实验2 眼图观察测量实验

合集下载

眼图观察测量实验

眼图观察测量实验

一、實驗目的及要求:1)實驗目的: 學會觀察眼圖及其分析方法2)實驗要求: 1 分析電路的工作原理,敘述其工作過程;2 敘述眼圖的產生原理以及它的作用;3 繪出實驗觀察到的眼圖形狀。

二、實驗原理:我們知道衡量整個通信系統的傳輸品質,最直觀的方法就是用眼圖來觀察傳輸畸變和雜訊干擾。

我們知道,在實際的通信系統中,數位信號經過非理想的傳輸系統必定要產生畸變,信號通過通道後,也會引入雜訊和干擾,也就是說,總是在不同程度上存在碼間串擾。

在碼間串擾和雜訊同時存在情況下,系統性能很難進行定量的分析,常常甚至得不到近似結果。

為了便於評價實際系統的性能,常用觀察眼圖進行分析。

眼圖可以直觀地估價系統的碼間干擾和雜訊的影響,是一種常用的測試手段。

什麼是眼圖?所謂“眼圖”,就是由解調後經過低通濾波器輸出的基帶信號,以碼元定時作為同步信號在示波器螢幕上顯示的波形。

干擾和失真所產生的傳輸畸變,可以在眼圖上清楚地顯示出來。

因為對於二進位信號波形,它很像人的眼睛的過程眼圖。

在圖15-1中畫出兩個無雜訊的波形和相應的“眼圖”,一個無失真,另一個有失真(碼間串擾)。

(無失真及有失真時的波形及眼圖):(a)無碼間串擾時波形; 無碼間串擾眼圖(b)有碼間串擾時波形; 有碼間串擾眼圖圖15-1中可以看出,眼圖是由虛線分段的接收碼元波形疊加組成的。

眼圖中央的垂直線表示取樣時刻。

當波形沒有失真時,眼圖是一隻“完全張開”的眼睛。

在取樣時刻,所有可能的取樣值僅有兩個:+1或-1。

當波形有失真時,在取樣時刻信號取值分佈在小於+1或大於-1附近,“眼睛”部分閉合。

這樣,保證正確判決所容許的雜訊電平就減小了。

換言之,在隨機雜訊的功率給定時,將使誤碼率增加。

“眼睛”張開的大小就表明失真的嚴重程度。

為便於說明眼圖和系統性能的關係,我們將它簡化成圖15-2的形狀。

(眼圖的重要性質,其中U=U++U)(a) 二进制系统(b) 随机数据输入后的二进制系统三、實驗步驟:、眼圖觀察及分析實驗;、模擬眼圖觀察測量實驗;观察眼图SP109 SP614 SP615CPLD 32PN 码'()H ω观察眼图SP708PSK 译码SP614SP615'()H ω1、打開實驗箱右側電源開關,電源指示燈亮,按動帶鎖開關使L2(紅燈)點亮表示系統正常工作;2、連接SP614和SP109或SP809,送入基帶信號;3、用模擬示波器CH1觀察SP105,CH2觀察SP615,調節示波器特性調節電位器,可以觀察到有碼間串擾和無碼間串擾時的眼圖;4、當連接SP809是將PSK 解調模組解調還原的數位基帶信號送入眼圖電路。

光纤通信实验报告

光纤通信实验报告

2.了解电话呼叫接续过程;3.掌握电话呼叫时的各种可闻信号音的特征; 4.了解记发器的工作过程; 5.掌握PCM 编译码原理;6.了解双光纤全双工通信的组成结构。

二、实验仪器1.光纤通信实验箱 2.20M 双踪示波器3.FC-FC 单模光跳线 2根 4.小型电话单机 2部 5.铆孔连接线 若干三、基本原理本实验系统主要由两大部分组成:电端机部分、光信道部分。

电端机由电话用户接口电路A 、PCM 编译码A 、记发器电路、PCM 编译码B 、电话用户接口电路B 等组成,光信道为双光纤通信结构。

电话语音信号的光纤传输,可以有多种方式,一种是原始语音信号,经过光纤直接进行传输;另一种方式是先把话音信号数字化,然后再经过光纤传输,目前使用最多的是PCM 编译码方式。

下面先介绍本实验平台上两路电话电路接口示意图。

图7.1.1 电话用户A 、B 结构示意图图7.1.2 电话用户A 、B 模拟光传输结构示意图(A 到B 单工)P601用户A用户BP804激光/探测器P201P205PCM 编码 PCM译码TP801/802P801P802P804用户B :49P803PCM 编码 PCM译码P601P602P603P604TP601用户A :48图7.1.3数字电话光纤通信基本组成结构示意图(一)电话接口电路原理介绍用户电路也可称为用户线接口电路(Subscriber Line Interface Circuit —SLIC )。

任何交换机都具有用户线接口电路。

根据用户电话机的不同类型,用户线接口电路(SLIC )分为模拟用户接口电路和数字用户接口电路两种。

模拟用户线接口电路在实现上的最大压力是应能承受馈电、铃流和外界干扰等高压大电流的冲击,过去都是采用晶体管、变压器(或混合线圈)、继电器等分立元件构成。

在实际中,基于实现和应用上的考虑,通常将BORSHCT 功能中过压保护由外接元器件完成,编解码器部分另单成一体,集成为编解码器(CODEC ),其余功能由集成模拟SLIC 完成。

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一——眼图测量

信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。

全分为上、下两篇。

上篇包括一、二部分。

下篇包括三、四部分。

您知道吗?眼图的历史可以追溯到大约47年前。

在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。

您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。

很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。

这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。

在我2004年来力科面试前,我也从来没有听说过眼图。

那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。

之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。

刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。

网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。

“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。

为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。

如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。

数字同步技术

数字同步技术

实验十一 数字同步技术实验内容1.位定时、位同步提取实验2.信码再生实验3.眼图观察及分析实验4.CPU仿真眼图观察测量实验一. 实验目的1.掌握数字基带信号的传输过程。

2.熟悉位定时产生与提取位同步信号的方法。

3.学会观察眼图及其分析方法。

二. 实验电路工作原理所有数字通信系统能否有效地工作,在相当大的程度上依赖于发端和收端正确地同步。

同步的不良将会导致通信质量的下降,甚至完全不能工作。

通常有三种同步方式:即载波同步、位同步和群同步。

在本实验中主要分析位同步,载波同步和群同步不分析。

实现位同步的方法有多种,但可分为两大类型:一类是外同步法。

另一类是自同步法。

所谓外同步法,就是在发端除了要发送有用的数字信息外,还要专门传送位同步信号,到了接收端得用窄带滤波器或锁相环进行滤波提取出该信号作为位同步之用。

所谓自同步法,就是在发端不专门向收端发送位同步信号,而收端所需要的位同步信号是设法从接收信号中或从解调后的数字基带信号中提取出来。

本实验中,位同步提取的方法是从二相PSK(DPSK)信号中,对解调出的数字基带信息再直接提取恢复出位同步信号。

图11-1是位同步恢复与信码再生电路方框图,图11-2是电原理图。

图11-1 位同步恢复与信码再生电路方框图1.带通滤波与全波整流电路电路如图11-3所示。

设计该电路时,以数字基带码元速率为32KHz/s为例,数字基带信号由测量点TP703输入,经过电解电容E701与电阻R717进入该电路,带通滤波器由U711组成,测量点TP707为眼图测量点,利用二踪示波器的YB通道测量TP304或TP703,YA通道测量TP707时,调节示波器相应的开关与旋钮,就可以测量出眼图信号来。

关于眼图的具体测量在后面再作进一步的介绍。

由运算放大器U711∶C组成全波整流电路。

从图中可知,运算放大器U712(LM311)组成限幅放大电路。

32KHz谐振电路由电阻R731、R732、R722、电容C716、CA701(在电路板上这里为一可插入不同容量的电容作为实验调试,实验值为4700pf)、谐振线圈L701组成。

(完整版)眼图观测实验

(完整版)眼图观测实验

武夷学院实验报告
课程名称:通信原理实验项目名称:眼图观测实验姓名:专业:通信工程班级:一班学号:同组成员:无
实验结果:
实验线路图如图1所示:
图1
打开示波器,进过调节可以得到图2所示的波形图,再调节可以得到最大“眼睛”的眼图如图3所示。

图2 图3 由图2、图3可以看出,示波器显示的眼图的线迹不完全重合,“眼睛”也没有张开到最大,可以判断这次的眼图是在有一定噪声和码间干扰下得到的。

可以由上图可以知道,此时并不是最佳抽样时刻,还可以看出斜率小于0.5,可见对位定时误差也不是很敏感;图中的阴影部分较大抽样时刻上信号受噪声干扰的畸变程度较大;图中央的横轴位置没有与眼睛的横对角线重合,表明判决门限略低于零电平;上下两阴影区的间隔距离之半为噪声容限,可见其值也不大。

实验操作成绩(百分制)__________ 实验指导教师签字:__________
实验报告成绩(百分制)__________。

实验二 信道与眼图实验

实验二      信道与眼图实验

实验二信道与眼图实验一、实验目的1、掌握用眼图来定性评价基带传输系统性能。

2、掌握信道与眼图模块的使用方法。

二、实验内容1、信号送入高斯白噪信道,调节噪声功率大小,观测信道输出。

2、数字基带传输信道观测眼图。

三、实验仪器1、信号源模块一块2、信道与眼图模块一块3、20M双踪示波器一台4、虚拟仪器(选配)一块5、频谱分析仪一台四、实验原理1、高斯白噪本实验中我们用伪随机序列模拟高斯白噪声。

伪随机噪声具有类似于随机噪声的一些统计特性,同时又便于重复产生和处理。

由于它具有随机噪声的优点,又避免了它的缺点,因此获得了日益广泛的实际应用。

目前广泛应用的伪随机噪声都是由数字电路产生的周期序列(经滤波等处理后)得到的。

我们把这种周期序列称为伪随机序列。

通常产生伪随机序列的电路为一反馈移存器。

它又可分为线性反馈移存器和非线性反馈移存器两类。

由线性反馈移存器产生出的周期最长的二进制数字序列称为最大长度线性反馈移存器序列,通常简称为m序列。

由于m序列的均衡性、游程分布、自相关特性和功率谱与上述随机序列的基本性质很相似,所以通常认为m序列属于伪噪声序列或伪随机序列。

用m序列的这一部分频谱作为噪声产生器的噪声输出,虽然这种输出是伪噪声,但是多次进行某一测量,都有较好的重复性。

将m序列进行滤波,就可取得上述功率谱均匀的部分作为输出。

实验中,“噪声功率调节”旋转电位器用来控制叠加在信号上的噪声功率的大小。

2、传输畸变和眼图一个实际的基带传输系统,尽管经过了精心的设计,但要使其传输特性完全符合理想情况是困难的,甚至是不可能的。

因此,码间干扰也就不可能避免。

我们知道,码间干扰问题与发送滤波器特性、信道特性、接收滤波器特性等因素有关,因而计算由于这些因素所引起的误码率就非常困难,尤其在信道特性不能完全确知的情况下,甚至得不到一种合适的定量分析方法。

眼图就是一种能够方便地估计系统性能的实验手段。

这种方法的具体做法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器水平扫描周期,使其与接收码元的周期同步。

眼图观测实验报告

眼图观测实验报告

眼图观测实验报告一、实验目的1、了解和掌握眼图的形成过程和意义。

2、掌握光纤通信系统中的眼图观测方法。

二、实验器材主控&信号源模块25号光收发模块示波器三、实验原理1、实验原理框图2、实验框图说明本实验是以数字信号光纤传输为例,进行光纤通信测量中的眼图观测实验;为方便模拟真实环境中的系统传输衰减等干扰现象,我们加入了可调节的带限信道,用于观测眼图的张开和闭合等现象。

如眼图测试实验系统框图所示,系统主要由信号源、光发射机、光接收机以及带限信道组成;信号源提供的数字信号经过光发射机和接收机传输后,再送入用于模拟真实衰减环境的带限信道;通过示波器测试设备,以数字信号的同步位时钟为触发源,观测TP1测试点的波形,即眼图。

3、眼图基本概念及实验观察方法所谓眼图,它是一系列数字信号在示波器上累积而显示的图形。

眼图包含了丰富的信息,反映的是系统链路上传输的所有数字信号的整体特征。

利用眼图可以观察出码间串扰和噪声的影响,分析眼图是衡量数字通信系统传输特性的简单且有效的方法。

被测系统的眼图观测方法:通常观测眼图的方法是,如下图所示,以数字序列的同步时钟为触发源,用示波器YT模式测量系统输出端,调节示波器水平扫描周期与接收码元的周期同步,则屏幕中显示的即为眼图。

眼图的形成示意图一个完整的眼图应该包含从“000”到“111”的所有状态组,且每个状态组发送的此时要尽量一致,否则有些信息将无法呈现在示波器屏幕上。

八种状态如下所示:眼图参数及系统性能眼图的垂直张开度表示系统的抗噪声能力,水平张开度反映过门限失真量的大小。

眼图的张开度受噪声和码间干扰的影响,当光收端机输出端信噪比很大时眼图的张开度主要受码间干扰的影响,因此观察眼图的张开度就可以估算出光收端机码间干扰的大小。

其中,垂直张开度水平张开度从眼图中我们可以得到以下信息:(1)最佳抽样时刻是“眼睛”张开最大的时刻。

(2)眼图斜边的斜率表示了定时误差灵敏度。

斜率越大,对位定时误差越敏感。

眼图观察测量实验

眼图观察测量实验

实验12 眼图观察测量实验一、实验目得1、学会观察眼图及其分析方法,调整传输滤波器特性。

二、实验仪器1、眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计与改善(通过调整)传输系统性能。

我们知道,在实际得通信系统中,数字信号经过非理想得传输系统必定要产生畸变,也会引入噪声与干扰,也就就是说,总就是在不同程度上存在码间串扰。

在码间串扰与噪声同时存在情况下,系统性能很难进行定量得分析,常常甚至得不到近似结果。

为了便于评价实际系统得性能,常用观察眼图进行分析。

眼图可以直观地估价系统得码间干扰与噪声得影响,就是一种常用得测试手段。

什么就是眼图?所谓“眼图”,就就是由解调后经过接收滤波器输出得基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示得波形称为眼图。

干扰与失真所产生得传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人得眼睛故称眼图。

在图12-1中画出两个无噪声得波形与相应得“眼图”,一个无失真,另一个有失真(码间串扰)。

图12-1中可以瞧出,眼图就是由虚线分段得接收码元波形叠加组成得。

眼图中央得垂直线表示取样时刻。

当波形没有失真时,眼图就是一只“完全张开”得眼睛。

在取样时刻,所有可能得取样值仅有两个:+1或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许得噪声电平就减小了。

换言之,在随机噪声得功率给定时,将使误码率增加。

“眼睛”张开得大小就表明失真得严重程度。

为便于说明眼图与系统性能得关系,我们将它简化成图12-2得形状。

由此图可以瞧出:(1)最佳取样时刻应选择在眼睛张开最大得时刻;(2)眼睛闭合得速率,即眼图斜边得斜率,表示系统对定时误差灵敏得程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区得垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区得间隔垂直距离之半就是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交得区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息得解调器有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

班级通信1403 学号 201409732 姓名裴振启指导教师邵军花日期实验2 眼图观察测量实验一、实验目的学会观察眼图及其分析方法,调整传输滤波器特性。

二、实验仪器1. 眼图观察电路2.时钟与基带数据发生模块,位号:G3.PSK调制模块,位号A4.噪声模块,位号B5.PSK解调模块,位号C6.复接/解复接、同步技术模块,位号:I7.20M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。

所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。

干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。

因为对于二进制信号波形,它很像人的眼睛故称眼图。

在图2-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。

图2-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。

眼图中央的垂直线表示取样时刻。

当波形没有失真时,眼图是一只“完全张开”的眼睛。

在取样时刻,所有可能的取样值仅有两个:+1 或-1。

当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。

这样,保证正确判决所容许的噪声电平就减小了。

换言之,在随机噪声的功率给定时,将使误码率增加。

“眼睛”张开的大小就表明失真的严重程度。

眼图图2-1 无失真及有失真时的波形及眼图(a)无码间串扰时波形;无码间串扰眼图(b)有码间串扰时波形;有码间串扰眼图通信工程实验教学中心通信系统原理实验报告在图2-2中给出从示波器上观察到的比较理想状态下的眼图照片。

本实验主要是完成PSK 解调输出基带信号的眼图观测实验。

(a) 二进制系统 (b) 随机数据输入后的二进制系统图2-2实验室理想状态下的眼图四、各测量点和可调元件作用底板右边“眼图观察电路”W06:接收滤波器特性调整电位器。

P16:眼图观察信号输入点。

P17:接收滤波器输出升余弦波形测试点(眼图观察测量点)。

五、实验步骤1.插入有关实验模块:在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“ PSK调制模块” 、“噪声模块”、“PSK解调模块”,插到底板“G、A、B、C”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。

注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。

2.BPSK信号线连接:用专用导线将4P01、37P01;37P02、3P01;3P02、38P01;38P02、P16连接(底板右边“眼图观察电路”)。

注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔。

3.加电:打开系统电源开关,底板的电源指示灯正常显示。

若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

4.跳线开关设置:“PSK调制模块”跳线开关37K02的1-2、3-4相连。

“时钟与基带数据发生模块”的拨码器4SW02:设置为“00001“,4P01产生32Kb/s的 15位m序列输出。

5.无噪声眼图波形观察:(1)噪声模块调节:调节3W01,将3TP01噪声电平调为0;(2)调节3W02,调整3P02信号幅度为4V。

(3)调整好PSK调制解调电路状态,即37P01与38P02波形一致(可以反相),若不一致,可调整38W01电位器。

(4)调整接收滤波器H r(w) (这里可视为整个信道传输滤波器H(w) )的特性,使之构成一个等效的理想低通滤波器。

(5)用示波器的一根探头CH1放在4P02(码元时钟)上,另一根探头CH2放在P17(数通信工程实验教学中心通信系统原理实验报告字基带信号的升余弦波)上,选择示波器触发方式为CH1,调整示波器的扫描旋纽,则可观察到若干个并排的眼图波形。

眼图上面的一根水平线由连1引起的持续正电平产生,下面一根水平线由连0码引起的持续的负电平产生,中间部分过零点波形由1、0交替码产生。

观看眼图,调整电位器W06直到眼图波形的过零点位置重合、线条细且清晰,此时的眼图为无码间串扰、无噪声时的眼图。

在调整电位器W06过程中,可发现眼图波形过零点线条有时弥散,此时的眼图为有码间串扰、无噪声时的眼图,并且线条越弥散,表示码间串扰越大;在调整过程中,还可发现 W06 在多个不同位置,眼图波形的过零点都重合,由于 W06 不同位置,对应H ( )的不同特性,它正好验证了无码间串扰传输特性不是唯一的。

6.有噪声眼图波形观察:调节3W01,增加噪声电平。

因为噪声的影响,PSK解调输出的基带信号中将出现干扰的毛刺信号(实为电平毛刺,在后续再生信号中容易引起判决错误,出现误码),此时的眼图线条变粗、变模糊并且呈毛刺状。

噪声越大,线条越粗,越模糊。

7.另外,噪声也可直接与基带眼图信号混合,然后观测眼图。

此时用专用导线将 4P01 与P16及P17与3P01相连。

即将基带眼图信号直接接入“噪声模块”,调节3W01,增加噪声电平,此时需在3P02铆孔观测眼图波形。

8. 关机拆线:实验结束,关闭电源,拆除信号连线,并按要求放置好实验模块。

注:本实验电路要求输入的基带信号为32Kb/s速率。

六、实验结果分析1.简述眼图的产生原理以及它的作用。

眼图是一系列数字信号在示波器上累积而显示的图形,由于示波器的余辉作用,将扫描所得的每一个码元波形重叠在一起,从而形成眼图。

眼图中包含了丰富的信息,从眼图上可以观察出码间串扰和噪声的影响,体现了数字信号整体的特征,从而可以估计系统优劣程度,因而眼图分析是高速互连系统信号完整性分析的核心。

另外也可以用此图形对接收滤波器的特性加以调整,来减小码间串扰,改善系统的传输性能。

眼图的“眼睛”张开的大小反映着码间串扰的强弱“眼睛”张的越大,且眼图越端正,表示码间串扰越小;反之表示码间串扰越大。

当存在噪声时,噪声将叠加在信号上,观察到的眼图的线迹会变得模糊不清。

若同时存在码间串扰,“眼睛”将张开得更小。

与无码间串扰时的眼图相比,原来清晰端正的细线迹,变成了比较模糊的带状线,而且不很端正。

噪声越大,线迹越宽,越模糊;码间串扰越大,眼图越不端正。

2.观察实验中眼图波形,并采用MATLAB语言进行二进制基带传输系统仿真设计及眼图的仿真观察。

简易眼图仿真x=randint(3000,1,2);y=[[0];rcosflt(x,1,10)]; figure(1);t=1:30061;plot(t,y);axis([1,300,-0.5,1.5]);grid oneyediagram(y,20,4);t1=t';D=[t1;y]经过通信系统的眼图仿真close all;M = 2; % Define the M-ary numberFd = 2; Fs = 40; % sampling rates. Pd = 200; % Number of points in the calculationmsg_o= randint(Pd,1,M); % Random integers in the range [0,M-1]original signalsnr=10;%Signal-to-noise ratemsg_m = pskmod(msg_o,M);k=rand(1);noise=k*rand(size(msg_o));nmsg_m= msg_o+noise;y= awgn(msg_o,snr,'measured');z=awgn(msg_m,snr)delay = 3;rcva =rcosflt(z,Fd,Fs,'fir/normal',.5,delay;N = Fs/Fd;propdelay = delay .* N + 1; rcv1 = rcva(propdelay:end-(propdelay-1),:); offset = 0;h1 = eyediagram(rcv1,N,1/Fd,offset);set(h1,'Name','PSKMOD Eye Diagram Through AWGN &Filter');3.通过 MATLAB 语言仿真观察基带信号(单极性归零、单极性不归零、双极性归零、双极性不归零波形)的功率谱密度图。

Ts=1;N_sample=128;%每个码元的抽样点数 dt=Ts/N_sample;%抽样时间间隔 N=1000;%码元数t=0:dt:(N*N_sample-1)*dt; gt1=ones(1,N_sample);%NRZgt2=[ones(1,N_sample/2),zeros(1,N_sam ple/2)];%RZ 波形%gt3=sinc(pi*t/Ts);双极性sinc 函数波形d=(sign(randn(1,N))+1)/2;%单极性 data=sigexpand(d,N_sample);%在序列中插入N_sample-1个0st1=conv(data,gt1);%卷积 st2=conv(data,gt2);%卷积 d2=sign(randn(1,N));data2=sigexpand(d2,N_sample);%对序列间隔插入N_sample-1个0 st3=conv(data2,gt1);%卷积 st4=conv(data2,gt2);[f1,stf1]=T2F(t,st1(1:length(t))); [f2,stf2]=T2F(t,st2(1:length(t))); [f3,stf3]=T2F(t,st3(1:length(t))); [f4,stf4]=T2F(t,st4(1:length(t))); figure(1)subplot(211)plot(t,st1(1:length(t)),'b'); axis([0 20 0 1.5]);grid on; title('单极性NRZ 波形'); subplot(212);plot(f1,10*log10(abs(stf1).^2/N)); axis([-5 5 -40 10]);grid on;title('单极性NRZ 功率谱密度(dB/H )'); figure(2) subplot(211)plot(t,st2(1:length(t)),'b'); axis([0 20 0 1.5]);grid on; title('单极性RZ 波形'); subplot(212);plot(f2,10*log10(abs(stf2).^2/N)); axis([-5 5 -40 10]);grid on;title('单极性RZ 功率谱密度(dB/H )');figure(3) subplot(211)plot(t,st3(1:length(t)),'b'); axis([0 20 -1.5 1.5]);grid on; title('双极性NRZ 波形'); subplot(212);plot(f3,10*log10(abs(stf3).^2/N));axis([-5 5 -40 10]);grid on;title('双极性NRZ功率谱密度(dB/H)');figure(4) plot(t,st4(1:length(t)),'b'); axis([0 20 -1.5 1.5]);grid on; title('双极性RZ 波形'); subplot(212);axis([-5 5 -40 10]);grid on;title('双极性RZ 功率谱密度(dB/H )');4.(选做)采用 MATLAB 语言进行多进制基带传输系统眼图的仿真观察。

相关文档
最新文档