车用电动液压千斤顶结构设计分析
我的毕业设计书(液压千斤顶含原理图,结构图,装配图,零件图,弯矩图

毕业设计论文题目:液压千斤顶的探究与设计姓名王坤学号0905023037 专业机械制造与自动化年级2009级院系机电工程学院指导老师贾焕丽毕业设计要求及主要数据1给定一定的参数及参考结构图要求学生完成该项目的参数计算、结构设计并针对具体的失效形式进行相应的强度计算目的培养学生进行简单机械的设计能力熟习设计过程、设计步骤能够利用所学知识判断主要失效形式并进行相关的强度计算。
2具体要求要求结构合理参数计算正确相关理论选用合理最好具有新颖性、独创性尺寸标注正确、完整。
1、液压千斤顶设计主要技术指标起重重量20000N 最大升程800mm 操作方式手柄控制设计主要内容设计计算书标准件以外的所有图纸目录引言第一章液压千斤顶的总体设计方案1液压千斤顶设计方案示意图2液压千斤顶的组成3液压千斤顶的优缺点第二章液压千斤顶的原理1液压千斤顶原理图2液压千斤顶的特点第三章液压千斤顶结构设计和计算说明书1 内管设计2 外管设计3 活塞杆设计4 导向套的设计5液压千斤顶活塞部位的密封6液压千斤顶装配图第四章液压千斤顶常见的故障与维修结论致谢参考文献引言机电一体化又称机械电子学英语称为Mechatronics它是由英文机械学Mechanics的前半部分与电子学Electronics的后半部分组合而成。
机电一体化最早出现在1971年日本杂志《机械设计》的副刊上随着机电一体化技术的快速发展机电一体化的概念被我们广泛接受和普遍应用。
随着计算机技术的迅猛发展和广泛应用机电一体化技术获得前所未有的发展。
现在的机电一体化技术是机械和微电子技术紧密集合的一门技术他的发展使冷冰冰的机器有了人性化智能化。
机电一体化技术是将机械技术、电工电子技术、微电子技术、信息技术、传感器技术、接口技术、信号变换技术等多种技术进行有机地结合并综合应用到实际中去的综合技术。
是现代化的自动生产设备几乎可以说都是机电一体化的设备。
液压技术发展趋势液压技术是实现现代化传动与控制的关键技术之一世界各国对液压工业的发展都给予很大重视。
汽车电动液压千斤顶

汽车电动液压千斤顶设计摘要液压举升机是利用了液压传动的基本原理即机械能与液压能之间的相互转换。
汽车电动液压千斤顶是典型的液压传动的设备。
本次设计的千斤顶不仅具有传统液压千斤顶所具有结构紧凑、体积小、重量轻、携带方便、性能可靠等优点,被广泛应用于汽车维修等流动性起重的作业;还利用汽车自带的12V电源为电动机供电,电动机带动齿轮油泵产生液压油使液压缸举升,减少了驾驶员的劳动强度。
本次设计参考其他千斤顶的设计方案,对汽车电动液压举升机的结构做了详细布置,并对举升缸进行了详细设计和计算,而且根据所选的液压缸及举升速度等设计了齿轮泵,匹配了电动机。
关键字:液压传动;千斤顶;电动齿轮油泵;汽车举升;AbstractHydraulic lifting machine is the use of the basic principle of hydraulic transmission is mechanical energy and hydraulic energy conversion between. Automobile electric hydraulic jack is a typical equipment of hydraulic transmission. Jack this design has not only the traditional hydraulic jack has compact structure, small volume, light weight, carrying convenient, reliable performance, are widely used in automotive repair and other liquidity lifting operation; also used the 12V power car comes to power an electric motor, the motor drives the gear oil pump of hydraulic oil hydraulic cylinder lifting, reduce the labor intensity of the driver. Design the design reference other jack, the structure of electric hydraulic lifting machine for automobile to do a detailed arrangement, and the lifting cylinder are calculated and design in detail, and according to the selected hydraulic cylinder and the lifting speed gear pump design, matching the motor.Keywords:hydraulic transmission;jack;;electric gear pump ;auto lifting;目录汽车电动液压千斤顶设计 (I)摘要 (I)Abstract ...................................................................................... I I 目录........................................................................................... I II 第1章绪论 (1)1.1、液压传动的应用范围的基本原理 (1)1.2、国内外千斤顶发展情况 (1)第2章总体设计方案 (4)2.1、液压千斤顶的原理图 (4)2.2、汽车电动液压千斤顶的组成 (6)2.3、液压传动的优缺点 (7)第3章液压千斤顶结构设计 (9)3.1、液压缸设计 (9)3.2、活塞杆设计 (14)3.3、液压缸其他部件设计 (17)3.4、液压控制阀的设计 (18)第4章齿轮泵设计与校核 (20)4.1、齿轮泵的工作原理 (20)4.2、齿轮泵的结构特点 (22)4.3、困油现象及卸荷 (22)4.4、齿轮参数的确定与校核 (23)4.5、确定卸荷槽形状和尺寸 (27)4.6、主轴的设计计算 (28)4.7、键的尺寸设计及强度计算 (29)4.8、电动机的选择 (29)第5章总结 (i)致谢 (ii)参考文献: (iii)1第1章 绪论1.1、 液压传动的应用范围的基本原理液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。
液压千斤顶的毕业设计

液压千斤顶的毕业设计液压千斤顶的毕业设计在工程机械领域中,液压千斤顶是一种常见而重要的工具。
它通过利用液体的力学性质,实现了对重物的举升和支撑。
在我即将毕业的大学阶段,我选择了设计一个液压千斤顶作为我的毕业设计项目,旨在深入了解和应用液压原理,并进一步提升我的工程设计能力。
首先,我开始研究有关液压千斤顶的基本原理和结构。
液压千斤顶主要由液压缸、活塞、油箱、油管和控制阀等组成。
当液压油从油箱经过油管进入液压缸时,由于活塞上的压力,液压油会推动活塞上升,从而实现对重物的举升。
通过控制阀的开关,我们可以控制液压千斤顶的升降速度和稳定性。
在设计过程中,我决定采用CAD软件进行三维建模,并利用有限元分析方法对液压千斤顶进行强度和稳定性的评估。
通过这种方式,我可以更好地了解设计的合理性,并在需要的情况下进行修改和优化。
接下来,我将着重研究液压系统的设计和优化。
液压系统是液压千斤顶的核心,它负责提供和控制液压力。
在设计液压系统时,我需要考虑液压油的流动性、压力传递和泄露等因素。
通过合理选择液压缸和控制阀的参数,我可以使液压千斤顶的升降速度和稳定性达到最佳状态。
此外,我还将研究液压千斤顶在实际工程中的应用。
液压千斤顶广泛应用于汽车维修、建筑施工和航空航天等领域。
我将通过实地考察和与相关专业人士的交流,了解液压千斤顶在不同领域的使用情况和需求,以便更好地满足实际工程的需求。
在整个设计过程中,我将注重安全性和可靠性。
液压千斤顶在举升和支撑重物时,需要承受巨大的力量和压力。
因此,在设计中,我将考虑材料的强度和耐久性,以及液压系统的稳定性和可靠性。
我还将进行一系列的实验和测试,以验证设计的合理性和性能。
最后,我将撰写一份详细的毕业设计报告,记录整个设计过程和结果。
在报告中,我将详细介绍液压千斤顶的原理、结构和设计参数,并附上相应的图纸和分析结果。
通过这份报告,我希望能够展示我的设计能力和专业知识,并为未来的工程设计工作打下坚实的基础。
液压千斤顶设计说明书

液压千斤顶研究设计报告一、液压千斤顶功能分析。
千斤顶是一种起重高度小(小于1m)的最简单的起重设备。
它有机械式和液压式两种。
机械式千斤顶又有齿条式与螺旋式两种,由于起重量小,操作费力,一般只用于机械维修工作,在修桥过程中不适用。
液压式千斤顶又称油压千斤顶,是一种采用柱塞或液压缸作为刚性顶举件的千斤顶,其结构紧凑,工作平稳,有自锁作用,故使用广泛。
其缺点是起重高度有限,起升速度慢。
液压千斤顶充分运用了帕斯卡原理,实现了力的传递和放大,使得用微小的力就可以顶起重量很大的物体。
在液压千斤顶中,除了其自身所具有的元件外,还需要一种很重要的介质,即工作介质,又叫液压油。
液压油的好坏直接影响到千斤顶能否正常地工作。
因此,就需要液压油具有良好的性能。
在液压千斤顶中,液压油所应该具备的功能有以下几点:1.传动,即把千斤顶中活塞赋予的能量传递给执行元件。
2.润滑,对活塞、单向阀、回油阀杆和执行元件等运动元件进行润滑。
3.冷却,吸收并带出千斤顶液压装置所产生的热量。
4.防锈,防止对液压千斤顶内的液压元件所用的金属产生锈蚀。
除此之外,液压油还需要有以下这些工作性能的要求。
1.可压缩性。
可压缩性小可以确保传动的准确性。
2.粘温特性。
要有一个合适的粘度并随温度的变化小。
3.润滑性。
油膜对材料表面要有牢固的吸附力,同时油膜的抗挤压强度要高。
4.安定性。
油不能因热、氧化或水解而变化,使用的寿命要长。
5.相容性。
对金属、密封件、橡胶软管、涂料等有良好的相容性。
液压千斤顶广泛使用在电力维护,桥梁维修,重物顶升,静力压桩,基础沉降,桥梁及船舶修造,特别在公路铁路建设当中及机械校调、设备拆卸等方面。
由于液压用途广泛,所以行程范围也需要比较广。
二、液压千斤顶工作原理液压千斤顶工作时,扳手往上走带动小活塞向上,油箱里的油通过油管和单向阀门被吸进小活塞下部,扳手往下压时带动小活塞向下,油箱与小活塞下部油路被单向阀门堵上,小活塞下部的油通过内部油路和单向阀门被压进大活塞下部,因杠杆作用小活塞下部压力增大数十倍,大活塞面积又是小活塞面积的数十倍,由手动产生的油压被挤进大活塞,由帕斯卡原理(液压传递压强不变的原理,受力面积越大压力越大,面积越小压力越小)知大小活塞面积比与压力比相同。
液压千斤顶的设计

液压千斤顶的设计首先,液压千斤顶的设计要确保力量传递的可靠性。
液压系统由一个液压泵、一个液压缸、液压油和用于控制液压系统的阀门组成。
液压泵通过提供压力将液压油推送到液压缸中,从而举起重物。
在设计过程中,需要确保泵和液压缸之间的连接紧密且耐用,以防止漏油和压力损失。
此外,选用合适的液压油和密封件材料也是设计中必须要考虑的因素。
其次,液压千斤顶的设计需要保证结构的稳定性。
液压千斤顶通常由一个固定底座、一个液压缸和一个承重平台组成。
为了使千斤顶能够承受重物的重量,液压缸和承重平台需要设计成坚固耐用的结构。
在设计过程中,需要考虑材料的强度和刚度,以确保液压千斤顶在使用过程中不会发生变形或折断。
此外,为了增加稳定性,还可以考虑在液压千斤顶的底部加入稳定器或地板抓爪。
除了可靠的力量传递和结构稳定性,液压千斤顶的设计还需要考虑工作效率。
液压千斤顶的工作效率可以通过提高液压系统的效率来实现。
一种常用的方式是加入液压缸的活塞端和油液释放口之间的液压阀。
该阀门可以控制液压油进入和离开液压缸的速度,从而实现千斤顶的快速举升和降落。
此外,还可以考虑使用更高效的液压泵和液压油来提高整个液压系统的工作效率。
最后,液压千斤顶的设计还需要考虑使用安全性。
液压千斤顶在举起重物时承受着很大的压力,因此需要采取相应的安全措施。
例如,可以在千斤顶的液压缸上安装压力释放阀,以避免超出最大工作压力。
此外,还可以在千斤顶的结构上增加防滑处理,以确保使用过程中的安全性。
综上所述,液压千斤顶的设计需要考虑力量传递、结构稳定性、工作效率和使用安全性。
通过合理的设计,液压千斤顶可以高效可靠地完成吊装和支撑工作。
液压千斤顶毕业设计 - 完整版

液压油缸的设计(一)液压油缸的机构和组成1)液压油缸的结构图图1 液压油缸设计方案示意图液压油缸结构图1所示,工作时通过上移6手柄使7小活塞向上运动从而形成局部真空,油液从邮箱通过单向阀9被吸入小油缸,然后下压6手柄使7小活塞下压,把小油缸内的液压油通过10单向阀压入3大油缸内,从而推动2大活塞上移,反复动作顶起重物。
通过1调节螺杆可以调整液压油缸的起始高度,使用完毕后扭转4回油阀杆,连通3大油缸和邮箱,油液直接流回邮箱,2大活塞下落,大活塞下落速度取决于回油阀杆的扭转程度。
2)液压油缸的组成液压系统主要由:动力元件(油泵)、执行元件(油缸或液压马达)、控制元件(各种阀)、辅助元件和工作介质等五部分组成。
1.动力元件(油泵)它的作用是把液体利用原动机的机械能转换成液压力能,是液压传动中的动力部分。
2.执行元件(油缸、液压马达)它是将液体的液压能转换成机械能。
其中,油缸做直线运动,马达做旋转运动。
3.控制元件包括压力阀、流量阀和方向阀等,它们的作用是根据需要无级调节液压动机的速度,并对液压系统中工作液体的压力、流量和流向进行调节控制。
4.辅助元件除上述三部分以外的其它元件,包括压力表、滤油器、蓄能装置、冷却器、管件及邮箱等,它们同样十分重要。
5.工作介质工作介质是指各类液压传动中的液压油或乳化液,它经过油泵和液动机实现能量转换。
3)液压传动的优缺点1、液压传动的优点(1)体积小、重量轻,例如同等功率液压马达的重量只有电动机的10%~20%,因此惯性力较小。
(2)能在给定范围内平稳的自动调节牵引速度,并可实现无级调速,且速度范围最大可达1:2000(一般为1:100).(3)转向容易,在不改变电机旋转方向的情况下,可以较方便地实现工作机构旋转和直线往复运动的转换。
(4)液压泵和液压马达之间用油管连接,在空间布置上彼此不受严格限制。
(5)由于采用油液为工作介质,元件相对运动表面间能自行润滑,磨损小,使用寿命长。
液压千斤顶设计论文解析

目录1、引言 (1)1.1 液压千斤顶的分类 (1)2、液压千斤顶发展现状及常见故障排除 (1)2.1 国外发展情况 (1)2.2 国内发展情况 (2)2.3 液压千斤顶的特点 (2)2.4 液压千斤顶优缺点 (2)2.5 液压千斤顶常见故障排除 (3)3、液压千斤顶的组成结构及工作原理 (3)3.1 液压千斤顶的组成 (3)3.2 液压千斤顶的结构图 (4)3.3 液压千斤顶工作原理 (4)4、液压千斤顶结构设计 (5)4.1 内管设计 (5)4.2 外管设计 (6)4.3 活塞杆设计 (6)4.4 导向套的设计 (7)4.5 液压千斤顶活塞部位的密封 (9)5、液压千斤顶装配图 (10)6、结论 (11)参考文献 (12)致谢 (13)1、引言液压千斤顶是典型的利用液压传动的设备,液压千斤顶具有结构紧凑、体积小、重量轻、携带方便、性能可靠等优点,被广泛应用于流动性起重作业, 是维修、汽车、拖拉机等理想工具。
其结构轻巧坚固、灵活可靠,一人即可携带和操作。
千斤顶是用刚性顶举件作为工作装置,通过顶部托座或底部托爪在小行程内顶升重物的轻小起重设备。
本次对液压千斤顶进行设计可以了解液压千斤顶的原理以及应用。
通过查阅大量文献,和对千斤顶各部件进行设计使我熟悉了千斤顶内液压传动原理,同时也在以前书本学习的基础上对液压传动加深了理解。
1.1 液压千斤顶的分类液压千斤顶分为通用和专用两类。
通用液压千斤顶适用于起重高度不大的各种起重作业。
它由油室、油泵、储油腔、活塞、摇把、油阀等主要部分组成。
工作时,只要往复扳动摇把,使手动油泵不断向油缸内压油,由于油缸内油压的不断增高,就迫使活塞及活塞上面的重物一起向上运动。
打开回油阀,油缸内的高压油便流回储油腔,于是重物与活塞也就一起下落。
专用液压千斤顶使专用的张拉机具,在制作预应力混凝土构件时,对预应力钢筋施加张力。
专用液压千斤顶多为双作用式。
常用的有穿心式和锥锚式两种。
毕业设计(论文)-电动螺旋千斤顶的结构设计

摘要本设计主要是对电动螺旋千斤顶的结构设计,在原有手动螺旋千斤顶的基础上,通过对螺旋千斤顶了解和学习,选择对其进行改进,设计出一套蜗轮蜗杆机构,利用电机带动蜗杆,蜗杆蜗轮传动带动丝杠运转,由丝杠螺母形成的滑动螺旋副运动将重物顶起,既发挥了螺旋副的自锁性的优点又可改善劳动条件。
同时提高了市场的竞争能力。
本设计根据承受载荷,设计出丝杠传动机构,根据丝杠传动的工作速度与螺杆所承受的扭矩,来设计蜗杆和蜗轮传动机构,得出蜗杆传动扭矩来进行电机的选型,并使用Pro/ENGINEER 5.0和AutoCAD三维建模软件,设计零件并进行装配。
用SolidWorks进行仿真制作。
并对蜗杆模型通过ANSYS软件进行简单的有限元分析来完成整个设计。
关键字:蜗轮蜗杆;有限元分析;丝杠传动;仿真;三维建模AbstractThe design is mainly for the structural design of screw jacks, screw jacks in the original on the jackscrew through understanding and learning, choose to improve it, to design a worm gear mechanism, the use of motor driven worm and worm gear drive screw operation, the heavy top, both played a spiral lock of the advantages of self but also improve people's deputy of the working conditions. Improve the competitiveness of the market.The design of the load bearing design of the screw drive mechanism according to the operating speed of the screw drive torque of the screw is exposed to the worm and the worm gear is enough design, draw worm drive torque of the motor to the selection and use Autocad Proe 5.0 and three-dimensional modeling software, design and assembly of parts. With solidworks simulation production. And a simple worm model by ANSYS finite element analysis software to complete the entire design.Keywords:Worm; Finite Element; Analysis Screw drive; Simulation;Three-dimensional modeling目录第1章绪论 01.1 起重机械 01.2 千斤顶 01.3 国内外千斤顶发展情况 01.4 研究目的 01.5 设计规格 (1)1.6 设计原理 (1)1.7 使用方法 (1)第2章丝杠传动的设计和计算 (2)2.1 丝杠传动 (2)2.2 丝杠传动的结构及材料 (3)2.2.1 丝杠传动的结构 (3)2.2.2 丝杠传动中常用材料 (3)2.3 丝杠传动的设计计算 (5)2.3.1 耐磨性与自锁性计算 (5)2.3.2 螺杆的强度计算 (8)2.3.3 螺母螺纹牙的强度计算 (8)2.3.4 螺杆的稳定性计算 (9)第3章蜗轮蜗杆传动的设计和计算 (11)3.1 蜗轮蜗杆传动的特点 (11)3.2 蜗杆传动的类型 (11)3.2.1 普通圆柱蜗杆传动 (11)3.2.2 圆弧圆柱蜗杆传动 (11)3.3 蜗轮蜗杆传动的设计参数选择 (11)3.3.1 蜗杆传动选型 (11)3.3.2 选择蜗轮蜗杆材料 (11)3.3.3 蜗杆传动设计 (12)3.3.4 蜗杆与蜗轮的参数计算 (13)3.3.5 齿根弯曲疲劳强度校核 (13)3.3.6 实际传动效率 (14)3.3.7 精度等级 (14)第4章螺旋千斤顶电机的选择 (16)4.1 电机类型选择 (16)4.2 蜗杆力矩计算 (16)4.3 电动机功率计算 (16)4.4 电动机选择 (17)第5章蜗杆的有限元分析 (18)5.1 有限元分析 (18)5.2 文件的导入 (18)5.3 设置材料常数 (18)5.4 划分网格 (18)5.6 求解计算 (20)5.7 结论 (20)第6章螺旋千斤顶的三维建模 (22)6.1 蜗杆的三维建模 (22)6.2 蜗轮的三维建模 (23)6.3 螺杆的三维建模 (24)6.4 螺母的三维建模 (25)6.5 千斤顶的装配 (26)6.6 千斤顶的仿真 (26)设计总结 (28)参考文献 (29)致谢 (30)第1章绪论1.1 起重机械起重机械是一种通过重复循环运动对物料进行起升的机械,其运动形式主要有起动、制动、正向和反向运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论1.1 课题研究的目的和意义据统计,国内的轿车保有量2005年已达到900余万辆, 在现实生活中,轿车、吉普在路途上换胎一直是驾车者们一件头痛的事,尤其是在酷热的夏天和严寒而绵绵细雨的冬天,半个多时晨换下胎来,不仅身心劳累,且浑身油泥。
随着技术与经济的发展,一种起重工具液压千斤顶大量涌现于市场,其构造简单、操作方便,修理汽车、拖拉机等可用它将车身顶起,方便修理。
液压千斤顶是根据帕斯卡原理工作,它由油箱、大小不同的两个压力油缸、单向阀等几个部分组成。
工作时,提起小活塞将油吸入小压力油缸,当压下小活塞时将油液压进大压力油缸。
通过两个单向阀门的控制,小活塞对油的压强传递给大活塞,将重物顶起来。
小活塞不断地往复动作,就可以把重物顶到一定的高度。
工作完毕,打开关截止阀,使大压力油缸和油箱连通。
这时,只要在大活塞上稍加压力,大活塞即可下落,油回到油箱中去。
千斤顶分为机械千斤顶和液压千斤顶两种,原理各有不同。
从原理上来说,液压千斤顶所基于的原理为帕斯卡原理,在比较小的活塞上面施加的压力比较小,而大的活塞上施加的压力也比较大,这样能够保持液体的静止。
通过液体的传递可以得到不同端上的不同的压力,这样就可以达到一个变换的目的。
机械千斤顶采用机械原理,以往复扳动手柄,拔爪即推动棘轮间隙回转,小伞齿轮带动大伞齿轮、使举重螺杆旋转,从而使升降套筒获得起升或下降,而达到起重拉力的功能。
但不如液压千斤顶简易。
千斤顶采用液压传动的优点:(1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动机构,这是比机械传动优越的地方。
(2)液压传动装置的重量轻、结构紧凑、惯性小。
(3)传递运动均匀平稳,负载变化时速度较稳定。
(4)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行润滑,因此使用寿命长。
(5)液压元件已实现了标准化、系列化和通用化,便于设计、制造和推广使用。
随着生活水平的发展,设计人性化的产品越来越受到人们的喜爱。
电动液压千斤顶采用液压传动,与机械手动千斤顶相比,具有使用携带方便、运行平稳等优点。
目前液压技术日趋完善且被应用于各个领域,与液压传动相关的产品成本也将逐渐降低,因此,低成本的电动液压千斤顶具有巨大的市场。
1.2 课题的国内外发展研究现状自18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二三百年的历史。
直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。
在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。
第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。
本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。
因此,液压传动真正的发展也只是近三四十年的事。
当前液压技术正向迅速、高压、大功率、高效、低噪声、经久耐用、高度集成化的方向发展。
同时,新型液压元件和液压系统的计算机辅助设计(CAD)、计算机辅助测试(CAT)、计算机直接控制(CDC)、机电一体化技术、可靠性技术等方面也是当前液压传动及控制技术发展和研究的方向。
我国的液压技术最初应用于机床和锻压设备上,后来又用于拖拉机和工程机械。
现在,我国的液压元件随着从国外引进一些液压元件、生产技术以及进行自行设计,现已形成了系列,并在各种机械设备上得到了广泛的使用。
现在,液压技术被广泛应用与各个领域,液压千斤顶的设计也越来越趋向人性化,目前,国内外的千斤顶在性能满足要求的同时,还要考虑千斤顶操作的灵活方便。
根据实际需要,目前市场的千斤顶有YZ系列千斤顶、超薄型千斤顶、自锁式千斤顶等类型。
千斤顶还分为电动千斤顶和手动千斤顶。
电动千斤顶一般以液压系统为基础进行设计,具有顶起重量大、起升平稳、操作方便等优点。
手动千斤顶以螺纹千斤顶为代表,通过螺纹传动来顶起重物。
1.3 课题研究的主要内容(1)根据千斤顶的设计电动液压千斤顶的总体方案。
(2)根据工作情况设计液压千斤顶的具体结构,确定主要零部件的参数,对千斤顶的零件进行强度检验。
(3)绘制二维零件图及总体装配图。
2 电动液压千斤顶概论2.1 液压千斤顶工作原理图2.1 液压千斤顶工作原理图1—杠杆手柄 2—小油缸 3—小活塞 4,7—单向阀 5—吸油管 6,10—管道8—大活塞 9—大油缸 11—截止阀 12—油箱图2.1是液压千斤顶的工作原理图[2]。
大油缸9和大活塞8组成举升液压缸。
杠杆手柄1、小油缸2、小活塞3、单向阀4和7组成手动液压泵。
如提起手柄使小活塞向上移动,小活塞下端油腔容积增大,形成局部真空,这时单向阀4打开,通过吸油管5从油箱12中吸油;用力压下手柄,小活塞下移,小活塞下腔压力升高,单向阀4关闭,单向阀7打开,下腔的油液经管道6输入举升油缸9的下腔,迫使大活塞8向上移动,顶起重物。
再次提起手柄吸油时,单向阀7自动关闭,使油液不能倒流,从而保证了重物不会自行下落。
不断地往复扳动手柄,就能不断地把油液压入举升缸下腔,使重物逐渐地升起。
如果打开截止阀11,举升缸下腔的油液通过管道10、截止阀11流回油箱,重物就向下移动。
这就是液压千斤顶的工作原理。
在本次设计中,为使液压千斤顶的操作更加省力,将小活塞驱动由手动改为电动,利用汽车点烟器上的电源,通过电机带动合适的偏心轮机构驱动活塞上下运动。
2.2 设计要求本课题的设计要求(1)设计一个两级的液压缸。
(2)千斤顶顶起的重量为1.0t。
(3)千斤顶的顶升高度为150mm。
(4)千斤顶的驱动电机要求电压为12V直流电压。
2.3 确定总体方案2.3.1 液压回路设计图2.2 液压回路原理图根据液压千斤顶工作原理图 2.1,结合本课题设计要求及布置情况,设计的液压千斤顶液压回路原理图如图2.2所示。
图中液压泵拟采用单向柱塞泵,通过偏心轮驱动柱塞往复运动,吸油行程柱塞泵通过单向阀2从油箱吸油,压油行程中单向阀2关闭,单向阀1打开,液压油输出到顶升液压缸将负载顶起,顶升到所需位置时,切断电机电源,柱塞泵停止运动,单向阀1和二位二通电磁阀都处于关闭位置,阻止了液压油流回油箱,负载保持在所需位置不动。
当负载需要放回时,只需操纵控制器上的相应开关,打开二位二通电磁阀,油液便可流入油箱。
为了防止电机及液压系统过载损坏,在油路中设计了安全阀,当出现管路堵塞或其它情况使油压过大时,液压油便打开安全阀流回油箱。
2.3.2 总体结构设计本次设计的千斤顶结构如图2.3所示。
图2.3 液压千斤顶结构图该电动液压千斤顶由12V直流电机、偏心轮机构、柱塞缸、两级顶升液压缸和若干控制阀及操纵控制器等组成。
大小活塞和两级液压缸体组成顶升液压缸。
工作时,将电源插头插入汽车点烟器上插座,按下操纵控制器上的开关,12V直流电机带动偏心轮机构驱动柱塞往复运动,当电动机偏心轮机构使柱塞向右移动时,柱塞下端油腔容积增大,形成局部真空,这时联接油箱油路上的弹簧小球使油路相通,柱塞缸通过吸油管将液压油吸入腔内。
柱塞左移时,柱塞下腔压力升高,弹簧小球使油关闭,下腔的油液经管道输入顶升油缸的下腔,迫使大活塞向上移动,顶起重物。
柱塞再次右移时,与顶升液压缸相连接的弹簧小球使大液压缸的油口自动关闭,使油液不能倒流,从而保证了重物不会自行下落。
不断地使柱塞往复运动,就能不断地把油液压入顶升缸下腔,使重物逐渐地升起。
如果打开二位二通电磁阀,顶升缸下腔的油液通过管道、电磁阀流回油箱,重物就向下移动。
2.3.3 底板油路设计为了携带方便,千斤顶的结构尺寸不能太大。
在传动比一定的情况下,设计的柱塞缸的尺寸一般较小,若用管联接,管的内径较小,管路的油压损失较大。
液压油一般较稠,管的内径小使管路较易堵塞,影响千斤顶正常工作。
采用底板油路不仅减少了许多管部件,以及管联接方面的许多麻烦,简化了系统,同时也使油路的内径增大。
设计的底板油路如图2.4所示。
图2.4 底板装配图底板的设计过程中充分考虑了加工的可行性。
柱塞杆向外运动时,柱塞缸内的压力变小,弹簧球1被顶开,弹簧球2将油路封住,此时液压油吸入液压缸。
柱塞杆下压时,柱塞缸内的压力变大,弹簧球1将油路关闭,弹簧球2被顶开,油液被压入顶升液压缸。
当负载需要放回时,将二位二通电磁阀打开,液压油便可进入油箱。
当油路某处堵塞时,系统内的油压将增大,此时上端的安全阀弹簧被顶开,油液通过安全阀流回油箱。
2.3.4 顶升液压缸设计顶升液压缸设计其结构图如图2.5所示图2.5 顶升液压缸结构图为了减小液压千斤顶的外形尺寸,便于携带,本次设计的顶升液压缸采用两级活塞驱动。
第一级液压缸的活塞杆是第二级的缸筒,伸出时,可以获得较长的工作行程,缩回时可保持很小的结构尺寸。
第一级液压缸缸体与缸底采用焊接,缸体与缸头采用螺纹联接。
第二级活塞与活塞杆采用整体式。
活塞与缸体间采用O形密封圈密封;为了使千斤顶使用安全方便,在活塞杆端部用螺纹件联接了一个凹槽部件与轿车上相应的凸起配合,支撑轿车。
千斤顶在工作过程中,第一级活塞升到最高时,第二级开始顶出,此时系统内的压力较第一级增大。
2.3.5 柱塞缸设计柱塞缸结构图如图2.6所示图2.6柱塞缸结构图本次设计的柱塞缸由柱塞、弹簧、密封工作腔等组成,其工作原理是依靠密封工作腔容积大小交替变化来实现的,它是一种将机械能转换为液压能的能量转换装置,它为液压系统提供具有一定压力和流量的液体,是液压系统的重要组成部分。
其性能的好坏直接影响液压系统工作的可靠性和稳定性。
柱塞杆的往复运动产生容积的变化配合相应的单向阀进行吸油和压油。
一般柱塞和缸体内孔都是圆柱表面,容易得到高精度的配合,密封性较好,因此效率一般较高。
2.4 电动液压千斤顶使用注意事项1)使用前,应将蓄电池充足电,以免电力不足。
2)举升汽车时,应使发动机熄火,将变速器置于空档位置并拉紧手制动。
3)必要时,可以用发电机发电助力,此时使发动机工作,但一定要将变速器置于空档,防止汽车移动伤人。
汽车举起后,应将发动机立即熄火。
4)在汽车底下工作时,必须把汽车用可靠的支撑物安全稳妥地支撑住,以保证安。
3 参数确定3.1 电机选择图3.1 电机根据系统的具体情况,参考有关设计手册,确定系统压力p =12.5MPa,液压缸的最大支撑重量F=1.0⨯104N设定第二级液压缸的上升速度v=0.005m/s则根据公式[4]214d p F π= (3.1)31.9d mm == 式中 d ——液压缸内径,mm ;p ——系统工作压力,MPa ;F ——最大支撑重量 ,N 。
取d =32mm此时液压缸内的压力212.4414Fp MPa d π== 流量2631 4.019104Q d v m π-==⨯ Q ——系统的流量,3m 。
此时液压缸用来支撑重物的功率为[4]P Q 功=p(3.2) 2m vP P ηη功电机= (3.3) 式中 电机P ——电机的额定功率,W ; m η——机械损失,即由于摩擦而使功率的损失,本系统中近似认为两个液压缸的效率相同,故用2m η,一般m η=0.9。