因式分解(超全方法)好

合集下载

因式分解常用方法(方法最全最详细)

因式分解常用方法(方法最全最详细)

因式分解的常用方法第一部分:方法介绍因式分解:因式分解是指将一个多项式化成几个整式的积的形式,主要有提公因式法,公式法,十字相乘法,分组分解法,换元法等因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;。

注意:将一个多项式进行因式分解应分解到不能再分解为止。

一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) (a+b)(a -b) = a 2-b 2 -----------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ---------a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3---------a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 --------a 3-b 3=(a -b)(a 2+ab+b 2).下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++,则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形解:222222222222a b c ab bc ca a b c ab bc ca ++=++⇒++=++ 222()()()0a b b c c a a b c ⇒-+-+-=⇒==三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a ,后两项都含有b ,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。

因式分解方法大全

因式分解方法大全

因式分解方法大全以下是一些常用的因式分解方法:方法一:提取公因式法如果一个多项式的各项系数可以同时被一个常数整除,那么可以将这个常数提取出来,然后再对多项式进行因式分解。

例如:2x+4y=2(x+2y)方法二:两项提取公因式法当多项式的两项具有相同的因子时,可以将这个因子提取出来,然后再对多项式进行因式分解。

例如:3x^2+6x=3x(x+2)方法三:平方差公式如果多项式是两个平方数相减,那么可以使用平方差公式进行因式分解。

平方差公式为:a^2-b^2=(a+b)(a-b)例如:9x^2-4=(3x+2)(3x-2)方法四:差平方公式如果多项式是两个平方数相加,那么可以使用差平方公式进行因式分解。

差平方公式为:a^2 + b^2 = (a + b)^2 - 2ab例如:x^2+4=(x+2)^2-4方法五:分组法当多项式含有多项之和时,可以根据各项的共同因子进行分组,然后进行因式分解。

例如:2ab + 4bc + 6ca = 2a(b + 2c) + 2c(2b + 3a)方法六:完全平方公式当多项式是一个完全平方时,可以使用完全平方公式进行因式分解。

完全平方公式为:a^2 + 2ab + b^2 = (a + b)^2例如:x^2+4x+4=(x+2)^2方法七:配方法对于一些多项式,可以通过将其形式转化为一个平方差或平方和的形式,然后使用平方差公式或完全平方公式进行因式分解。

例如:4x^2+12x+9=4(x^2+3x)+9=4(x^2+2x+1)然后使用完全平方公式进行因式分解。

方法八:综合运用多项式的因式分解方法往往需要综合运用多种方法,根据具体情况选择合适的方法进行因式分解。

对于较复杂的多项式,可能需要多次分解才能得到最简形式。

因此,需要对各种方法进行熟练运用,并根据具体情况进行灵活组合。

以上是一些常用的因式分解方法,它们可以用来解决不同类型的多项式因式分解问题。

需要注意的是,进行因式分解时要善于观察和发现多项式中的模式和规律,以便选择合适的方法进行分解。

因式分解技巧十法

因式分解技巧十法

因式分解技巧十法因式分解是基础数学中的重要内容,它不仅在代数中有重要应用,还有助于解决复杂的数学问题。

因式分解的目的是将一个多项式或一个数分解为相对简单的因子相乘的形式。

在这篇文章中,我们将介绍十种因式分解的技巧。

1.公因式提取:这是最常见的因式分解技巧之一、当多项式中的每一项都有一个公因式时,可以将这个公因式提取出来,得到一个公因式和一个因数。

例如,多项式2x+4可以因式分解为2(x+2)。

2.平方差公式:平方差公式可以用来因式分解二次多项式。

形式为a^2-b^2的二次多项式可以因式分解为(a+b)(a-b)。

例如,多项式x^2-4可以因式分解为(x+2)(x-2)。

3. 完全平方公式:完全平方公式可以用来因式分解二次多项式。

形式为a^2 + 2ab + b^2的二次多项式可以因式分解为(a + b)^2、例如,多项式x^2 + 2x + 1可以因式分解为(x + 1)^24.因式定理:因式定理是一种将多项式分解为更简单的因子的技巧。

根据因式定理,如果一个多项式P(x)在x=a处取0值,那么P(x)可以被因式(x-a)整除。

例如,多项式x^2-2x-3在x=3处取0值,因此可以因式分解为(x-3)(x+1)。

5.线性因式定理:线性因式定理是因式定理的一个特殊情况。

根据线性因式定理,如果一个多项式的次数为n,那么它可以被分解为n个线性因子的乘积。

例如,多项式x^2-3x+2可以因式分解为(x-1)(x-2)。

6. 共轭因式定理:共轭因式定理是一种将复数多项式因式分解为实数因子的技巧。

根据共轭因式定理,如果一个复数多项式P(x)的一个复数根是a + bi,那么其共轭根是a - bi,且(x - (a + bi))(x - (a - bi))是P(x)的因式。

例如,多项式x^2 + 2x + 5在复数域上没有实数解,但可以因式分解为(x - (-1 + 2i))(x - (-1 - 2i))。

7. 差二次幂公式:差二次幂公式可以用来因式分解高次多项式。

因式分解(超全方法)

因式分解(超全方法)

因式分解(超全方法)因式分解的常用方法多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。

初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法。

本文将在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍。

一、提取公因式法:ma+mb+mc=m(a+b+c)二、运用公式法:在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) (a+b)(a-b) = a^2-b^2,a^2-b^2=(a+b)(a-b);2) a^2-b^2=(a+b)(a-b);3) (a+b)(a-ab+b) = a^2+b^2,a^2+b^2=(a+b)(a-ab+b);4) (a-b)(a+ab+b) = a^2-b^2,a^2-b^2=(a-b)(a+ab+b)。

下面再补充两个常用的公式:5) a+b+c+2ab+2bc+2ca=(a+b+c)^2;6) a+b+c-3abc=(a+b+c)(a+b+c-ab-bc-ca)。

练题:已知a,b,c是三角形ABC的三边,且a+b+c=ab+bc+ca,则三角形ABC的形状是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形三、分组分解法一)分组后能直接提公因式例1、分解因式:am+an+bm+bn=m(a+b)+n(a+b)=(a+b)(m+n)例2、分解因式:2ax-10ay+5by-bx=2a(x-5y)-b(x-5y)=(2a-b)(x-5y)练题:分解因式1、a-ab+ac-bc2、xy-x-y+1二)分组后能直接运用公式例3、分解因式:x-y+ax+ay=(a+1)(x-y)例4、分解因式:a-2ab+b-c=(a-b)(1-2b)-c练题:分解因式3、x-x-9y-3y^2 4、x-y-z-2yz综合练:1) x+xy-xy-y=(x-y)(1+x)2) ax-bx+bx-ax+a-b=2(a-b)3) x+6xy+9y-16a+8a-1=(x+3y-4a+1)^24) a-6ab+12b+9b-4a=-(2a-3b)^2四、十字相乘法。

因式分解方法大全

因式分解方法大全

因式分解方法大全因式分解是数学中非常重要的一种运算方法,它在解题中具有广泛的应用。

本文将为你介绍常见因式分解的方法,希望可以帮助你更好地理解和运用因式分解。

一、提取公因数法提取公因数法是因式分解中最基本的方法,它适用于多项式的每一项都有公因数的情况。

具体步骤如下:1.找出多项式中的最大公因数。

2.将最大公因数提取出来,剩下的部分即为因式分解后的结果。

例如,对于多项式4x+8,我们可以提取出公因数4,得到4(x+2)。

二、公式法公式法是基于一些常见的公式进行因式分解的方法。

以下是一些常见的公式:1.平方差公式:a²-b²=(a+b)(a-b)。

2. 完全平方公式:a² + 2ab + b² = (a + b)²。

3. 二次差分公式:a² - 2ab + b² = (a - b)²。

4.二次平方差公式:a⁴-b⁴=(a²+b²)(a²-b²)。

5. 立方和公式:a³ + b³ = (a + b)(a² - ab + b²)。

6. 立方差公式:a³ - b³ = (a - b)(a² + ab + b²)。

根据这些公式,我们可以快速进行因式分解。

例如,对于多项式x²-4,我们可以使用平方差公式得到(x+2)(x-2)。

三、分组法分组法是一种常用的因式分解方法,适用于多项式中含有多个项时。

具体步骤如下:1.将多项式按照其中一种规则分成两组,使得每一组内的项有相同的因式。

2.对每一组内的项进行提取公因数的操作。

3.对两组提取出的因式进行化简。

例如,对于多项式x³-x²+x-1,我们可以将其分成两组:(x³-x²)+(x-1)。

然后,我们可以对每一组内的项进行提取公因数,得到x²(x-1)+1(x-1)。

因式分解的14种方法讲解

因式分解的14种方法讲解

因式分解的14种方法讲解因式分解是数学中常用的重要方法,它可以将一个多项式表达式分解为一个或多个乘积的形式。

在因式分解过程中,有多种方法可以使用。

下面我将为您介绍14种常见的因式分解方法。

方法一:公因式提取法1.公因式提取法是最基本的一种因式分解方法,适用于多项式中存在公共的因式。

例如,对于多项式2x+6,可以提取出公因式2,得到2(x+3)。

方法二:配方法2. 配方法适用于二次型多项式的因式分解。

对于ax² + bx + c形式的多项式,可以通过配方法将其分解为两个一次因式相乘的形式。

例如,对于多项式x² + 3x + 2,可以找到两个因数(x + 1)(x + 2)。

方法三:x平方差3.x平方差适用于形如x²-a²的多项式,其中a是一个常数。

这种情况下,可以将其分解为两个因子(x+a)(x-a)。

方法四:因式分解公式4.因式分解公式适用于一些特殊的多项式形式。

例如,x²-y²可以通过公式(x-y)(x+y)分解。

方法五:完全平方公式5. 完全平方公式适用于形如a² ± 2ab + b²的多项式。

这种情况下,可以将其分解为平方项的和或差。

(a ± b)²。

方法六:两个平方差的乘积6.两个平方差的乘积适用于形如(a+b)(a-b)(c+d)(c-d)的多项式。

这种情况下,可以分解为两个平方差相乘。

方法七:立方公式7. 立方公式适用于形如a³ ± b³的多项式。

这种情况下,可以将其分解为立方项的和或差。

(a ± b)(a² ∓ ab + b²)。

方法八:差的立方8. 差的立方适用于形如a³ - b³的多项式。

这种情况下,可以分解为差的立方公式(a - b)(a² + ab + b²)。

方法九:高次幂差的因式分解9.高次幂差的因式分解适用于形如aⁿ-bⁿ的多项式,其中n为正整数。

因式分解方法大全

因式分解方法大全因式分解是数学中一种常见的运算方法,指将一个多项式按照约定的规则展开或合并,以求得其约简或简化的过程。

因式分解在代数中的应用非常广泛,可以用来解方程、简化算式、求最大公因式等。

1.提取公因式法:当一个多项式中各项都含有相同的因子时,可以先将这个公因子提取出来。

例如,对于多项式2x+6,可以将公因子2提取出来,得到2(x+3)。

2.公式法:对于一些常见的代数公式,可以直接运用它们进行因式分解。

例如,平方差公式a^2-b^2可以分解为(a+b)(a-b)。

3. 完全平方公式法:当一个多项式是一个完全平方时,可以利用完全平方公式进行因式分解。

完全平方公式为a^2 + 2ab + b^2 = (a +b)^2、例如,对于多项式x^2 + 4x + 4,可以看出它是一个完全平方,因此可以因式分解为(x + 2)^24.分组法:当一个多项式中含有四项及以上的项,并且无法直接运用其他公式进行因式分解时,可以尝试使用分组法。

分组法的基本思想是将多项式中的项以一定的方式分成两组,并将每一组内的项提取出一个公因式,然后再运用其他的因式分解方法进一步简化。

例如,对于多项式3x^3-6x^2+4x-8,可以将其分为两组:(3x^3-6x^2)+(4x-8),然后分别提取每一组内的公因式,得到3x^2(x-2)+4(x-2),再将公共因子(x-2)提取出来,得到(x-2)(3x^2+4)。

5. 和差平方公式法:当一个多项式可以表示为两个项的平方之差时,可以运用和差平方公式进行因式分解。

和差平方公式有两个形式:(a +b)(a - b) = a^2 - b^2和(a + b)^2 - 2ab = a^2 + 2ab + b^2、例如,对于多项式x^2 - 4y^2,可以看出它是一个差的平方,因此可以因式分解为(x + 2y)(x - 2y)。

6.相异二次根法:当一个多项式为一个一次二次根式相减或相加时,可以尝试运用相异二次根法进行因式分解。

因式分解方法大全

因式分解方法大全因式分解是一个常用的数学方法,用于将一个多项式或一个数分解为较小因子的乘积。

在这篇文章中,我将为您详细介绍一系列因式分解的方法。

一、公因式提取法:公因式提取法是最基本的因式分解方法之一、它的思想是找到多个表达式的一个公共因子,并将其提取出来。

例如,对于多项式2x+6,我们可以发现2是两项的公因子,于是可以将其因式分解为2(x+3)。

二、分组分解法:分组分解法适用于由四个及四个以上的项组成的多项式。

它的思想是将多项式内的项进行分组,并利用分组的特点进行因式分解。

例如,对于多项式x²+5x+6,我们可以将其分解为(x²+2x)+(3x+6),然后分别提取出每个分组的公因子,得到x(x+2)+3(x+2),进而因式分解为(x+3)(x+2)。

三、辗转相除法:辗转相除法是一种用于分解整数的方法,适用于当我们要将一个整数分解为两个较小的因数时。

例如,对于整数15,我们可以找到一个较小的因数3,并将15除以3得到5,即15=3*5四、差的平方公式:方形式时,可以利用差的平方公式进行因式分解。

例如,对于多项式x²-4,我们可以利用差的平方公式(x+2)(x-2)进行因式分解,得到(x+2)(x-2)。

五、平方差公式:平方差公式是一个常用的因式分解方法,适用于当我们遇到平方差形式时,可以利用平方差公式进行因式分解。

例如,对于多项式x²-y²,我们可以利用平方差公式(x+y)(x-y)进行因式分解,得到(x+y)(x-y)。

六、完全平方公式:完全平方公式是一个常用的因式分解方法,适用于当我们遇到完全平方形式时,可以利用完全平方公式进行因式分解。

例如,对于多项式x² + 2xy + y²,我们可以利用完全平方公式(x + y)²进行因式分解,得到(x + y)²。

七、和的立方公式:和的立方公式是一个常用的因式分解方法,适用于当我们遇到和的立方形式时,可以利用和的立方公式进行因式分解。

因式分解8种方法

因式分解8种方法有很多方法可以用来因式分解一个多项式或数字。

在这篇文章中,我将向您介绍8种常见的因式分解方法,并提供每种方法的详细解释和示例。

让我们开始吧!1.相同因式的提取这是因式分解的最基本方法之一、它适用于多项式,其中所有项都具有相同的因式。

为了因式分解,我们只需要将相同的因式从每个项中提取出来。

例如,考虑多项式6x^2+9x+3、该多项式的所有项都可以被3整除。

因此,我们可以将其因式分解为3(2x^2+3x+1)。

2.公因式的提取如果一个多项式的每个项都可以被一个公共因子整除,那么我们可以将该因子提取出来并进行因式分解。

例如,考虑多项式2x^3-6x^2+8x。

所有的项都可以被2x整除,因此我们可以将其因式分解为2x(x^2-3x+4)。

3.分组方法分组方法适用于多项式,其中有四个或更多的项。

它的思想是将多项式中的项进行分组,然后在每个组中找到一个公共因子,最后提取出这些因子。

例如,考虑多项式x^3-2x^2+3x-6、我们可以将其分为两个组:(x^3-2x^2)和(3x-6)。

在第一组中,我们可以提取出一个公因子x^2,得到x^2(x-2);在第二组中,我们可以提取出一个公因子3,得到3(x-2)。

因此,多项式的因式分解为(x^2+3)(x-2)。

4.凑整法凑整法适用于多项式,其中二次项的系数为1、它的核心思想是通过加减适当的数来凑成一个完全平方。

通过这种方法,我们可以将多项式因式分解为两个平方的差。

例如,考虑多项式x^2+4x+4、我们可以将其凑整为(x+2)^2、因此,多项式的因式分解为(x+2)(x+2)或简化为(x+2)^25.和差平方差公式如果一个多项式可以表示成两个完全平方的差,我们可以使用和差平方差公式进行因式分解。

公式如下:a^2-b^2=(a+b)(a-b)例如,考虑多项式x^2-4、可以将其因式分解为(x+2)(x-2)。

6.加法公式和减法公式加法公式和减法公式适用于三角函数等特定的函数形式。

因式分解法的12种方法

因式分解法的12种方法一、公式因式分解法公式因式分解法是一种基于公式的因式分解方法。

通过运用一些常见的代数公式,将多项式进行因式分解。

例如,对于二次多项式a^2 + 2ab + b^2,可以利用平方差公式因式分解为(a + b)^2。

二、因式提取法因式提取法是一种通过提取多项式中的公因子来进行因式分解的方法。

通过寻找多项式中的最大公因子并将其提取出来,可以将多项式进行因式分解。

例如,对于多项式2x^2 + 4x,可以提取公因子2x,得到2x(x + 2)。

三、分组法分组法是一种将多项式中的项进行分组,并利用分组后的特点进行因式分解的方法。

通常是将多项式中的项进行适当的分组,然后利用分组后的项之间的关系进行因式分解。

例如,对于多项式x^3 + x^2 + x + 1,可以分组为(x^3 + x^2) + (x + 1),然后利用分组后的特点进行因式分解。

四、平方差公式平方差公式是一种通过平方差的形式进行因式分解的方法。

该方法适用于一些特定的二次多项式,可以将其因式分解为两个平方差的形式。

例如,对于二次多项式x^2 - 4,可以利用平方差公式因式分解为(x + 2)(x - 2)。

五、差平方公式差平方公式是一种通过差平方的形式进行因式分解的方法。

该方法适用于一些特定的二次多项式,可以将其因式分解为两个差平方的形式。

例如,对于二次多项式x^2 - 9,可以利用差平方公式因式分解为(x + 3)(x - 3)。

六、完全平方公式完全平方公式是一种通过完全平方的形式进行因式分解的方法。

该方法适用于一些特定的二次多项式,可以将其因式分解为完全平方的形式。

例如,对于二次多项式x^2 + 6x + 9,可以利用完全平方公式因式分解为(x + 3)^2。

七、三项立方和公式三项立方和公式是一种通过三项立方和的形式进行因式分解的方法。

该方法适用于一些特定的立方多项式,可以将其因式分解为三项立方和的形式。

例如,对于立方多项式x^3 + 3x^2 + 3x + 1,可以利用三项立方和公式因式分解为(x + 1)^3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解的常用方法第一部分:方法介绍多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.一、提公因式法.:ma+mb+mc=m(a+b+c)二、运用公式法.在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)(a+b)(a -b) = a 2-b 2 ---------a 2-b 2=(a+b)(a -b);(2) (a ±b)2 = a 2±2ab+b 2 ——— a 2±2ab+b 2=(a ±b)2;(3) (a+b)(a 2-ab+b 2) =a 3+b 3------ a 3+b 3=(a+b)(a 2-ab+b 2);(4) (a -b)(a 2+ab+b 2) = a 3-b 3 ------a 3-b 3=(a -b)(a 2+ab+b 2). 下面再补充两个常用的公式:(5)a 2+b 2+c 2+2ab+2bc+2ca=(a+b+c)2;(6)a 3+b 3+c 3-3abc=(a+b+c)(a 2+b 2+c 2-ab -bc -ca);例.已知a b c ,,是ABC ∆的三边,且222a b c ab bc ca ++=++, 则ABC ∆的形状是( )A.直角三角形 B 等腰三角形 C 等边三角形 D 等腰直角三角形三、分组分解法.(一)分组后能直接提公因式例1、分解因式:bn bm an am +++例2、分解因式:bx by ay ax -+-5102练习:分解因式1、bc ac ab a -+-22、1+--y x xy(二)分组后能直接运用公式例3、分解因式:ay ax y x ++-22例4、分解因式:2222c b ab a -+-练习:分解因式3、y y x x 3922--- 4、yz z y x 2222---综合练习:(1)3223y xy y x x --+ (2)b a ax bx bx ax -+-+-22(3)181696222-+-++a a y xy x (4)a b b ab a 4912622-++-(5)92234-+-a a a (6)y b x b y a x a 222244+--(7)222y yz xz xy x ++-- (8)122222++-+-ab b b a a(9))1)(1()2(+---m m y y (10))2())((a b b c a c a -+-+(11)abcb ac c a b c b a 2)()()(222++++++(12)abc c b a 3333-++四、十字相乘法.(一)二次项系数为1的二次三项式直接利用公式——))(()(2q x p x pq x q p x ++=+++进行分解。

特点:(1)二次项系数是1;(2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。

思考:十字相乘有什么基本规律?例.已知0<a ≤5,且a 为整数,若223x x a ++能用十字相乘法分解因式,求符合条件的a .例5、分解因式:652++x x例6、分解因式:672+-x x练习5、分解因式(1)24142++x x (2)36152+-a a (3)542-+x x练习6、分解因式(1)22-+x x (2)1522--y y (3)24102--x x(二)二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++例7、分解因式:101132+-x x分析: 1 -2 3 -5 (-6)+(-5)= -11解:101132+-x x =)53)(2(--x x练习7、分解因式:(1)6752-+x x (2)2732+-x x(3)317102+-x x (4)101162++-y y(三)二次项系数为1的齐次多项式例8、分解因式:221288b ab a -- 分析:将b 看成常数,把原多项式看成关于a 的二次三项式,利用十字相乘法进行分解。

1 8b1 -16b 8b+(-16b)= -8b解:221288bab a --=)16(8)]16(8[2b b a b b a -⨯+-++ =)16)(8(b a b a -+练习8、分解因式(1)2223y xy x +-(2)2286n mn m +-(3)226b ab a --(四)二次项系数不为1的齐次多项式例9、22672y xy x +- 例10、2322+-xy y x 1 -2y 把xy 看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式=)32)(2(y x y x -- 解:原式=)2)(1(--xy xy练习9、分解因式:(1)224715y xy x -+ (2)8622+-ax x a综合练习10、(1)17836--x x (2)22151112y xy x -- (3)10)(3)(2-+-+y x y x (4)344)(2+--+b a b a(5)222265x y x y x -- (6)2634422++-+-n m n mn m (7)3424422---++y x y xy x (8)2222)(10)(23)(5b a b a b a ---++ (9)10364422-++--y y x xy x (10)2222)(2)(11)(12y x y x y x -+-++思考:分解因式:abc x c b a abcx +++)(2222五、换元法。

例13、分解因式(1)2005)12005(200522---x x(2)2)6)(3)(2)(1(x x x x x +++++ 解:(1)设2005=a ,则原式=a x a ax ---)1(22=))(1(a x ax -+ =)2005)(12005(-+x x(2)型如e abcd +的多项式,分解因式时可以把四个因式两两分组相乘。

原式=222)65)(67(x x x x x +++++设A x x =++652,则x A x x 2672+=++ ∴原式=2)2(x A x A ++=222x Ax A ++=2)(x A +=22)66(++x x练习13、分解因式(1))(4)(22222y x xy y xy x +-++(2)90)384)(23(22+++++x x x x (3)222222)3(4)5()1(+-+++a a a例14、分解因式(1)262234+---x x x x观察:此多项式的特点——是关于x 的降幂排列,每一项的次数依次少1,并且系数成“轴对称”。

这种多项式属于“等距离多项式”。

方法:提中间项的字母和它的次数,保留系数,然后再用换元法。

解:原式=)1162(222x x x x x +---=[]6)1()1(2222-+-+x x xx x 设t x x =+1,则21222-=+t x x∴原式=[]6)2222---t t x (=()10222--t t x=()()2522+-t t x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+215222x x x x x =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+21··522·x x x x x x =()()1225222+++-x x x x=)2)(12()1(2--+x x x (2)144234+++-x x x x解:原式=22241(41)x x x x x -+++=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+1141222x x x x x设y x x =-1,则21222+=+y x x∴原式=22(43)x y y -+=2(1)(3)x y y --=)31)(11(2----x x x x x =()()13122----x x x x练习14、(1)673676234+--+x x x x(2))(2122234x x x x x +++++六、添项、拆项、配方法。

例15、分解因式(1)4323+-x x解法1——拆项。

解法2——添项。

原式=33123+-+x x 原式=444323++--x x x x =)1)(1(3)1)(1(2-+-+-+x x x x x =)44()43(2++--x x x x=)331)(1(2+-+-+x x x x =)1(4)4)(1(++-+x x x x =)44)(1(2+-+x x x =)44)(1(2+-+x x x =2)2)(1(-+x x =2)2)(1(-+x x(2)3369-++x x x解:原式=)1()1()1(369-+-+-x x x=)1()1)(1()1)(1(333363-++-+++-x x x x x x =)111)(1(3363+++++-x x x x =)32)(1)(1(362++++-x x x x x练习15、分解因式(1)893+-x x (2)4224)1()1()1(-+-++x x x (3)1724+-x x (4)22412a ax x x -+++(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++七、待定系数法。

例16、分解因式613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++解:设613622-++-+y x y xy x =)2)(3(n y x m y x +-++∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x --+++-+)23()(622 ∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231m n m n n m ,解得⎩⎨⎧=-=32n m∴原式=)32)(23(+--+y x y x例17、(1)当m 为何值时,多项式6522-++-y mx y x 能分解因式,并分解此多项式。

相关文档
最新文档