太阳能光伏并网逆变器设计原文及翻译
光伏并网逆变器毕业论文外文翻译

外文资料翻译译文:光伏并网逆变器比来,人们越来越关注的替代能源,因为化石燃料和核电厂的环境影响及其稳定性(长尾和原田,1997年;Myrzlk,2001年)。
在各种替代能源中,太阳能发电尤为重视,除了因为它是一种清洁的,无限的能源,此外相当多的研究已经在这一范畴取得了突出的成绩。
太阳能发电系统由太阳电池组件,充电电池,和一个逆变器。
现在只有逆变电流模式进入主流,原因是光伏逆变是正弦电流进入电网。
具体体现在单相并网光伏逆变器中,它具有遍及的拓扑结构,这是标准的全桥电压源逆变器(电平逆变器),它可以创建一个正弦电网电流(Kjaeret al.,2005;Kojabadi et al.,2006)。
这种拓扑结构有两个遍及的问题如下。
(1)电池是太阳能发电厂必弗成少的储存电能设备。
但电池充电是一个短期和有污染的过程,并且有负面经济的效率。
然而,逆变器可以不使用电池可以解决这些问题。
在这个过程中,接口电路为逆变环节的直流电(DC)输出的太阳能电池阵列的交流电源系统。
如果输出电压的电流源逆变低于电力系统电压和在发生短路负荷或逆变器故障,它没有电流短路(Myrzlk,2001年)。
(2)在一般的微处理器作为控制器,以实现良好的特点时,太阳能发电系统与电流源逆变器的设计。
是在控制器以较少的价值,有高质量电感和电波的输出电流的高开关频率变频器所需要的,但是,受限制的是开关损耗和处理器的采样频率。
图.1显示的结构电流源逆变器用作接口电路连接太阳能电池的实用线(Mohan et al,1995年)。
它由五个开关,一个电感器,LC滤波器,输出端口。
逆变器工作在这两个开关模式。
质量包管开关只执行斩波行动,而第一季度,第四季度交换机确定标的目的的输出电压按照极性的电力系统。
因此,与一般全桥PWM逆变器执行完整的一块,该系统减少了开关损耗。
图.2显示波形的传统电流源逆变器。
它代表了波形的输出电压和电流,该电流通过电感,输入信号,每个开关。
SG330KTL光伏并网逆变器中文使用手册(说明书)

本科毕业设计_太阳能光伏发电并网三相逆变器的设计

目录1 绪论 (1)1.1 课题背景 (1)1.2 国内外研究现状 (2)1.2.1 国外的研究现状 (2)1.2.2 国内的研究现状 (2)1.3 光伏并网逆变器的发展趋势 (3)1.4主要研究内容 (3)2 光伏逆变器主电路的设计与工作原理 (4)2.1 光伏逆变器的基本结构 (4)2.2 逆变器的拓扑分类 (4)2.3 系统工作原理 (5)2.3.1 前级Boost升压电路的工作原理 (5)2.3.2 后级单相全桥逆变器的工作原理 (7)2.4 本章小结 (7)3 光伏阵列的最大功率点跟踪 (8)3.1 光伏阵列的输出特性 (8)3.1.1 光伏电池简介 (8)3.1.2 光伏电池的工作原理 (8)3.1.3 光伏电池的物理模型 (11)3.1.4 光伏电池的输出功率 (12)3.1.5 光伏阵列的温度特性和光电特性 (13)3.2 最大功率点跟踪法的比较与分析 (14)3.2.1 电导增量法 (15)3.2.2 干扰观测法 (17)3.2.3 固定电压跟踪法 (18)3.2.4 其他MPPT方法 (21)3.3 本章小结 (22)4 三相并网逆变器的控制策略 (22)4.1 并网逆变器的控制目标 (22)4.2 并网逆变器的原理 (23)4.3 并网逆变器控制策略的比较 (23)4.4 电流跟踪控制方式的比较 (24)4.4.1 电流滞环瞬时比较方式 (24)4.4.2 三角波比较方式的电流跟踪方式 (24)4.4.3 SVPWM电流控制方式 (25)4.5 SVPWM控制原理 (25)4.5.1 SVPWM的特点 (25)4.5.2 SVPWM的原理 (26)4.6 SVPWM的实现 (27)4.6.1 参考电压所在扇区的判断 (27)4.6.2 各个扇区开关持续时间的计算 (29)4.7 SVPWM控制的实现 (29)4.8 本章小结 (30)5 光伏并网逆变器的仿真 (30)5.1 恒定电压法MPPT跟踪的仿真实现 (31)5.1.1 固定电压法MPPT跟踪的仿真方法 (31)5.1.2 固定电压法MPPT仿真 (31)5.1.3 固定电压法MPPT仿真结果分析 (32)5.2 SVPWM控制的仿真 (33)5.2.1 SVPWM控制仿真方法 (33)5.2.2 SVPWM控制仿真电路 (34)5.2.3 SVPWM控制仿真结构分析 (35)5.3 本章小结 (36)6 结论 (36)参考文献 (37)致谢 (38)1 绪论1.1 课题背景随着煤炭、石油等现有化石能源的频频告急和大量使用化石能源对生态环境造成严重的破坏,人类不得不尽快寻找新的清洁能源和可再生资源。
本科毕业设计_太阳能光伏发电并网三相逆变器的设计

目录1 绪论 (1)1.1 课题背景 (1)1.2 国内外研究现状 (2)1.2.1 国外的研究现状 (2)1.2.2 国内的研究现状 (2)1.3 光伏并网逆变器的发展趋势 (3)1.4主要研究内容 (3)2 光伏逆变器主电路的设计与工作原理 (4)2.1 光伏逆变器的基本结构 (4)2.2 逆变器的拓扑分类 (4)2.3 系统工作原理 (5)2.3.1 前级Boost升压电路的工作原理 (5)2.3.2 后级单相全桥逆变器的工作原理 (7)2.4 本章小结 (7)3 光伏阵列的最大功率点跟踪 (8)3.1 光伏阵列的输出特性 (8)3.1.1 光伏电池简介 (8)3.1.2 光伏电池的工作原理 (8)3.1.3 光伏电池的物理模型 (11)3.1.4 光伏电池的输出功率 (12)3.1.5 光伏阵列的温度特性和光电特性 (13)3.2 最大功率点跟踪法的比较与分析 (14)3.2.1 电导增量法 (15)3.2.2 干扰观测法 (17)3.2.3 固定电压跟踪法 (18)3.2.4 其他MPPT方法 (21)3.3 本章小结 (22)4 三相并网逆变器的控制策略 (22)4.1 并网逆变器的控制目标 (22)4.2 并网逆变器的原理 (23)4.3 并网逆变器控制策略的比较 (23)4.4 电流跟踪控制方式的比较 (24)4.4.1 电流滞环瞬时比较方式 (24)4.4.2 三角波比较方式的电流跟踪方式 (24)4.4.3 SVPWM电流控制方式 (25)4.5 SVPWM控制原理 (25)4.5.1 SVPWM的特点 (25)4.5.2 SVPWM的原理 (26)4.6 SVPWM的实现 (27)4.6.1 参考电压所在扇区的判断 (27)4.6.2 各个扇区开关持续时间的计算 (29)4.7 SVPWM控制的实现 (29)4.8 本章小结 (30)5 光伏并网逆变器的仿真 (30)5.1 恒定电压法MPPT跟踪的仿真实现 (31)5.1.1 固定电压法MPPT跟踪的仿真方法 (31)5.1.2 固定电压法MPPT仿真 (31)5.1.3 固定电压法MPPT仿真结果分析 (32)5.2 SVPWM控制的仿真 (33)5.2.1 SVPWM控制仿真方法 (33)5.2.2 SVPWM控制仿真电路 (34)5.2.3 SVPWM控制仿真结构分析 (35)5.3 本章小结 (36)6 结论 (36)参考文献 (37)致谢 (38)1 绪论1.1 课题背景随着煤炭、石油等现有化石能源的频频告急和大量使用化石能源对生态环境造成严重的破坏,人类不得不尽快寻找新的清洁能源和可再生资源。
光伏逆变器中英文对照外文翻译文献

外文翻译文献(文档含英文原文和中文翻译) 中英文对照外文翻译光伏逆变器的发展及优势结构与工作原理逆变器是一种由半导体器件组成的电力调整装置,主要用于把直流电力转换成交流电力。
一般由升压回路和逆变桥式回路构成。
升压回路把太阳电池的直流电压升压到逆变器输出控制所需的直流电压;逆变桥式回路则把升压后的直流电压等价地转换成常用频率的交流电压。
逆变器主要由晶体管等开关元件构成,通过有规则地让开关元件重复开-关(ON-OFF),使直流输入变成交流输出。
当然,这样单纯地由开和关回路产生的逆变器输出波形并不实用。
一般需要采用高频脉宽调制(SPWM),使靠近正弦波两端的电压宽度变狭,正弦波中央的电压宽度变宽,并在半周期内始终让开关元件按一定频率朝一方向动作,这样形成一个脉冲波列(拟正弦波)。
然后让脉冲波通过简单的滤波器形成正弦波。
逆变器不仅具有直交流变换功能,还具有最大限度地发挥太阳电池性能的功能和系统故障保护功能。
归纳起来有自动运行和停机功能、最大功率跟踪控制功能、防单独运行功能(并网系统用)、自动电压调整功能(并网系统用)、直流检测功能(并网系统用)、直流接地检测功能(并网系统用)。
这里简单介绍自动运行和停机功能及最大功率跟踪控制功能。
1、自动运行和停机功能早晨日出后,太阳辐射强度逐渐增强,太阳电池的输出也随之增大,当达到逆变器工作所需的输出功率后,逆变器即自动开始运行。
进入运行后,逆变器便时时刻刻监视太阳电池组件的输出,只要太阳电池组件的输出功率大于逆变器工作所需的输出功率,逆变器就持续运行;直到日落停机,即使阴雨天逆变器也能运行。
当太阳电池组件输出变小,逆变器输出接近0时,逆变器便形成待机状态。
2、最大功率跟踪控制功能太阳电池组件的输出是随太阳辐射强度和太阳电池组件自身温度(芯片温度)而变化的。
另外由于太阳电池组件具有电压随电流增大而下降的特性,因此存在能获取最大功率的最佳工作点。
太阳辐射强度是变化着的,显然最佳工作点也是在变化的。
毕业设计论文 外文文献翻译 光伏电力系统 中英文对照

翻译原文 (4)Photovoltaic (PV) Electric Systems (4)The Advantages of Mitsubishi Solar Panels (5)1光伏电力系统光伏电力系统利用太阳能电池吸收太阳光线,并将这种能量转化成电能。
这个系统让广大家庭通过一种清洁,可靠,平静的方式来产生电能,这样就可以补偿将来的部分电能支出,也减少了对输电网的依赖。
太阳能电池一般是由经改进的硅,或者其他能够吸收阳光并将之转化成电能的半导体材料制成。
太阳能电池是相当耐用的(1954年在美国安装的第一个光伏电力系统至今仍在运营)。
绝大多数的生厂商都担保自己的产品的电源输出至少维持20年。
但大多数的有关太阳能研究的专家认为一个光伏电力系统至少能维持25到30年。
1.1 太阳能电池的类型目前有单晶硅,多晶硅和薄膜三种基本形式的光伏组件。
这些类型的电池工作效率都很好但单晶硅电池效率最好。
薄膜技术的电池以成本低为特色,而且伴随着太阳能电池板的发展它的效率也在不断地提高。
越来越多的生厂商以及各种各样的电池型号在当今市场上出现。
一个太阳能技术的支持者可以帮你分析各个系统的利弊,如此你就可以得到为你所用数十年的最佳的系统设计方案。
1.2光伏电力系统如何运作光电板通常安装在建筑物顶部,通过逆变器来引到建筑物中。
逆变器将通过太阳能板产生的直流电转化成交流电,而在当今美国交流电是向建筑提供电动力的主要形式。
朝南方向的太阳能板能使能量的收集效果最大化,大部分都是与建筑物顶部成60度的位置安放太阳能电池。
有关太阳能电池发电的更多的信息,可以查询Cooler Planet’s的《太阳能电池如何工作》。
朝南方向的太阳能板能使能量的收集效果最大化,大部分都是与建筑物顶部成60度的位置安放太阳能电池。
1.3 太阳能电池板与光伏建筑一体化太阳能电池板是用于捕获太阳光的平面板,他们以阵列的形式安装在建筑物顶部或者柱子上。
他们是传统的用于获得太阳能的阵列形式。
500W光伏并网逆变器设计

500W光伏并网逆变器设计摘要:光伏并网发电系统是光伏系统发展的趋势。
根据光伏并网发电系统的特点,设计了一套额定功率为500W的光伏并网逆变器,该并网逆变器能实现最大功率跟踪和反孤岛效应控制功能,控制部分采用基于TMS320F240型DSP的电流跟踪控制策略,实现了与网压同步的正弦电流输出。
关键词:太阳能;光伏系统;最大功率点跟踪;孤岛效应;并网逆变器1 引言太阳能的大规模应用将是21世纪人类社会进步的重要标志,而光伏并网发电系统是光伏系统的发展趋势。
光伏并网发电系统的最大优点是不用蓄电池储能,因而节省了投资,系统简化且易于维护。
这类光伏并网发电系统主要用于调峰光伏电站和屋顶光伏系统。
目前,美、日、欧盟等发达国家都推出了相应的屋顶光伏计划,日本提出到2010年要累计安装总容量达50 000MW的家用光伏发电站。
作为屋顶光伏系统的核心,并网逆变器的开发越来越受到产业界的关注[1]。
2 光伏并网系统设计2.1 系统结构光伏并网逆变器的结构如图1所示。
光伏并网逆变器主要由二部分组成:前级DC-DC变换器和后级DC-AC逆变器。
这2部分通过DClink相连接,DCli nk的电压为400V。
在本系统中,太阳能电池板输出的额定直流电压为100V~170V。
DC—DC变换器采用boost结构,DC—AC部分采用全桥逆变器,控制电路的核心是TMS320F240型DSP。
其中DC-DC变换器完成最大功率跟踪控制(MPPT)功能,DC-AC逆变器维持DClink中间电压稳定并将电能转换成220V/50Hz的正弦交流电。
系统保证并网逆变器输出的正弦电流与电网的相电压同频和同相。
2.2 控制电路设计2.2.1 TMS320F240控制板TMS320F240控制板如图2所示,以TI公司的TMS320F240型DSP为核心,外围辅以模拟信号调理电路、CPLD、数码管及DA显示、通信及串行E2PROM,完成电压和电流信号的采样、PWM脉冲的产生、与上位机的通信和故障保护等功能。
光伏并网逆变器控制的设计

光伏并网逆变器控制的设计
1 引言
21世纪,人类将面临着实现经济和社会可持续发展的重大挑战。
在有限资源和保护环境的双重制约下能源问题将更加突出,这主要体现在:①能源短缺;②环境污染;③温室效应。
因此,人类在解决能源问题,实现可持续发展时,只能依靠科技进步,大规模地开发利用可再生洁净能源。
太阳能具有储量大、普遍存在、利用经济、清洁环保等优点,因此太阳能的利用越来越受到人们的广泛重视,成为理想的替代能源。
文中阐述的功率为200W太阳能光伏并网逆变器,将太阳能电池板产生的直流电直接转换为220V/50Hz的工频正弦交流电输出至电网。
2 系统工作原理及其控制方案
2.1 光伏并网逆变器电路原理
太阳能光伏并网逆变器的主电路原理图如图1所示。
在本系统中,太阳能电池板输出的额定电压为62V的直流电,通过DC/DC变换器被转换为400V直流电,接着经过DC/AC逆变后就得到220V/50Hz的交流电。
系统保证并网逆变器输出的220V/50Hz正弦电流与电网的相电压同步。
图1 电路原理框图
2.2 系统控制方案
图2为光伏并网逆变器的主电路拓扑图,此系统由前级的DC/DC变换器和后级的DC/AC 逆变器组成。
DC/DC变换器的逆变电路可选择的型式有半桥式、全桥式、推挽式。
考虑到输入电压较低,如采用半桥式则开关管电流变大,而采用全桥式则控制复杂、开关管功耗增大,因此这里采用推挽式电路。
DC/DC变换器由推挽逆变电路、高频变压器、整流电路和滤波电感构成,它将太阳能电池板输出的62V的直流电压转换成400V的直流电压。
图2 主电路拓扑图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Grid-Connected Solar Micro inverter Reference DesignAbstract-In traditional grid-connected PV system, it’s hard to remove failure of individual PV panels. This paper presents a Solar PV Grid-Connected Micro-inverter which can be embedded in a single stand-alone photovoltaic panel to solve the problem of single point of failure. For a single photovoltaic panel, rated power of the Micro-inverter is 220W, using the topology of interleaved flyback converter.Keywords-Micro-inverter; interleaved flyback converter; grid-connected; PV panelI. INTRODUCTIONWith the draining of fossil fuel and increasingly serious pollution caused by traditional power generation methods across the world, renewable and pollution-free energy has gained much attention in economic and political fields. Renewable energy includes photovoltaic (PV) and wind power generation systems. Wide application of renewable energy is now impeded by cost and extensive researches shall be conducted in order to improve cost effectiveness. PV system, also known as solar converter, has gained popularity in recent years as a convenient renewable energy with good prospects. High production cost and low conversion efficiency of silicon solar panel are major defects of PV energy. Cost effectiveness of PV projects will become more reasonable with the application of new PV panel production technology and theimprovement of converter efficiency.ІІ. EVOLUTION OF PV SYSTEMA. Traditional Grid-connected SystemTraditional grid-connected PV system is comprised of:Urban Home System – multiple solar panels are connected in serial to supply 200-400V DC and output medium power (2-10KW) AC electricity. If certain PV panel in the series loop is damaged (i.e. single point of failure), the entire system will be crashed, i.e. the system is unstableSingle Inverter With Multiple DC/DC Converters –multiple PV panels are connected in parallel after DC/DC conversion to input total DC bus bar voltage to inverter and increase output power. Such circuit structure also has problem of single point of failure meanwhile fusion of DC power supply is very complex.Urban Home System With String Inverters – PV panel providing 200-400V input DC voltage is connected to multiple parallel inverters to generate medium power (2-10KW) 120/240V AC power supply. Multiple parallel inverters can boost output power and improve system reliability.B. PV Grid-connected Micro-inverterBased on the above advantages and disadvantages of PV system, the present paper proposes the design of PV grid-connected micro-inverter to enable all PV panels in PV system to be embedded in grid-connectedmicro-inverter, see figure 1 for system structure.Micro-inverter with such structure has following advantages:•replace central inverter with distributed inverter to optimize energy utilization;•Integrated PV panel reduces installation cost;•Power of micro-inverter is low (hundreds W), resulting n low internal temperature and longer system service life, meanwhile fan is not required.III. DESIGN OF PV GRID-CONNECTED INVERTERThe present paper designs a single stage PV grid-connected micro-inverter. A simple interleaved flyback converter is applied to output sine half-wave commutating voltage and current, pass through bridge inverter to output full wave sine voltage and current and make the current have the same frequency and phase of the power grid voltage. This PV grid-connected micro-inverter matches with any PV components with 220W power rating, 25-45V output voltage and up to 55V open-circuit voltage.A. System ChartPV grid-connected micro-inverter applies parallel interleaved flyback converter, see figure 2.Ipri1 is current of flyback1 converter MOSFET and Isec1 is currentof flyback1 output diode. Current of secondary diode (Isec1) generates sinusoidal output voltage after being filtered by output filter capacitor. The inverter makes output current synchronous with grid voltage with digital phase-locked loop (PLL) technology. The maximum power tracks and controls the output current. V oltage output by PV panel is converted into sine half-wave commutating voltage/current by interleaved flyback converter, inputs full-bridge inverter circuit where it is inverted into current with the same phase of grid voltage, and is connected to power grid after EMC/EMI filtration. Duty ratio flyback converter switch shall be controlled to make the output current have the same phase and frequency with grid voltage. Interleaved flyback converter improves service life of capacitor by reducing the effective value of input large electrolytic capacitor ripple current. Interlaced output reduces output current ripple so as to decrease total harmonic distortion of current.B. Circuit AnalysisPV panel DC voltage inputs interleaved flyback converter and drives flyback MOSFET to generate sine output voltage/current with HF sine PWN modulating signal. Phase difference between two interleaved flyback converter driving signals is 180 degree. Interleaved flyback topology structure works under two switch modes.•Mode 1: when flyback MOSFET is opened, HF flyback transformer primary magnetic inductor accumulates energy, diode is phase reversalblocked and the secondary transformer winding voltage is reverse biased. During that period, primary inductor of HF flyback transformer is like a power inductor, primary current (Ipri1/Ipri2) ascends linearly and load current is from output capacitor.Mode 2: when flyback MOSFET is closed, voltage of primary winding is in phase reversal and output diode is forward biased. Energy stored at primary winding is transferred to secondary winding and provide current to output capacitor and load. During that period, output voltage is from the secondary transformer winding directly and then linearity of diode current decreases.Sine PWM modulating signal drives MOSFET to generate primary current and then generate current at the secondary diode. Half-wave sine average current of secondary rectifier diode generates standard half-wave sine voltage /current through output capacitor filtration. Controllable silicon full bridge rectifier circuit is used to produce sine-based output half-wave sine voltage/current. Thereby, the controllable silicon switches frequency into power grid frequency.Input voltage/current waveform of input voltage and solar micro-inverter in front of SCR bridge circuit and output voltage/current waveform of solar micro-inverter are shown in figure 3.C. Control CircuitPV grid-connected micro-inverter control system consist offollowing control circuits: digital phase-locked loop (PLL), current control circuit, maximum power tracking circuit and load balance control circuit. PLL and current control circuit related to grid-connected control are discussed in the present paper only.1) Digital phase-locked loop (PLL)PLL control system is a crucial component of control system to enable electric energy output by the system to be connected to power grid in unit power factor. PLL makes inverter output current have the frequency and phase angle synchronous with grid voltage.ADC channel of the software samples grid voltage and inverter output current signal and saves polarity of grid-connected voltage in register hence polarity of grid voltage is clear during each sampling period. Zero-voltage detection mark is set by the software when polarity of grid voltage varies. When grid voltage passes zero crossing point, the input timer interrupts and waits for the next zero crossing point, and count of the timer during the interruption between two zero crossing points is half of the period value of grid voltage. Period value can be used to express grid frequency and decides phase angle increment in citing of sine table reference values. Frequency and phase of grid voltage and inverter output current can be acquired with the above sampling parameters, and relevant SPWM carrier frequency and initial phase are regulated according the calculation results to enable PV inverter systemoutput current to track frequency and phase of grid voltage. The sine table covers 512 reference elements of sine 0 through 90 degree.2) Current control circuitCurrent control circuit applies PI controller and is the core of control system. Output control signal of current control circuit controls duty ratio of flyback MOSFET (D) to ensure that input current IAC follows reference current IACref.Equivalent non-isolated circuit of flyback converter acts as a buck-boost converter; therefore buck/boost converter can be used to establish model and calculate control circuit parameters. Like buck/boost converter is a highly nonlinear system like boost converter. Output voltage and current have nonlinear relation with the duty ratio when the system operates under continuous conduction mode. The current challenge is how to control the duty ration of flyback MOSFET D and generate a sinusoidal current. Circuit of buck/boost converter is shown in figure 4.Magnetic inductor of flyback is replaced by a buck-boost inductor. Giving duty ratio D to switch is to generate sinusoidal current passing load. The buck/boost topology structure generates reverse voltage. Therefore, average current through diode and load should be like a modified sine wave upside down. As the current of inductor does notchange instantly, load current can be calculated with the following formula.I LOAD represents the current of flyback inverter system; I AC, I L represents the current passing flyback current magnetic converter; I L* represents I ACref reference current; D represents duty ratio of flyback MOSFET; G is coefficient of control circuit compensation circuit K p and K i.Fundamental formula of inductor can be expressed by formula 2.It’s unlike to obtain current parameters directly in stead current error proportional to voltage is used to control current as shown in formula 3.According to basic power electronics theory, V x=V in*D -(1-D) * V oOutput voltage of flyback circuit V o is half-wave rectified sinusoidal voltage and is connected to power grid through thyristor full bridge inverter. Duty ratio D is calculated by formula 4 with input voltage V in and output voltage V o measured.Formula 5 is the relation expression between input voltage and output voltage of buck/boost converter.Desired duty ratio can be calculated with formulae 4 and 5 as shown in formula 6, where I load* is modified sine wave.The first item is the calculation result of PI compensator of which bandwidth is given by G/L. The second item is the result of open loop control with the purpose of enabling current to output in sine wavewithout control.IV. SYSTEM SIMULATIONA.A. Simulink Simulation ModelBased on the above analysis, the present paper establishes Simulink digital simulation model of PV grid-connected micro-inverter with the general flow chart shown in figure 5, where,Vin_ref-secondary1 is PV panel output voltage; Subsystem2 outputs reference current and grid voltage; Subsystem3 is model of flyback converter with internal flow chart as shown in figure 6; and controller1 is flow chart of control circuit and includes PLL control and average current tracking control as shown in figure 6.B. Simulation Result and AnalysisBased on the above simulation mode, when PV input voltage is set to Vin to 25V, reference input is set to 1A/50HZ sine current and grid voltage V grid is set to 220V, waveform of output current in front of SCR full bridge inverter acquired is as shown in figure 7, and output current with the same magnitude with reference current and the same phase with grid voltage is obtained after the said current passes through full bridge inverter.The upper part of the figure is the waveform of reference current and the lower part is the waveform of output current. According to simulation result, output current of the system has the same phase with referencecurrent signal; correctness of the control method is validated.V. CONCLUSIONThis paper presents an innovative PV grid-connected micro-inverter with 220W power rating and can be used by combining with individual PV panels into module so as to shoot trouble of single point of failure of individual PV panels in PV grid-connected power generation system and improves generating efficiency. This inverter applies interleaved flyback transformer topology falling into single-phase inverter structure which is simple and efficient. The paper also studies grid-connected control method and current control method in response to the inverter topology structure and establishes simulation model to validate the correctness of the design.太阳能光伏并网逆变器设计一、引言与排水的化石燃料,由传统的发电方式,在世界各地造成了日益严重的污染,可再生、无污染的能源在经济和政治领域备受关注。