香农三大定理
香农三大定理

香农第一定理:可变长无失真信源编码定理。
采用无失真最佳信源编码可使得用于每个信源符号的编码位数尽可能地小,但它的极限是原始信源的熵值。
超过了这一极限就不可能实现无失真的译码。
香农第二定理:有噪信道编码定理。
当信道的信息传输率不超过信道容量时,采用合适的信道编码方法可以实现任意高的传输可靠性,但若信息传输率超过了信道容量,就不可能实现可靠的传输。
香农第三定理:保真度准则下的信源编码定理,或称有损信源编码定理。
只要码长足够长,总可以找到一种信源编码,使编码后的信息传输率略大于率失真函数,而码的平均失真度不大于给定的允许失真度,即D'<=D.一:香农第一定理(可变长无失真信源编码定理)设信源S的熵[shāng]H(S),无噪离散信道的信道容量为C,于是,信源的输出可以进行这样的编码,使得信道上传输的平均速率为每秒(C/H(S)-a)个信源符号.其中a可以是任意小的正数, 要使传输的平均速率大于(C/H(S))是不可能的。
二:香农第二定理(有噪信道编码定理)设某信道有r个输入符号,s个输出符号,信道容量为C,当信道的信息传输率R<C,码长N足够长时,总可以在输入的集合中(含有r^N个长度为N的码符号序列),找到M (M<=2^(N(C-a))),a为任意小的正数)个码字,分别代表M个等可能性的消息,组成一个码以及相应的译码规则,使信道输出端的最小平均错误译码概率Pmin达到任意小。
公式:C=B*log2(1+S/N) 注:B为信道带宽;S/N为信噪比,通常用分贝(dB)表示。
三:香农第三定理(保失真度准则下的有失真信源编码定理)设R(D)为一离散无记忆信源的信息率失真函数,并且选定有限的失真函数,对于任意允许平均失真度D>=0,和任意小的a>0,以及任意足够长的码长N,则一定存在一种信源编码W,其码字个数为M<=EXP{N[R(D)+a]},而编码后码的平均失真度D'(W)<=D+a。
香农三大定理及应用

香农三大定理及应用香农三大定理是信息论的基石,提出者是美国通讯工程师克劳德·香农(Claude Shannon)。
这三大定理分别是:信源编码定理、信道编码定理和密码技术定理。
下面我将分别介绍这三个定理,并简要阐述它们的应用。
首先是信源编码定理。
信源编码定理也被称为数据压缩定理,它指出:对于一个离散的源,如果它的熵(信息平均量)是H,我们可以找到一种无损编码方法,将其数据量表示为n bits,使得n趋近于H。
也就是说,通过合适的编码方法,我们可以用更少的位数来表示信息,从而达到数据压缩的目的。
信源编码定理的应用非常广泛,例如在文件压缩、图像压缩和视频压缩中都有使用。
在文件压缩中,可以通过对文件进行编码,利用统计特性来减小文件的体积,从而节省存储空间和提高传输效率。
在图像压缩中,可以采用有损压缩的方式,通过去除图像中的冗余信息来减小图像文件的大小,但尽可能保持图像质量不受损失。
在视频压缩中,可以通过对视频的空间和时间冗余进行编码,从而减小视频文件的大小,实现高效传输与存储。
接下来是信道编码定理。
信道编码定理指出:在一个离散无噪声信道中,如果信息传输速率R小于信道容量C,那么存在一种编码方法,使得信息传输能够以任意小的错误率进行。
也就是说,只要我们将传输速率控制在信道容量之内,通过合适的编码和解码方法,可以实现可靠的信息传输。
信道编码定理在通信系统中具有重要的应用。
例如在无线通信中,由于受到信道噪声和干扰的影响,信号会发生失真,导致信息传输错误。
通过利用信道编码的方法,可以在发送端对信息进行编码,然后在接收端进行解码,从而减小信道噪声和干扰对信息传输的影响,提高信号的可靠性。
最后是密码技术定理。
密码技术定理指出:在保密通信中,只要密钥的长度足够长,使用适当的加密算法,加密信息的安全性可以通过计算机的计算力达到的限度。
也就是说,通过合理的加密方法和足够复杂的密钥,可以实现信息的保密性,并且在计算力有限的情况下,破解加密信息是非常困难的。
香农定理

谈香农定理克劳德.香农,1916年4月30日出生于美国密歇根州的加洛德,他是信息时代的奠基人。
他这一生的两大贡献之一便就是信息论,信息熵的概念提出和香农公式。
信息传输给出基本数学模型的核心人物是香农。
1948年香农长达数十页的论文“通信的数学理论”成了信息论正式诞生的里程碑。
在他的通信数学模型中,清楚地提出信息的度量问题,他把哈特利的公式扩大到概率pi不同的情况,得到了著名的计算信息熵H的公式:H=∑-pi log pi如果计算中的对数log是以2为底的,那么计算出来的信息熵就以比特(bit)为单位。
今天在计算机和通信中广泛使用的字节 (Byte)、KB、MB、GB等词都是从比特演化而来。
“比特”的出现标志着人类知道了如何计量信息量。
香农的信息论为明确什么是信息量概念作出决定性的贡献。
香农在进行信息的定量计算的时候,明确地把信息量定义为随机不定性程度的减少。
这就表明了他对信息的理解:信息是用来减少随机不定性的东西。
或香农逆定义:信息是确定性的增加。
事实上,香农最初的动机是把电话中的噪音除掉,他给出通信速率的上限,这个结论首先用在电话上,后来用到光纤,现在又用在无线通信上。
我们今天能够清晰地打越洋电话或卫星电话,都与通信信道质量的改善密切相关。
香农定理:香农定理描述了有限带宽、有随机热噪声信道的最大传输速率与信道带宽、信号噪声功率比之间的关系.在有随机热噪声的信道上传输数据信号时,数据传输率Rmax与信道带宽B,信噪比S/N关系为: Rmax=B*Log2(1+S/N)。
在信号处理和信息理论的相关领域中,通过研究信号在经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,叫做香农(Shannon)定理。
它以比特每秒(bps)的形式给出一个链路速度的上限,表示为链路信噪比的一个函数,链路信噪比用分贝(dB)衡量。
因此我们可以用香农定理来检测电话线的数据速率。
香农定理由如下的公式给出: C=B*log2(1+S/N) 其中C是可得到的链路速度也就是信道容量,B是链路的带宽,S是平均信号功率,N是平均噪声功率,信噪比(S/N)通常用分贝(dB)表示,分贝数=10×log10(S/N)。
香农三大定理简答

香农三大定理简答香农三大定理是指由数学家克劳德·香农提出的三个基本通信定理,分别是香农第一定理、香农第二定理和香农第三定理。
这三个定理是现代通信理论的基石,对于信息论和通信工程有重要的指导意义。
下面将对这三个定理进行详细的阐述。
1. 香农第一定理:香农第一定理是信息论的基石,提出了信息传输的最大速率。
根据香农第一定理,信息的传输速率受到带宽的限制。
具体而言,对于一个给定的通信信道,其最大的传输速率(即信息的最大传输率)是由信道的带宽和信噪比决定的。
信道的带宽是指能够有效传输信号的频率范围,而信噪比则是信号与噪声的比值。
这两个因素共同决定了信道的容量。
香农提出的公式表示了信道的容量:C = B * log2(1 + S/N)其中,C表示信道容量,B表示信道的带宽,S表示信号的平均功率,N表示噪声的平均功率。
2. 香农第二定理:香农第二定理是关于信源编码的定理。
根据香农第二定理,对于一个离散的信源,存在一种最优的编码方式,可以将信源的信息压缩到接近于香农熵的水平。
香农熵是对信源的输出进行概率分布描述的一个指标,表示了信源的不确定性。
具体而言,香农熵是信源输出所有可能码字的平均码长。
对于给定的离散信源,香农熵能够提供一个理论上的下限,表示信源的信息量。
通过对信源进行编码,可以有效地减少信源输出的冗余度,从而实现信息的高效传输。
香农第二定理指出,对于一个离散信源,其信源编码的最优平均码长与香农熵之间存在一个非常接近的关系。
3. 香农第三定理:香农第三定理是关于信道编码的定理。
根据香农第三定理,对于一个给定的信道,存在一种最优的编码方式,可以通过使用纠错码来抵消由信道噪声引起的错误。
信道编码的目标是在保持信息传输速率不变的情况下,通过增加冗余信息的方式,提高错误纠正能力。
纠错码可以在数据传输过程中检测和纠正一定数量的错误,从而保证数据的可靠性。
香农第三定理指出,对于一个给定的信道,其信道编码可以将信息传输的错误率减少到任意低的水平。
香农公式

给定有D个元素的码符号集,对扩展信源编码,总可以找 到一种唯一可译码,使码长 n L 满足:
X
Y
联 合 熵
交 互 熵
X
Y
X
Y
将定理3.3推广到L次扩展信源---
香农第一定理:变长编码定理
X x1 ,x2 ,...,xM 定理3.4 给定熵为H(X)的离散无记忆信源 p x , p x ,..., p x p( X ) M 1 2 其L次扩展信源的熵记为H(X)
nL n L
信源符号对应 的平均码字数
HX H U L ,limn RD logD L logD n
信息传输速率
这是信息传输速率 RD 能达到的极限值,对应于等概分布。
Shannon第一定理的物理意义:
信源编码时,应使编码后的码集中各码字尽可能等概 分布,若将该码集看成一个新的信源,此时新信源所含信 息量最大。
限定理都有其共性,也有个性。所给出的指导作用也各
不相同,但其证明方式都采用随机编码方式证明。 所谓存在性,是指定理仅给出是否存在着一种(至少
一种)编码方式可以满足要求;但如何编码则无可奉告。
它们的逆定理则给出了不存在性,这是它们的共性。 所谓构造性,是指定理不仅指出了存在性,而且还 给出了最佳码字的结构特性,如码长、代码形式等。
有噪信道编码逆定理
离散、无记忆、平稳信道,信道容 量为C,如果信息率R>C,则肯定找不 到一种信道编码方法,使得码长N足够 大时,平均差错率任意接近于零。
信道编码的指导意义
香农定理通俗解释

香农定理通俗解释
香农定理是由信息论的创始人克劳德·香农提出的,它包括三个部分:信息熵定理、信道容量定理和数据压缩定理。
通俗地讲,这三个定理主要研究信息的量化、存储和传播。
1. 信息熵定理:这是用来衡量信息量的一个概念。
香农提出了一个数学公式,可以计算出一个信息源的熵值。
2. 信道容量定理:这是关于信道容量的计算的一个经典定律,可以说是信息论的基础。
在高斯白噪声背景下的连续信道的容量= (b/s)。
其中B为信道带宽(Hz),S为信号功率(W),n0为噪声功率谱密度(W/Hz),N为噪声功率(W)。
这个定理告诉我们,信道容量受三要素B、S、no的限制,提高信噪比S/N可增大信道容量。
3. 数据压缩定理:这个定理与压缩理论有关,主要研究如何通过压缩数据来减少冗余信息,从而实现更高效的数据传输和存储。
香农定理为我们提供了一套完整的理论框架,用于研究和优化信息的传输、存储和处理过程。
简述香农公式。

简述香农公式。
c=wlog2(1+s/n)
香农定理:香农定理则描述了有限带宽;有随机热噪声信道的最大传输速率与信道带宽;信号噪声功率比之间的关系.
在有随机热噪声的信道上传输数据信号时,数据传输率Rmax与信道带宽B,信噪比S/N关系为: Rmax=B*LOG⒉(1+S/N)
在信号处理和信息理论的相关领域中,通过研究信号在经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,叫做香农(Shannon)定理。
它以比特每秒(bps)的形式给出一个链路速度的上限,表示为链路信噪比的一个函数,链路信噪比用分贝(dB)衡量。
因此我们可以用香农定理来检测电话线的数据速率。
香农定理由如下的公式给出: C=Blog2(1+S/N) 其中C是可得到的链路速度,B 是链路的带宽,S是平均信号功率,N是平均噪声功率,信噪比(S/N)通常用分贝(dB)表示,分贝数=10×log10(S/N)。
香农公式,信道容量

香农公式香农定理指出,如果信息源的信息速率R小于或者等于信道容量C,那么,在理论上存在一种方法可使信息源的输出能够以任意小的差错概率通过信道传输。
该定理还指出:如果R>C,则没有任何办法传递这样的信息,或者说传递这样的二进制信息的差错率为1/2。
可以严格地证明;在被高斯白噪声干扰的信道中,传送的最大信息速率C由下述公式确定:C=B*log2(1+S/N) (log2表示以2为底的对数)该式通常称为香农公式。
B是信道带宽(赫),S是信号功率(瓦),N是噪声功率(瓦)。
香农公式中的S/N为无量纲单位。
如:S/N=1000(即,信号功率是噪声功率的1000倍)但是,当讨论信噪比(S/N)时,常以分贝(dB)为单位。
公式如下:S/N = 10lgS/N (dB)(分贝与信噪比之间的关系为:dB=10lgS/N)公式表明,信道带宽限制了比特率的增加,信道容量还取决于系统信噪比以及编码技术种类信道容量信道容量是信道的一个参数,反映了信道所能传输的最大信息量,其大小与信源无关。
对不同的输入概率分布,互信息一定存在最大值。
我们将这个最大值定义为信道的容量。
一但转移概率矩阵确定以后,信道容量也完全确定了。
尽管信道容量的定义涉及到输入概率分布,但信道容量的数值与输入概率分布无关。
我们将不同的输入概率分布称为试验信源,对不同的试验信源,互信息也不同。
其中必有一个试验信源使互信息达到最大。
这个最大值就是信道容量。
信道容量有时也表示为单位时间内可传输的二进制位的位数(称信道的数据传输速率,位速率),以位/秒(b/s)形式予以表示,简记为bps。
[编辑本段]nyjingle补充:通信的目的是为了获得信息,为度量信息的多少(信息量),我们用到了熵这个概念。
在信号通过信道传输的过程中,我们涉及到了两个熵,发射端处信源熵——即发端信源的不确定度,接收端处在接收信号条件下的发端信源熵——即在接收信号条件下发端信源的不确定度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
香农第一、二、三定理
第一定理:
将原始信源符号转化为新的码符号,使码符号尽量服从等概分布,从而每个码符号所携带的信息量达到最大,进而可以用尽量少的码符号传输信源信息
第二定理:
当信道的信息传输率不超过信道容量时,采用合适的信道编码方法可以实现任意高的传输可靠性,但若信息传输率超过了信道容量,就不可能实现可靠的传输。
第三定理:
只要码长足够长,总可以找到一种信源编码,使编码后的信息传输率略大于率失真函数,而码的平均失真度不大于给定的允许失真度,即D'<=D。