用:有机化合物的结构解析。
4、红外光谱的定性主要根据图谱中的:基团的特征吸收频率;5、红外光谱的定量是根据图谱中的:特征峰的强度6、红外吸收光谱产生的要满足两个条件是:(1)辐射应具有能满足物质产生振动跃迁所需的能量;(2)辐射与物质间有相互偶合作用。
7、对称分子没有偶极矩,辐射不能引起共振,在IR中:无红外活性。
如:N2、O2、Cl2 等。
8、非对称分子有偶极矩,辐射不能引起共振,在IR中:有红外活性。
9、在IR中对称分子无红外活性。
原因是:没有偶极矩,辐射不能引起共振,10、在IR中非对称分子有红外活性。
原因是:有偶极矩,辐射不能引起共振,11、有机化合物的IR取决于分子的结构特征。
各管能团发生振动能级跃迁需要能量的大小(键力常数K)取决于:键两端原子的折合质量和键的力常数,12、有机化合物的IR取决于分子的结构特征。
各管能团发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数K,两端原子的折合质量越大(键力常数K 不变),振动能级跃迁向红移。
13、有机化合物的IR取决于分子的结构特征。
各管能团发生振动能级跃迁需要能量的大小取决于键两端原子的折合质量和键的力常数,两端原子的键的力常数越大(折合质量不变),振动能级跃迁向高波数(紫)移。
13、化学键键强越强(即键的力常数K越大)原子折合质量越小,化学键的振动频率越大,吸收峰将出现在高波数区。
14、化学键键强越小(即键的力常数K越小)原子折合质量越大,化学键的振动频率越小,吸收峰将出现在低波数区。
15、分子中基团的基本振动形式有两类为:伸缩振动和变形振动16、IR中的峰位的描述是化学键的力常数K越大,原子折合质量越小,键的振动频率越大,吸收峰将出现在:高波数区(短波长区);反之,出现在低波数区(高波长区)17、IR中的峰位的描述是化学键的力常数K越小,原子折合质量越大,键的振动频率越小,吸收峰将出现在:低波数区(高波长区)18、IR中的峰数描述是与分子自由度有关,无瞬间偶基距变化时,在IR 图中无红外吸收。
红外光谱图的纵坐标为解读

红外光谱图的纵坐标为解读1、红外光谱图的纵坐标为吸收强度,横坐标为波长λ单位( m )(微⽶)或波数1/λ单位:cm-12、红外光谱图提供结构分析的四⼤信息为:峰数,峰位,峰形,峰强。
3、红外光谱的主要应⽤:有机化合物的结构解析。
4、红外光谱的定性主要根据图谱中的:基团的特征吸收频率;5、红外光谱的定量是根据图谱中的:特征峰的强度6、红外吸收光谱产⽣的要满⾜两个条件是:(1)辐射应具有能满⾜物质产⽣振动跃迁所需的能量;(2)辐射与物质间有相互偶合作⽤。
7、对称分⼦没有偶极矩,辐射不能引起共振,在IR中:⽆红外活性。
如:N2、O2、Cl2 等。
8、⾮对称分⼦有偶极矩,辐射不能引起共振,在IR中:有红外活性。
9、在IR中对称分⼦⽆红外活性。
原因是:没有偶极矩,辐射不能引起共振,10、在IR中⾮对称分⼦有红外活性。
原因是:有偶极矩,辐射不能引起共振,11、有机化合物的IR取决于分⼦的结构特征。
各管能团发⽣振动能级跃迁需要能量的⼤⼩(键⼒常数K)取决于:键两端原⼦的折合质量和键的⼒常数,12、有机化合物的IR取决于分⼦的结构特征。
各管能团发⽣振动能级跃迁需要能量的⼤⼩取决于键两端原⼦的折合质量和键的⼒常数K,两端原⼦的折合质量越⼤(键⼒常数K 不变),振动能级跃迁向红移。
13、有机化合物的IR取决于分⼦的结构特征。
各管能团发⽣振动能级跃迁需要能量的⼤⼩取决于键两端原⼦的折合质量和键的⼒常数,两端原⼦的键的⼒常数越⼤(折合质量不变),振动能级跃迁向⾼波数(紫)移。
13、化学键键强越强(即键的⼒常数K越⼤)原⼦折合质量越⼩,化学键的振动频率越⼤,吸收峰将出现在⾼波数区。
14、化学键键强越⼩(即键的⼒常数K越⼩)原⼦折合质量越⼤,化学键的振动频率越⼩,吸收峰将出现在低波数区。
15、分⼦中基团的基本振动形式有两类为:伸缩振动和变形振动16、IR中的峰位的描述是化学键的⼒常数K越⼤,原⼦折合质量越⼩,键的振动频率越⼤,吸收峰将出现在:⾼波数区(短波长区);反之,出现在低波数区(⾼波长区)17、IR中的峰位的描述是化学键的⼒常数K越⼩,原⼦折合质量越⼤,键的振动频率越⼩,吸收峰将出现在:低波数区(⾼波长区)18、IR中的峰数描述是与分⼦⾃由度有关,⽆瞬间偶基距变化时,在IR 图中⽆红外吸收。
仪器分析课程考试填空题题库

仪器分析课程考试填空题题库1.原子吸收光谱是线状光谱2.热导池检测器是一种浓度型检测器3.在气固色谱中各组份在吸附剂上分离的原理是各组份的吸附能力不一样4.用原子吸收光度法分析时,灯电流太高会导致谱线变窄下降。
5.用气相色谱法定量分析样品组分时,分离度至少为:1.06.液相色谱中通用型检测器是示差折光检测器7.在原子吸收光谱法中,要求标准溶液和试液的组成尽可能相似,且在整个分析过程中操作条件应保不变的分析方法是标准曲线法8.下列因素中,对色谱分离效率最有影响的是柱温9.柱效率用理论塔板数n或理论塔板高度h表示,柱效率越高,则n越大,h越小10.下列化合物中,同时有 n→π*,π→π*,σ→σ*跃迁的化合物是丙酮11.红外吸收光谱的产生是由于分子振动-转动能级的跃迁12.可以消除原子吸收法中的物理干扰的方法是采用标准加入法13.热导池检测器的工作原理是基于各组分的热导系数不同14.荧光分析法的灵敏度通常比吸收光度法的灵敏度高15.紫外-可见吸收光谱主要决定于分子的电子能级跃迁16.在原子吸收分光光度法中,从玻兹曼分布定律可以看出温度越高,激发态原子数越多17.用电位法测定溶液的pH值时,电极系统由玻璃电极与饱和甘汞电极组成,其中玻璃电极是作为测量溶液中氢离子活度的指示电极18.原子吸收光谱法是基于气态原子对光的吸收, 其吸光度与待测元素的含量成正比,即符合朗伯-比尔定律19.原子发射光谱分析法可进行定性、半定量和定量分析。
20.质谱分析有很广泛的应用,除能测定物质的相对分子量外,还用于结构与定量分析21.可做红外分光光度计光源的为硅碳棒22.振动转动能级跃迁的能量相当于红外光23.在符合朗伯-比尔定律的范围内,有色物的浓度、最大吸收波长、吸光度,三者的关系是减小、不变、减小24.连续监测去离子水的质量,下列哪种技术最为方便?电导电极25.在中药现代化研究中,分析效率最高的仪器是LC-MS26.在气相色谱法中,用于定性的参数是保留时间27.在石墨炉原子吸收光谱法中应该选用的保护气为:氩气28.用色谱法进行定量分析时,要求混合物中每一个组分度出峰的是:归一化法29.用离子选择性电极进行测量时,需用磁力搅拌器搅拌溶液,这是为了提高电极的响应速度30.气相色谱中可以用于定性分析的检测器是质谱31.原子发射光谱定量分析中,哪种光源准确度最好?电感耦合等离子体32.在2H++2e==H2反应中,过电位最大的电极材料为滴汞电极33.化学位移是由于核外电子云的屏蔽作用所引起的共振时磁场强度的移动现象。
红外光谱分析习题解答

5、解:
H
C
H
H
C
H
(a)CH 伸缩 曲
H
C
H
H
C
H
(b)CH 伸缩
H
C
H
H
C
H
(c)CH2 扭
H
C
H
H
C
H
(d)C=C 伸缩
H
C
H
H
C
H
(e)CH 剪式
H
C
H
H
C
H
(f)CH 摇摆
判断法则为:若振动前后引起偶极矩的变化的,是具有红外活性的,否则为非红外活性的。因此具有红外活性是:(b)(c) (e),非红外活性 (a)(d)(f)。
CH2
H
H
H
H
H2
CC
C H
C
H2C n
C CH2
C
H2C n
CH
CH2
n
结合题中所给的红外光谱图,可以识别 A,B,C 的键结构分别为:
H
H
CH2
H
H
H2
CC
C CH2
C
H2C n
C H
C
H2C n
CH
CH2
n
18、解:3620 cm-1 处的吸收是游离 OH 的伸缩振动,而 3450 cm-1 处的吸收是由于形成了氢键,吸收波长向长波方向移动形成 的。在 CCl4 稀溶液中只能形成分子内氢键,不易形成分子间氢键。从下面结构可以看出,只有顺式环戊二醇可以形成分子内氢 键,所以在 CCl4 稀溶液中,顺式环戊二醇会在 3450 cm-1 处出峰,而反式环戊二醇则不出现。
数下降,使 C=O 的吸收频率向低波数移动。 对同一基团来说,若诱导效应 I 和中介效应 M 同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的净结果。
红外光谱分析习题解答

红外光谱分析习题解答解:影响红外吸收峰强度的主要因素:红外吸收的强度主要由振动能级的跃迁概率和振动过程中偶极矩的变化决定。
从基态向第一激跃迁的概率大,因此基频吸收带一般较强。
另外,基频振动过程中偶极矩的变化越大,则其对应的红外吸收越强。
因此,如果化学键两接原子的电负性差异越大,或分子的对称性越差,则伸缩振动时化学键的偶极矩变化越大,其红外吸收也越强,这就是C=O的强度大=C的原因。
一般来说,反对称伸缩振动的强度大于对称收缩振动的强度,伸缩振动的强度大于变形振动的强度。
解:由量子力学可知,简单双原子分子的吸收频率可用下式表示:μπkc 21 (1) AN M M M M )(2121+ (2)) 式中:σ为波数(cm -1),c 为光在真空中的速度(310-10cm S -1),k 为化学键力常数(N cm -1)) 式中:M 1和M 2分别为两种原子的摩尔质量,N A 为阿伏加德罗常数(6.021023mol -1) (2)式代入(1)得21212121)(1307)(221M M M M k M M M M k cN k c A +=+=πμπ教材P 153公式(10-6)系数为1370有误】Cl 键的键力常数12212121.0079.13453.350079.1453.35130729931307-⋅+⨯⨯⎪⎭⎫+⎪⎭⎫ ⎝⎛cm N M M M M σ解:依照上题的计算公式21212121)(1307)(221M M M M k M M M M k cN k c A +=+=πμπ=9 N cm -1,M H =1.0079,M F =18.998代入可计算得到HF 的振动吸收峰频率为4023cm -1。
解:2-戊酮的最强吸收带是羰基的伸缩振动(C=O),分别在极性溶剂95%乙醇和非极性溶剂正己烷中,其吸收带出现的频率在正己位于较高处。
原因是乙醇中的醇羟基可以与戊酮的羰基形成分子间氢键,导致羰基的伸缩振动频率向低波数方向移动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH3的对称弯曲振动频率为1380cm-1,但当两个甲基连在同一个C原子上,形成异丙基时发生振动偶合,即1380cm-1的吸收峰消失,出现1385 cm-1和1375 cm-1两个吸收峰。
(5)其它因素
① 氢键的形成提高化学键的极化程度, 使有关的吸收峰变宽变强。当质子给予体基团和未成键电子对轨道轴在同一条直线时, 氢键的强度达到最大。键的强度与X 和Y 之间的距离成反比。氢键改变了两个基团的力常数; 因此, 伸缩振动和弯曲振动的频率都要发生改变。X —H 的伸缩振动谱带移向较长波长(较低频率) , 并常常伴随有强度和谱带宽度的增高。
2 .氢键的影响氢键的形成使电子云密度平均化,从而使伸缩振动频率降低。游
离羧酸的 C=O 键频率出现在 1760 cm-1 左右,在固体或液体中,由于羧酸形成
二聚体, C=O 键频率出现在 1700 cm-1 。 分子内氢键不受浓度影响,分子间
氢键受浓度影响较大。
3. 振动耦合 当两个振动频率相同或相近的基团相邻具有一公共原子时,由于一
个键的振动通过公共原子使另一个键的长度发生改变,产生一个“微扰”,从而形成了强烈的振动! 相互作用。其结果是使振动频率发生感变化,一个向高频移动,另一个向低频移动,谱带分裂。振动耦合常出现在一些二羰基化合物中,如,羧酸酐。
4.Fermi共振 当一振动的倍频与另ቤተ መጻሕፍቲ ባይዱ振动的基频接近时,由于发生相互作用而产
素大致可分为内部因素和外部因素。
内部因素:
1. 电子效应 包括诱导效应、共轭效应和中介效应,它们都是由于化学键的电子
分布不均匀引起的。
(1)诱导效应( I 效应) 由于取代基具有不同的电负性,通过静电诱导作用,
引起分子中电子分布的变化。从而改变了键力常数,使基团的特征频率发生了位
移。 例如,一般电负性大的基团或原子吸电子能力强,与烷基酮羰基上的碳原
(3)分子的对称性
基团的偶极矩与结构的对称性有关, 对称性愈强, 振动时偶极矩变化愈小, 吸收带愈弱。红外吸收强度决定于跃迁的几率, 理论计算有迁几率= 式中, 为红外电磁波的电场向量, 为跃迁
(4)偶合相互作用
当两个键振子共享一个原子时, 除非各个振荡频率有很大的差异, 否则它们很少表现为各自独立的振子, 这是因为两个振子之间有机偶合的相互作用。有的特征基团频率的谱带往往涉及有机偶合振动。
生很强的吸收峰或发生裂分,这种现象称为 Fermi 共振。
二.决定红外光谱谱带强度的相关因素
1.谱带的强度主要由两个因素决定。
一是振动中偶极矩变化的程度。瞬间偶极矩变化越大, 谱带强度越大, 而偶极矩变化和分子(或基团) 本身的偶极矩有关, 极性较强的基团, 振动中偶极矩变化较大, 对应的吸收谱带较强。
振动方程
当m固定时,基团振动频率随化学键力常数增强而增大。
乙基异丙基酮和甲基丁基酮的IR(指纹区差异)
子数相连时,由于诱导效应就会发生电子云由氧原子转向双键的中间,增加了
C=O 键的力常数,使 C=O 的振动频率升高,吸收峰向高波数移动。随着取代原
子电负性的增大或取代数目的增加,诱导效应越强,吸收峰向高波数移动的程度
越显著。
诱导效应
吸电子诱导效应使羰基双键性增加,振动频率增大。
(2)中介效应( M 效应)当含有孤对电子的原子( O、 S、 N 等)与具有多重键的原子相连时,也可起类似的共轭作用,称为中介效应。由于含有孤对电子的原子的共轭作用,使 C=O 上的电子云更移向氧原子, C=O 双键的电子云密度平均化,造成 C=O 键的力常数下降,使吸收频率向低波数位移。 对同一基团,若诱导效应和中介效应同时存在,则振动频率最后位移的方向和程度,取决于这两种效应的结果。当诱导效应大于中介效应时,振动频率向高波数移动,反之,振动频率向低波数移动。
一.决定红外光谱谱带频率的相关因素
基团频率主要是由基团中原子的质量和原子间的化学键力常数决定。然而,分子
内部结构和外部环境的改变对它都有影响,因而同样的基团在不同的分子和不同
的外界环境中,基团频率可能会有一个较大的范围。因此了解影响基团频率的因
素,对解析红外光谱和推断分子%( 结构都十分有用。 影响基团频率位移的因
氢键效应
氢键(分子内氢键;分子间氢键):氢键的形成使原有的化学键O-H或N-H的键长增大,力常数K 变小,使伸缩振动频率向低波数方向移动。
② 与极性基团共轭使吸收峰增强。电效应中,诱导效应对基团吸收强度的影响与其对基团极性的影响有关。如果, 诱导效应使基团极性降低, 则吸收强度降低, 反之, 则强度增加。
以二氧化碳分子为例
偶极矩变化的大小与以下五个因素有关:
(1)原子的电负性
化学键两端的原子之间电负性差别越大, 其伸缩振动引起的红外吸收越强。
(2)振动方式
相同基团的各种振动, 由于振动方式不同, 分子的电荷分布也不同, 偶极矩变化也不同。通常, 反对称伸缩振动的吸收比对称伸缩振动的吸收强度大;伸缩振动的吸收强度比变形振动的吸收强度大。
③ 费米共振。倍频吸收峰一般是很弱的, 但是发生费米共振时, 基频和倍频的强度重新分配。
苯甲酰氯的红外光谱
苯甲酰氯C-Cl的伸缩振动在874cm-1,其倍频峰在1730cm-1左右,正好落在C=O的伸缩振动吸收峰位置附近,发生费米共振从而倍频峰吸收强度增加 。
二是能级跃迁概率。 跃迁概率大, 吸收峰也就强。 一般来说, 基频 (V 0 -V 1) 跃迁概率大, 所以吸收较强; 倍频 ( V 0- V 2) 虽然偶极矩变化大, 但跃迁概率很低, 使峰强从而很弱。