7.有源滤波器设计实验

合集下载

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告一、实验目的。

本实验旨在通过对有源滤波器的实验研究,掌握有源滤波器的基本原理、特性和设计方法,加深对电子电路理论的理解,提高实验操作能力。

二、实验仪器和设备。

1. 信号发生器。

2. 示波器。

3. 直流稳压电源。

4. 电阻、电容、运算放大器等元器件。

5. 电路实验箱。

三、实验原理。

有源滤波器是利用运算放大器的高输入阻抗和低输出阻抗的特性,结合电容和电阻等元件构成的一种滤波器。

根据不同的电路连接方式和元器件参数,可以实现对不同频率信号的滤波作用。

四、实验内容。

1. 搭建低通有源滤波器电路。

2. 搭建高通有源滤波器电路。

3. 测量并记录滤波器的幅频特性曲线。

4. 测量并记录滤波器的相频特性曲线。

五、实验步骤。

1. 按照电路图搭建低通有源滤波器电路,并接通电源。

2. 调节信号发生器输出正弦波信号,接入滤波器输入端,通过示波器观察输出波形,记录频率和幅值。

3. 依次改变输入信号频率,记录输出波形的变化,绘制幅频特性曲线。

4. 根据测量数据计算并绘制滤波器的相频特性曲线。

5. 重复以上步骤,搭建高通有源滤波器电路,进行相同的测量和记录。

六、实验数据记录与处理。

1. 低通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。

100 2.5。

500 2.3。

1000 2.0。

5000 1.5。

10000 1.2。

... ...2. 低通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。

100 0。

500 -45。

1000 -90。

5000 -180。

10000 -270。

... ...3. 高通有源滤波器幅频特性曲线数据:频率(Hz)幅值(V)。

100 0.5。

500 0.8。

1000 1.2。

5000 2.0。

10000 2.5。

... ...4. 高通有源滤波器相频特性曲线数据:频率(Hz)相位(°)。

100 180。

500 135。

1000 90。

5000 0。

10000 -90。

有源滤波器实验报告总结

有源滤波器实验报告总结

有源滤波器实验报告总结一、引言有源滤波器是一种电子滤波器,它利用放大器来增强信号的幅度并同时进行滤波。

在本次实验中,我们设计了一个有源低通滤波器,并通过实验验证了其性能。

二、实验步骤1. 设计滤波器电路:根据所需的滤波特性,我们选择了适当的电路拓扑结构,并计算了元件的数值。

然后,我们根据计算结果选择了合适的电阻、电容和放大器。

2. 搭建电路:根据设计好的电路图,我们按照所需的元件数值和连接方式搭建了有源滤波器电路。

3. 测试电路:接下来,我们使用信号发生器产生不同频率的正弦信号作为输入信号,通过有源滤波器后,使用示波器观察输出信号的波形和频率响应。

4. 记录实验数据:我们记录了不同频率下输入和输出信号的幅度,以及相位差,并绘制了频率响应曲线。

三、实验结果通过实验,我们得到了有源滤波器的频率响应曲线。

曲线显示,在低频段时,输出信号幅度较大,而在高频段时,输出信号幅度逐渐衰减。

这符合我们设计的低通滤波器的特性。

四、讨论与分析根据实验结果,我们可以得出以下结论:1. 有源滤波器能够对输入信号进行增强和滤波。

2. 频率响应曲线显示了有源滤波器的滤波特性,能够滤除高频信号,保留低频信号。

我们还发现了一些问题和改进的空间:1. 在实际搭建电路的过程中,可能会遇到元件误差和放大器非线性等问题,这都会对滤波器的性能产生影响,需要进一步优化和调整电路。

2. 在选择元件数值时,需要根据具体要求和条件进行综合考虑,以获得更好的滤波效果。

五、总结通过本次实验,我们成功设计并搭建了一个有源低通滤波器,并验证了其滤波特性。

实验结果表明,有源滤波器具有良好的滤波效果,能够滤除高频信号,保留低频信号。

在实际应用中,有源滤波器在音频处理、通信系统等领域具有广泛的应用前景。

六、参考文献1. 张宇. 电子技术实验教程[M]. 北京:高等教育出版社,2015.2. Sedra A S, Smith K C. Microelectronic Circuits[M]. OxfordUniversity Press, 2010.注:本文仅为实验报告总结,旨在总结有源滤波器实验的过程和结果,并对实验中的问题和改进进行讨论。

有源和无源滤波器实验报告

有源和无源滤波器实验报告

有源和无源滤波器实验报告1. 引言滤波器是信号处理中常用的工具,用于去除信号中的噪声或选择特定频率范围的信号。

滤波器可以分为有源和无源滤波器两种类型。

有源滤波器使用了一个或多个放大器来增强输入信号的能力,而无源滤波器则不使用放大器来改变信号的幅值。

本实验旨在比较有源和无源滤波器的性能差异,并对其进行测试和评估。

2. 实验目的本实验的目的是通过设计和测试有源和无源滤波器来了解它们的工作原理和性能特点,并对其进行比较。

3. 实验材料•信号发生器•电阻•电容•电感•示波器•多用表•连接线4. 实验步骤4.1 有源低通滤波器设计和测试1.根据所给的电路图,连接有源低通滤波器电路。

2.使用信号发生器产生一个频率为1000Hz的正弦波信号作为输入信号。

3.使用示波器测量输入和输出信号的幅值。

4.记录输入和输出信号的幅值,并计算增益。

5.将信号发生器的频率逐步调整,重复步骤3和4,以获得有源低通滤波器的频率响应曲线。

4.2 无源高通滤波器设计和测试1.根据所给的电路图,连接无源高通滤波器电路。

2.使用信号发生器产生一个频率为1000Hz的正弦波信号作为输入信号。

3.使用示波器测量输入和输出信号的幅值。

4.记录输入和输出信号的幅值,并计算增益。

5.将信号发生器的频率逐步调整,重复步骤3和4,以获得无源高通滤波器的频率响应曲线。

4.3 结果分析与比较1.将有源低通滤波器和无源高通滤波器的频率响应曲线进行比较。

2.分析并比较它们的增益特性、截止频率以及对不同频率信号的响应情况。

5. 实验结果实验结果如下:5.1 有源低通滤波器频率响应曲线在实验中,我们测得有源低通滤波器的频率响应曲线如下图所示:在这里插入有源低通滤波器的频率响应曲线图5.2 无源高通滤波器频率响应曲线在实验中,我们测得无源高通滤波器的频率响应曲线如下图所示:在这里插入无源高通滤波器的频率响应曲线图6. 结论通过对有源低通滤波器和无源高通滤波器的设计和测试,我们得出以下结论:- 有源滤波器能够增强输入信号的能力,具有较高的增益。

无源和有源滤波器实验报告

无源和有源滤波器实验报告

无源和有源滤波器实验报告无源和有源滤波器实验报告引言:滤波器是电子电路中常见的一个组件,它可以对信号进行处理,使得输出信号满足特定的频率响应要求。

根据电路中是否引入能量源,滤波器可以分为无源滤波器和有源滤波器两种类型。

本实验旨在通过搭建无源和有源滤波器电路,并对其进行测试和比较,以了解它们的工作原理和特性。

实验一:无源滤波器1.1 实验目的通过搭建无源滤波器电路,观察和分析其频率响应特性。

1.2 实验原理无源滤波器是指不引入能量源的滤波器,它主要由电感和电容组成。

在本实验中,我们将使用RC滤波器作为无源滤波器的代表。

RC滤波器由一个电阻和一个电容串联而成,通过改变电阻和电容的数值可以调节滤波器的截止频率。

1.3 实验步骤1)根据实验要求,选择合适的电阻和电容数值。

2)按照电路图搭建无源滤波器电路。

3)连接信号发生器和示波器,设置信号发生器输出正弦波信号。

4)逐渐调节信号发生器的频率,观察示波器上输出信号的振幅变化。

5)记录不同频率下的输出振幅,并绘制频率-振幅曲线。

1.4 实验结果与分析通过实验我们得到了频率-振幅曲线,可以看出在截止频率以下,输出信号的振幅基本保持不变,而在截止频率以上,输出信号的振幅逐渐减小。

这是因为在截止频率以下,电容对低频信号的阻抗较大,起到了滤波的作用;而在截止频率以上,电容对高频信号的阻抗较小,导致信号通过电容而无法被滤波。

实验二:有源滤波器2.1 实验目的通过搭建有源滤波器电路,观察和分析其频率响应特性。

2.2 实验原理有源滤波器是指引入能量源的滤波器,它可以通过放大器等有源元件来增强滤波效果。

在本实验中,我们将使用激励放大器和RC滤波器组成有源滤波器。

2.3 实验步骤1)根据实验要求,选择合适的电阻、电容和放大器数值。

2)按照电路图搭建有源滤波器电路。

3)连接信号发生器、放大器和示波器,设置信号发生器输出正弦波信号。

4)逐渐调节信号发生器的频率,观察示波器上输出信号的振幅变化。

有源滤波器实验报告

有源滤波器实验报告

实验七集成运算放大器的基本应用(H)—有源滤波器一、实验目的1、熟悉用运放、电阻和电容组成有源低通滤波、高通滤波和带通、带阻滤波器。

2、学会测量有源滤波器的幅频特性。

二、实验原理图7 —1四种滤波电路的幅频特性示意图由RC元件与运算放大器组成的滤波器称为RC有源滤波器,其功能是让一定频率范围内的信号通过,抑制或急剧衰减此频率范围以外的信号。

可用在信息处理、数据传输、抑制干扰等方面,但因受运算放大器频带限制,这类滤波器主要用于低频范围。

根据对频率范围的选择不同,可分为低通(LPF)、高通(HPF)、带通(BPF)与带阻(BEF)等四种滤波器,它们的幅频特性如图7 —1所示。

具有理想幅频特性的滤波器是很难实现的,只能用实际的幅频特性去逼近理想的。

一般来说,滤波器的幅频特性越好,其相频特性越差,反之亦然。

滤波器的阶数越高,幅频特性(a)低通(C)带通(d)带阻衰减的速率越快,但RC网络的节数越多,元件参数计算越繁琐,电路调试越困难。

任何高阶滤波器均可以用较低的二阶RC有滤波器级联实现。

1、低通滤波器(LPF)低通滤波器是用来通过低频信号衰减或抑制高频信号。

如图7 —2 (a)所示,为典型的二阶有源低通滤波器。

它由两级RC滤波环节与同相比例运算电路组成,其中第一级电容C接至输出端,弓I入适量的正反馈,以改善幅频特性。

图7—2 ( b)为二阶低通滤波器幅频特性曲线。

图7 —2二阶低通滤波器电路性能参数R fA UP=^- 二阶低通滤波器的通带增益R I截止频率,它是二阶低通滤波器通带与阻带的界限频率。

状。

2、高通滤波器(HPF与低通滤波器相反,高通滤波器用来通过高频信号,衰减或抑制低频信号。

只要将图7—2低通滤波电路中起滤波作用的电阻、电容互换,即可变成二阶有源高通滤波器,如图7 —3(a)所示。

高通滤波器性能与低通滤波器相反,其频率响应和低通滤波器是“镜象”关系,仿照LPH分析方法,不难求得HPF的幅频特性。

有源滤波器设计 实验报告

有源滤波器设计 实验报告

有源滤波器设计实验报告有源滤波器设计实验报告引言:滤波器是电子电路中常见的重要组成部分,用于对信号进行滤波和处理。

有源滤波器是一种采用有源元件(如放大器)来增强信号处理能力的滤波器。

本实验旨在设计并实现一个有源滤波器,通过实验验证其滤波性能。

一、实验目的本实验的主要目的是设计和实现一个有源滤波器,通过调整电路参数和元件值,实现对不同频率信号的滤波。

同时,通过实验结果的分析,了解有源滤波器的工作原理和性能。

二、实验原理有源滤波器是一种利用有源元件(如运算放大器)来增强滤波器性能的电路。

常见的有源滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

它们分别通过选择合适的元件和电路拓扑结构来实现对不同频率信号的滤波。

三、实验步骤1. 根据设计要求,选择合适的电路拓扑结构和元件。

2. 按照电路图连接电路,并确保连接正确无误。

3. 根据设计要求,选择合适的元件值,并进行元件的选取和调整。

4. 使用信号发生器产生测试信号,并连接到有源滤波器的输入端。

5. 使用示波器测量有源滤波器的输出信号,并记录实验数据。

6. 根据实验数据,分析有源滤波器的滤波性能。

四、实验结果与分析通过实验,我们设计并实现了一个二阶有源低通滤波器。

在实验中,我们选择了合适的运算放大器和电容、电阻元件,并根据设计要求进行了调整。

实验结果显示,该有源滤波器能够有效滤除高频信号,只保留低频信号。

通过调整电路参数,我们还可以改变滤波器的截止频率,实现对不同频率信号的滤波。

五、实验总结本实验通过设计和实现有源滤波器,验证了其滤波性能。

通过调整电路参数和元件值,我们可以实现对不同频率信号的滤波。

有源滤波器在电子电路中具有重要的应用价值,能够对信号进行精确的滤波和处理。

通过本实验,我们对有源滤波器的工作原理和性能有了更深入的了解。

六、实验感想通过本次实验,我对有源滤波器的设计和实现有了更深入的理解。

在实验过程中,我遇到了一些问题,如电路连接错误和元件值选择不准确等。

有源滤波器实验报告(1)

有源滤波器实验报告(1)

有源滤波器实验报告(1)有源滤波器实验报告一、实验目的1.了解有源滤波器的基本工作原理。

2.掌握有源低通和有源高通滤波器的实现方法及其频率特性。

3.学习使用多用途运放进行有源滤波器的设计。

二、实验原理有源滤波器由运放放大器和RC电路构成。

有源滤波器的基本原理是利用运放的放大作用以及RC电路的滤波作用实现滤波的过程。

有源滤波器分为有源低通滤波器和有源高通滤波器两种类型,分别用于对信号的低频和高频进行滤波。

三、实验仪器1.多用途运放实验板2.数字存储示波器3.脉冲信号发生器4.电源四、实验内容1.设计并搭建有源低通滤波器电路。

2.设计并搭建有源高通滤波器电路。

3.对低频和高频信号分别进行滤波实验。

4.在不同频率下测量有源低通和有源高通滤波器的增益和相位延迟特性。

五、实验步骤和操作1.设计有源低通滤波器电路。

按照RC低通滤波器的原理,选择合适的电阻和电容组合来计算截止频率,然后根据运放的放大倍数设计电压跟随电路来实现放大和增益控制。

将设计好的电路搭建在实验板上,并连接信号输入和输出端口,将脉冲信号发生器输出的信号接入输入端口,使用数字示波器来观察滤波结果。

2.设计有源高通滤波器电路。

按照RC高通滤波器的原理,选择合适的电阻和电容组合来计算截止频率,然后根据运放的放大倍数设计电压跟随电路来实现放大和增益控制。

将设计好的电路搭建在实验板上,并连接信号输入和输出端口,将脉冲信号发生器输出的信号接入输入端口,使用数字示波器来观察滤波结果。

3.测量有源低通和有源高通滤波器的增益和相位延迟特性。

分别在不同频率下进行测量,利用示波器测量输出信号的幅度和相位,计算出滤波器的增益和相位延迟特性。

六、实验结果和分析1.有源低通滤波器实验结果:实验中选择的截止频率为1kHz,测量得到在1kHz处的增益为18dB,相位延迟为-40度。

通过实验观察到,低频信号经过滤波器处理后能够得到较好的效果,高频信号被滤除,滤波器具有很好的低通滤波特性。

有源滤波器实验报告

有源滤波器实验报告

有源滤波器实验报告有源滤波器实验报告引言:在电子电路实验中,滤波器是一种常见的电路元件,用于对信号进行滤波处理。

滤波器可以将某个频率范围内的信号通过,而将其他频率范围内的信号削弱或者抑制。

本实验旨在研究有源滤波器的工作原理和特性,并通过实验验证其有效性。

实验目的:1. 理解有源滤波器的基本原理;2. 掌握有源滤波器的设计和调试方法;3. 通过实验验证有源滤波器的性能。

实验原理:有源滤波器是由一个放大器和一个被动滤波器组成的。

被动滤波器是由电阻、电容和电感等被动元件组成的,其频率响应特性由被动元件的参数决定。

而有源滤波器通过加入一个放大器,可以增加滤波器的增益和频率选择性。

实验步骤:1. 搭建有源低通滤波器电路。

根据实验要求,选择合适的被动滤波器参数和放大器类型,搭建电路。

2. 进行电路调试。

通过信号发生器输入不同频率的正弦波信号,观察输出波形,并调整电路参数,使得输出波形满足实验要求。

3. 测量电路参数。

使用示波器测量电路的输入输出电压,并记录下来。

4. 更换被动滤波器参数,重复步骤2和3,以验证不同参数对滤波器性能的影响。

5. 分析实验数据。

根据测量结果,绘制电路的频率响应曲线,并分析滤波器的特性。

实验结果:通过实验,我们成功搭建了有源低通滤波器电路,并进行了调试和测量。

实验数据显示,该滤波器在截止频率以下的频率范围内,可以将输入信号通过,并且增益较高;而在截止频率以上的频率范围内,输出信号的幅值逐渐下降,达到了滤波的效果。

进一步分析实验数据,我们发现滤波器的截止频率与被动滤波器的参数有关。

当电容或电感的数值增大时,截止频率也会相应增大,滤波器的频率选择性变弱。

而当电阻的数值增大时,滤波器的增益减小,输出信号的幅值也会减小。

讨论与总结:有源滤波器是一种常见的电子电路元件,广泛应用于各种电子设备中。

本实验通过搭建和调试有源滤波器电路,验证了其滤波效果和特性。

在实验过程中,我们发现滤波器的性能受到被动滤波器参数的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气工程学院
实验名称:有源滤波器设计实验课程:电路与电子技术实验2
课程号:101C0330
学期:2018春夏学期
任课教师:沈连丰
课程名称:电路与电子技术实验2 指导老师:沈连丰成绩:__________________ 实验名称:有源滤波器设计实验实验类型:练习型
一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1.掌握有源滤波器的分析和设计方法。

2.学习有源滤波器的调试、幅频特性的测量方法。

3.了解滤波器的结构和参数对滤波器性能的影响。

4.用EDA仿真的方法来研究滤波电路,了解元件参数对滤波效果的影响。

二、实验内容和原理
实验原理:
1.传递函数A v(s) :反映滤波器增益随频率的变化关系,也称为电路的频率响应、频率特性。

2.通带增益A v p:为一个实数。

(针对LPF)、(针对HPF)、(针对BPF)、(针对BEF)。

3.固有频率f0:也称自然频率、特征频率,其值由电路元件的参数决定。

4.通带截止频率f p:滤波器增益下降到其通带增益A v p 的0.707倍时所对应的频率(也称–3dB 频率、半功率点、上限频率(ωH 、f H )或下限频率(ωL 、f L )。

5.品质因数Q:反映滤波器频率特性的一项重要指标,不同类型滤波器的定义不同。

例如,在低通和高通滤波器中,定义为当时增益的模与通带增益之比。

实验内容:
1.设计一个简单的二阶、有源、低通滤波器(LPF,同相型),并测量其幅频特性。

2.设计一个简单的有源、低通滤波器(LPF,同相型),并测量其幅频特性。

3.设计一个二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型),并测量其幅频特性。

4.设计一个二阶、有源、多路负反馈型、低通滤波器(LPF,反相型),并测量其幅频特性。

三、主要仪器设备
1.集成运算放大器LM358
2.电阻电容等元器件
3.MY61数字万用表
4.示波器
5.函数信号发生器
四、操作方法和实验步骤
1、实验内容
(1) 在实验板上安装所设计的电路。

(2) 有源滤波器的静态调零。

(3) 测量滤波器的通带增益A v p、通带截止频率f p。

(4) 测量滤波器的频率特性(有条件时可使用扫频仪)。

(5) 改变电路参数,研究品质因数Q 对滤波器频率特性的影响。

2、设计一个二阶有源低通滤波器。

具体要求如下:
(1) 通带截止频率:f p=1kHz;
(2) 通带增益:A v p=1~2 ;
(3) 品质因数:Q = 0.707 ;
(4) 集成运放选用LM358 ,电容选用0.1~0.01μF,电阻控制在kΩ~MΩ数量级。

3、有源低通滤波器的调试方法
(1) 定性检查电路是否具备低通特性
在输入端加上幅度固定的正弦波信号,改变输入信号的频率范围,用示波器或交流毫伏表观测输出电压的幅度变化(要求峰峰值≤10V pp),检查电路是否具备低通特性。

如不具备,则应找出原因,排除电路故障;如已具备低通特性则可进一步调试低通滤波器的特性。

(2) 低通滤波器的特性调试
低通滤波器的特性调试应按有关计算式进行。

在一般情况下,应尽量选用相互间没有影响或影响较小的元件进行调整。

如果有必要,这些调整须反复进行。

(3) 测绘滤波电路的幅频特性曲线。

有条件时,可用扫频仪直接观测滤波电路的幅频特性。

4、设计一个二阶有源低通滤波器。

分别选用如下3 种电路形式来实现。

二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型):
简单的二阶、有源、低通滤波器(LPF,同相型):
二阶、有源、多路负反馈型、低通滤波器(LPF ,反相型):
五、实验数据记录和处理
1.简单的二阶、有源、低通滤波器(LPF ,同相型)
取输入Vpp=500mV
仿真如下:
Rf
39k
V
V+
V1
15Vdc
FREQ = 3kHz
VAM PL = 5V VOFF = 0V AC = 1V
得到的幅频特性曲线如下:
2.简单的有源、低通滤波器(LPF,同相型)
当波形刚开始出现时的波形:
此时的Vpp 为18.6V ,频率为9.346kHz 。

仿真如下:
V +
FRE Q = 3kHz
V AM PL = 5V V OFF = 0V A C = 1V Rf
{Rf}
V
V 1
15V dc
得到的幅频特性曲线如下:
输入信号幅度控制为10mV。

有:
f H≈537kHz。

3.二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型)
仿真结果如下:
4.二阶、有源、多路负反馈型、低通滤波器(LPF,反相型)
C1=0.01u:
C2=0.1u:
六、实验结果与分析
1.简单的二阶、有源、低通滤波器(LPF,同相型)
由“逐点测量法”测量并绘制出的滤波电路的幅频特性曲线可以发现,这是一条先保持稳定然后下降的曲线。

并且,当输出电压幅值为初始稳定输出值的1/3时,频率f0约为1.59kHz,当输出电压幅值为初始稳定输出值的0.707倍时,频率fp约为0.59kHz,为f0的0.37倍。

2.简单的有源、低通滤波器(LPF,同相型)
由“逐点测量法”测量并绘制出的滤波电路的幅频特性曲线可以发现,这是一条先保持稳定然后下降的曲线。

并且,当输出电压幅值为初始稳定输出值的0.707倍时,频率fp约为535kHz。

当输出电压波形刚开始出现三角波时,产生如下的波形:
此时的输出电压Vpp为18.60V,频率为9.346kHz。

输入信号幅度控制为10mV。

有:
改变输入信号的频率范围,用示波器或交流毫伏表观察输出电压的幅度变化。

当测出的输出电压值达到Uo×0.707值时,停止信号源频率的改变,此时信号源所对应的输出频率即为上限频率f H或下限频率f L。

Uo=16.0mV。

f H≈600kHz。

3.二阶、有源、压控型(单一正反馈支路)、低通滤波器(LPF,同相型)
取Rf=39k时,由“逐点测量法”测量并绘制出的滤波电路的幅频特性曲线可以发现,这是一条先保持稳定然后先稍有上升,再逐渐下降至0的曲线。

并且,当输出电压幅值先上升再下降至与原初始稳定电压幅值相等时,频率约为1.6kHz,当输出电压幅值为初始稳定输出值的0.707倍时,频率fp约为2kHz。

取Rf=100k时,Avp>3,Q趋向于无穷大,电路产生如下所示的自激振荡波形:
4.二阶、有源、多路负反馈型、低通滤波器(LPF,反相型)
取C1=0.01u时,由“逐点测量法”测量并绘制出的滤波电路的幅频特性曲线可以发现,这是一条先保持稳定,再逐渐下降至0的曲线。

取C1=0.1u时,由“逐点测量法”测量并绘制出的滤波电路的幅频特性曲线可以发现,这是一条先保持稳定然后先稍有上升,再逐渐下降至0的曲线。

七、讨论、心得
这次实验难度不大,通过本次实验,我掌握了有源滤波器的分析和设计方法,学习了有源滤波器的调试、幅频特性的测量方法,加深了对于滤波器的结构和参数对滤波器性能的影响的理解。

实验完成后我还用EDA仿真的方法来研究滤波电路,再次强化了PSpice的熟练程度,了解了元件参数对滤波效果的影响。

相关文档
最新文档