极点极限定理的简单应用

极点极限定理的简单应用
极点极限定理的简单应用

一道高考解析几何题的背景溯源

──极点、极线与圆锥曲线的位置关系

湖北省阳新县高级中学邹生书

题目已知椭圆的两个焦点,点满足,则

的取值范围是,直线与椭圆的公共点的个数是.

这是2010年高考湖北卷文科第15题,本题是一道涉及到点、直线与圆锥曲线的位置关系的判定的考题.从高等几何的观点知,这里的点和直线就是椭圆

的一对极点与极线,本题第二问实际上是:已知椭圆的极点在椭圆内,判断极线与椭圆的位置关系.据笔者之前发表的文章中圆锥曲线极点和极线的几何性质可得如下结论:

定理已知点和直线是圆锥曲线的一对极点与极线.(1)若极点在曲线上,则极线与曲线的相切于点;(2)若极点在曲线内,则极线与曲线的相离;(2)若极点在曲线外,则极线与曲线的相交.

由该定理不难知道,考题中的直线与椭圆相离,故公共点个数为0.若运

用几何画板进行实验操作动态演示,不仅可以验证确认该结论,而且还可获得直观感知从而加深印象强化理解.本文将借用判别式法给出该定理的另一种证明.

为了表达方便我们给出圆锥曲线内部和外部的定义.圆、椭圆是封闭图形其内部和外部不言而喻,抛物线、双曲线不是封闭的是开的,我们参考一些杂志专著,对双曲线和抛物线的内部和外部给出如下定义:焦点所在的平面区域称为该曲线的内部,不含焦点的平面区域称为曲线的外部,曲线上的点既不在内部也不在外部.关于点与圆锥曲线位置关系我们有如下结论(这里证明从略).

引理1已知点和抛物线.则(1)点在上

;(2)点在内;(3)点在外.

引理2 已知点和椭圆(或圆).则(1)点在

上;(2)点在内;(3)点在外.引理3已知点和双曲线.则(1)点在上

;(2)点在内;(3)点在外.圆锥曲线把平面上的点分成三个部分:曲线上的点、曲线内的点和曲线外的点,每一部分的点的坐标对于曲线方程的左右两边的值具有相同的大小关系,真是“物以类集,人以群分”.下面将圆锥曲线分为抛物线、椭圆(圆)和双曲线三种情形,借用判别式法对定理给出如下证明.

定理1已知点和直线是抛物线的一对极点与极线.则(1)点在上直线与相切于点;(2)点

在内直线与相离;(3)点在外直线与

相交.

证明由得,,将其代入抛物线方程得,

,所以.所以,(1)点在上

直线与相切于点;(2)点在内

直线与相离;(3)点在外

直线与相交.

定理2已知点和直线是椭圆(圆)

的一对极点与极线.则(1)点在上

直线与相切于点;(2)点在内直线与相离;(3)点在外直线与相交.

证明当时,.则(1)点在

直线与相切于点;(2)点在内直线与相离;(3)点在外直线与相交.

当时,,将其代入曲线方程整理得,

.所以.所以,(1)点在上直线与相切于点;(2)点在内直线与相离;(3)点在外

直线与相交.

综上所述,命题结论正确.同理可证如下如下结论:

定理3已知点和直线是双曲线

的一对极点与极线.则(1)点在上直线与相切于点;(2)点在内直线与相离;(3)点

在外直线与相交.

下面举例说明极点、极线与圆锥曲线位置关系在解题中的应用.

1.判断点与圆锥曲线的位置关系

例1若直线和没有公共点,则过点的直线与椭

圆的公共点()

至少有一个有两个只有一个不存在

解显然点和直线恰好是的一对极点和极线,又极线与圆没有公共

点,所以极点在圆内,所以,所以,所以,所以点在椭圆内(实际上,由图形可知圆上除两个点在椭圆上外,其余点均在椭圆内,

因点在圆内,则点必在椭圆内),故过点的直线与椭圆相交有两个公共点,故应选.

例2 已知直线与双曲线没有公共点,则的取值范围是.

解因为极线与双曲线没有公共点,所以对应极点

在双曲线内部,所以有,故的取值范围是.

2.判断直线与圆锥曲线的位置关系

例3 若点是内一点,直线是以点

为中点的弦所在的直线,直线的方程为,则()

,且与相离,且与相交

,且与相离,且与相交

解显然点和直线恰好是的一对极点和极线,因极点在圆内,所以极与圆相离.又是直线的一个法向量,所以,而直线是以点为中点的弦所在的直线,所以,所以.故应选.

例4已知曲线,过点能否作一条直线,与双曲线相交于两点,且点是线段的中点?

解假设存在这样的直线.设,则,两式相减得,.因点是线段的中点,所以

,代入上式可得.若则有,于

是两点重合不合题意,所以,所以,即直线的斜率为,故直线

的点斜式方程为,即.将直线方程化为双曲线的极线方程形式

得,因直线对应的极点为,而,所以极点在双曲线内,从而直线与双曲线相离没有公共点,这与假设矛盾,故不存在这样的直线.

(注:可编辑下载,若有不当之处,请指正,谢谢!)

极点极限定理的简单应用

一道高考解析几何题的背景溯源 ──极点、极线与圆锥曲线的位置关系 湖北省阳新县高级中学邹生书 题目已知椭圆的两个焦点,点满足,则 的取值范围是,直线与椭圆的公共点的个数是. 这是2010年高考湖北卷文科第15题,本题是一道涉及到点、直线与圆锥曲线的位置关系的判定的考题.从高等几何的观点知,这里的点和直线就是椭圆 的一对极点与极线,本题第二问实际上是:已知椭圆的极点在椭圆内,判断极线与椭圆的位置关系.据笔者之前发表的文章中圆锥曲线极点和极线的几何性质可得如下结论: 定理已知点和直线是圆锥曲线的一对极点与极线.(1)若极点在曲线上,则极线与曲线的相切于点;(2)若极点在曲线内,则极线与曲线的相离;(2)若极点在曲线外,则极线与曲线的相交. 由该定理不难知道,考题中的直线与椭圆相离,故公共点个数为0.若运 用几何画板进行实验操作动态演示,不仅可以验证确认该结论,而且还可获得直观感知从而加深印象强化理解.本文将借用判别式法给出该定理的另一种证明. 为了表达方便我们给出圆锥曲线内部和外部的定义.圆、椭圆是封闭图形其内部和外部不言而喻,抛物线、双曲线不是封闭的是开的,我们参考一些杂志专著,对双曲线和抛物线的内部和外部给出如下定义:焦点所在的平面区域称为该曲线的内部,不含焦点的平面区域称为曲线的外部,曲线上的点既不在内部也不在外部.关于点与圆锥曲线位置关系我们有如下结论(这里证明从略). 引理1已知点和抛物线.则(1)点在上 ;(2)点在内;(3)点在外.

引理2 已知点和椭圆(或圆).则(1)点在 上;(2)点在内;(3)点在外.引理3已知点和双曲线.则(1)点在上 ;(2)点在内;(3)点在外.圆锥曲线把平面上的点分成三个部分:曲线上的点、曲线内的点和曲线外的点,每一部分的点的坐标对于曲线方程的左右两边的值具有相同的大小关系,真是“物以类集,人以群分”.下面将圆锥曲线分为抛物线、椭圆(圆)和双曲线三种情形,借用判别式法对定理给出如下证明. 定理1已知点和直线是抛物线的一对极点与极线.则(1)点在上直线与相切于点;(2)点 在内直线与相离;(3)点在外直线与 相交. 证明由得,,将其代入抛物线方程得, ,所以.所以,(1)点在上 直线与相切于点;(2)点在内 直线与相离;(3)点在外 直线与相交. 定理2已知点和直线是椭圆(圆) 的一对极点与极线.则(1)点在上

微积分定理归纳

第一章函数与极限 1、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。 2、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。 定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。 如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。 定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。 3、函数的极限函数极限的定义中0<|x-x0|表示x≠x0,所以x→x0时f(x)有没有极限与f(x)在点x0有没有定义无关。 定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A<0),就存在着点那么x0的某一去心邻域,当x在该邻域内时就有f(x)>0(或f(x)>0),反之也成立。 函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。 一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f(x)的图形水平渐近线。如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。 4、极限运算法则定理有限个无穷小之和也是无穷小;有界函数与无穷小的乘积是无穷小;常数与无穷小的乘积是无穷小;有限个无穷小的乘积也是无穷小;定理如果F1(x)≥F2(x),而limF1(x)=a,limF2(x)=b,那么a≥b.

概率极限理论

随机微分方程基本理论 1、引言 随机微分方程(SDE )的诞生有其一定的应用背景。随机微积分和随机微积分方程起源于马氏过程的构造和柯尔莫哥洛夫的分析方法与费尔的半群方法。常微分方程在物理、工程技术、生物和经济等领域中的应用是众所周知的,然而随着科学技术的发展,要求对实际问题的描述越来越精确。因此,随机因素的影响就不能轻易地被忽略,于是对于某些实际过程的分析也就有必要从通常的确定性观点转到随机的观点,从而对这些实际系统的描述,也就自然地从确定性的常微分方程转到随机常微分方程,简称随机微分方程。 随机微分方程是一种针对生物、化学、医药、机电、经济等领域中的随机现象而建立的数学模型,其广泛应用于自然科学、工程技术和经济学等领域。伊藤型随机微积分方程就是指带有白噪声的微分方程。自从爱因斯坦建立了布朗运动和随机分子扩散的数学理论以来,各种不同的领域内,如分子物理学、院子物理学、化学动力学、固态理论、结构稳定性、群体遗传学、通信以及自然科学、社会科学和工程的许多其他分支中开展了一系列理论的科学研究。在随机微分方程理论研究的早期阶段,爱因斯坦、斯莫路苏斯基、郎之万、奥伦斯坦、乌伦贝克和克拉美等人做了许多卓有成效的工作,这些工作综合在查德瑞赛卡1943男的主要论文中。随着随机微分方程的数学理论的发展数学研究人员在这一领域中发展了一些及其重要的结果,随着伊藤积分概念的引入,随机微分方程的理论向更深纵发展。 2、基础理论和线性方程 0)0( , )()),(()),(()(x x x dw t t x b dt t t x a t dx =+= (2.1) 是由伊藤积分方程 )() ),(()),(()(0 0s dw s s x b s s x a x t x t t ??+ + = (2.2) 定义。

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

计量经济学知识点重点总结

一、一些应该掌握的概念(课都上完以后回顾时候提到的应该知道的一些知识,有可能会出简答题) 1、中心极限定理 2、大数定理 3、正态分布 4、契比雪夫不等式 5、方差,期望 6、协方差及其相关系数, 二、一些基本题型 1、随机变量分布,“离散型100%考,图形不会的补考!”(此为他课上威胁性话语,所以重视程度排在第一位了……不知道是不是真考,《北方工业大学》版本有一个其他的数据的例子,供参考) 例:设对任意x,定义F(x)=P{X≤x}=P{w|X(w)≤x} X 1 2 3 P 1/3 1/3 1/3 求F(x)=P(X≤x)的分布 1)x<1时,F(x)= P(X<1)=0 2)1≤x<2时,F(x)= P(X≤1)=P(X=1)=1/3 3)2≤x<3时,F(x)= P(X≤2) =P(X=1)+ P(X=2)=2/3 4)3≤x时,F(x)= P(X≤3) =P(X=1)+P(X=2)+ P(X=3)=1 图形:次图形为右连续 F(x) 0 1 2 3 x 2、需求量,很容易考(原话) P15的例1.5,实在打不出来,留个地,大家自己写上去吧。 3、联合概率密度(简单被积分数,身高、体重作为随机变量) 例:用X表示身高,Y表示体重,(X,Y)为二维随机变量 定义F(l,w)=P{X≤l1, Y≤w1} 当两个事件相互独立时,得出

F(l,w)=F X(l) * F Y(w) 即同时满足身高、体重条件的概率为满足身高事件的概率与满足体重的概率乘积。 4、古典概型例子 例一:有藏品100个,其中5个次品,求取8个里面最多2个次品的概率?解:书上p6,例1.1 其中应注意公式: n! C m n =---------------------- m!(n-m)! (公式打得难看了一点,但是很有用) 例二:黑球a个,白球b个,放在一起抓阄。1≤k≤a+b,求在第k个位置抓到黑球的概率? 解: a*(a+b-1)! / (a+b)! =a/(a+b) 此用来证明第k次抽签时与前面抽到的概率都相等,(本人认为考的可能性小,哈哈) 例三:n个人坐一圈,求其中2个熟人坐一起的概率 解: P=2/(n-1) 即为,把两个人看作一个整体,与其他n-1个人排列,有n-1种方法,他们之间的座位左右更换,有两个,所以得出上式。太简单了,估计不会考吧? 例四:n个人,至少2个人同生日的概率 如p6,例1.2 P=1 - 365*364*…(365-n+1)/365n 例五:n双不同的鞋,取2k只,(2k

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

极限理论在微积分中的地位和作用

极限理论在微积分中的地位和作用 摘要:极限思想至始至终贯穿于高等数学之中,微积分中许多重要的概念都是用极限来定义的,如连续、导数、积分、级数等.可以说微积分就是应用极限和极限思想研究函数变量间依赖关系和函数变化规律的数学分支,极限和极限思想在微积分中扮演着核心的地位. 关键词:极限微积分核心连续导数积分级数 极限的思想方法贯穿于微积分课程的始终。可以说微积分中的几乎所有的概念都离不开极限。在几乎所有的微积分教材中,都是先介绍函数理论和极限的思想方法,然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数,广义积分的敛散性、重积分和曲线积分与曲面积分的概念。极限思想方法是微积分乃至全部高等数学必不可少的一种重要方法,也是高等数学与初等数学的本质区别之处。微积分之所以能决许多初等数学无法解决的问题(例如求瞬时速度、曲线弧长、曲边形面积、曲面体体积等题),正是由于它采用了极限的思想方法。例如,求变速直线运动的瞬时速度,这时速度是变量,为此,人们先在小范围内用匀速代替变速,并求其平均速度,把瞬时速度定义为平均速度的极限,就是借助极限法,从“不变”认识“变”。曲线形与直线形有本质的差异,但在一定件下也可相互转化,善于利用这种对立统一关系是处理数学问题的重要手段之一。直线形的面积容易求得,要求曲线形的面积,只用初等的方法就不行了。刘徽用圆内接多边形逼近圆,一般地,人们用小矩形的面积和逼近曲边梯形的面积,都是借助极限法,从直线形认识曲线形质和量的互变规律是辩证法的基本规律之一,在数学研究工作中起重要作用。无穷级数数求和、瞬时速度等都是借助极限法,从近似认识准确。 一、极限与连续 客观世界的许多事物以及现象都是运动变化的,且变化过程往往是连绵不断的,而连续函数是刻画变量连续变化的最佳数学方式.正是对物体连续运动的研究促使了微积分的萌芽和产生. 18 世纪时,虽然许多数学家都已在研究连续函数,但仍停留在几何直观上.直到19 世纪,柯西及维尔斯特拉斯等数学家建立严格的极限理论后,才使连续函数有了精确定义. 连续的精确定义:设函数在点的某一邻域内有定义,如果函数当x->x0时的极限存在,且等于它在x0处的函数值,即那么就称函数在点连续。 二、极限与导数 法国数学家费马为研究极值问题最早的引入了导数的思想,但与导数概念直接相联系的是以下两个问题:已知运动规律求速度和已知曲线求它的切线. 这是由英国科学家牛顿和德国数学家莱布尼茨分别在研究力学和研究几何学过程中建立起来的. 导数的定义:设函数在点的某个邻域内有定义,当自变量x在点处取得改变量时,函数取得相应的改变量,如果当时,的极限存在,那么称函数在点处可导,则称此极限值为函数在点处的导数,记为, = 可见,微分学的基本概念导数是用极限来定义的. 此外,导数也可用来解决极限问题,如洛必达法则就是以导数为工具解决未定式极限的. 三、极限与积分

中心极限定理的应用

毕业论文 题目中心极限定理的应用 学生姓名张世军学号1109014148 所在院(系) 数学与计算机科学学院 专业班级数学与应用数学专业(统计类)11级2班指导教师程小静 2015 年 5 月 25 日

中心极限定理的应用 张世军 (陕西理工学院数学与计算机科学学院数学与应用数学专业2011级数应2班,陕西汉中 723000) 指导教师:程小静 [摘要]中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分布的一类重要定理。本文首先从中心极限定理的内容出发,给出几种常见的中心极限定理并对其进行了证明;其次讨论了中心极限定理在供应电力、器件价格、商场管理、烟卷制造业、社会生活、军事问题等这几个方面的实际应用;最后总结分析了中心极限定理在应用上的优缺点。 [关键词]随机变量;中心极限定理;正态分布;概率论;近似计算 Central Limit Theorem of Application Zhang Shijun (Grade11,Class02,Major Mathematics and Applied Mathematics Specialty,Mathematics and computer scienceDept.,Shaanxi University of Technology,Hanzhong 723000,Shaanxi) Tutor: Cheng Xiaojing Abstract:The central limit theorem is an important limit theorem in probability theory to discuss a set of random variables and the distribution of the normal distribution. Firstly starting from the content of the central limit theorem, given several common central limit theorems and its proofs; Second central limit theorem is discussed in the electric power supply, prices, market management, cigarette manufacturing, social life, the practical application of this a few aspects such as military questions; Summarized and analyzed the advantages and disadvantages of central limit theorem on the application. Keywords:Random variables; Central limit theorem; Normal distribution; Probability theory;Approximate calculation

中心极限定理应用

中心极限定理及其应用 【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。它们表明了当n 充分大时,方差存在的n 个独立同分布的随机变量和近似服从正态分布,在实际中的应用相当广泛。本文讨论了中心极限定理的内容、应用与意义。 【关键词】:中心极限定理 正态分布 随机变量 一、概述 概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn 、…的部分和的分布律:当n →∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。 二、定理及应用 1、定理一(林德贝格—勒维定理) 若 ξ 1 ,ξ 2 ,…是一列独立同分布的随机变量,且 E k ξ=a, D k ξ = σ 2 ( σ 2 >0) ,k=1,2,…则有 dt e x n na p x t n k k n ? ∑∞ -- =∞ →= ≤-2 1 221)(lim π σξ 。 当n 充分大时, n na n k k σξ ∑=-1 ~N (0,1),∑=n k k 1 ξ ~N (2 ,σn na ) 2、定理二(棣莫弗—拉普拉斯中心极限定理) 在n 重伯努利试验中,事件A 在每次试验中出现的概率为错误!未找到引用源。, 错误!未 找到引用源。为n 次试验中事件A 出现的次数,则dt e x npq np p x t n n ?∞ -- ∞ →= ≤-2 2 21 )( lim π μ 其中1q p =-。这个定理可以简单地说成二项分布渐近正态分布,因此当n 充分大时,可

中心极限定理论文:中心极限定理及其简单应用.

中心极限定理论文:中心极限定理及其简单应用 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极pH定理的内容并简单介绍了它在实际中的应用。关键词:中心极限定理正态分布随机变量一、概述概率论与数理统计是研究随机现象、统计规律性的学科。随机现象的规律性只有在相同条件下进行大量重复的实验才会呈现出来,而研究大量的随机现象常常采用极限的形式,由此导致了对极限定理的研究。极限定理的内容很广泛,中心极限定理就是其中非常重要的一部分内容。中心极限定理主要描述了在一定条件下,相互独立的随机变量序列X1、X2、…Xn、…的部分和的分布律:当n→∞时的极限符合正态分布。因此中心极限定理这个结论使正态分布在数理统计中具有很重要的地位,也使得中心极限定理有了广泛的应用。二、定理及应用中心极限定理有多种形式:1、独立同分布下的中心极限定理定理 1[1],设x1,X2,…,Xn,…是独立同分布随机变量,EXi=μDXi=σ2(i=1,2,…,n)则它表明当n充分大时,n个具有期望和方差的独立同分布的 随机变量之和近似服从正态分布。定理1也称为林德伯格定理或列维——林德伯格定理。其中上下同除n,分子中有xi,其在数理统计中可表示样本的均值,可见独立同分布的样本均值近似地服从正态分布。这使得中心极限定理在数理统计中有着广泛而重要的作用。而上述定理应用到伯努利实验序列的情形,我们可以得到如下定理。定理2[1](拉普拉斯定理),在n重伯 努利试验中,事件A在每次实验中出现的概率P(0 2、同分布下中心极限定理的简单应用独立同分布的中心极限定理可应用于求随机变量之和Sn落在某区间的概率和已知随机变量之和Sn取值的概率,求随机变量的个数。 例1[3],设各零件的重量都是随机变量,它们相互独立且服从相同的分布,其数学期望为0.5kg,均方差为0.1kg,问5000只零件的总重量超过2510kg的概率是多少? 解:设Xi(i=1,2,…,5000)表示第i个零件的重量X1, X2,…,X5000独立同分布且E(Xi)=0.5,D(Xi)=0.12。由独立同分布的中心极限定理可知=I-φ(1.414)=1-0.9215 =0.0785 例 2[3],一生产线生产的产品成箱包装,每箱的重量是随机的且同分布,设每箱平均重50kg,标准差为5kg,若用最大载重为50吨的汽车承运,每辆车最多可以装多少箱才能保证不超载的概率大于0.977?解:设Xi(i=1,2,…,n)是装运第i箱的重量,n为所求箱数。由条件可把X1,X2,…,Xn看作独立同分布的随机变量,而n箱的总重量为Tn=X1+X2+…+Xn,是独立同分布的随机变量之和。由E(Xi)=50、D(Xi)=52得:E(Tn)=50n,D(Tn)=52n 根据独立同分布的中心极限定理:即最多可以装98箱。例3[2],报名听 心理学课程的学生人数K是服从均值为100的泊松分布的随机变量,负责这门课的教授决定,如果报名人数不少于120,就分成两班,否则就一班讲授。问 该教授讲授两个班的概率是多少? 分析:该教授讲授两个班的情况出现当且仅当报名人数x不少于120,精确解为P(x≥120)=e-100100i/i!很难求解,如果利用泊松分布的可加性,想到均值为100的泊松分布随机变量等于 100个均值为1的独立泊松分布随机变量之和,即X=Xi,其中每个Xi具有参数1的泊松分布,则我们可利用中心极限定理求近似解。解:可知 E(X)=100,D(X)=100 ∴P(X≥120)=1-φ()=1-φ(2)=0.023 即教授讲授两个班的概率是0.023。例4[1],火炮向目标不断地射击,若每

中心极限定理证明

中心极限定理证明 一、例子 高尔顿钉板试验. 图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布. 如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且 那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理. 二、中心极限定理 设是独立随机变量序列,假设存在,若对于任意的,成立 称服从中心极限定理. 设服从中心极限定理,则服从中心极限定理,其中为数列. 解:服从中心极限定理,则表明 其中.由于,因此

故服从中心极限定理. 三、德莫佛-拉普拉斯中心极限定理 在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则 用频率估计概率时的误差估计. 由德莫佛—拉普拉斯极限定理, 由此即得 第一类问题是已知,求,这只需查表即可. 第二类问题是已知,要使不小于某定值,应至少做多少次试验这时利用求出最小的. 第三类问题是已知,求. 解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:. 抛掷一枚均匀的骰子,为了至少有的把握使出现六点的概率与之差不超过,问需要抛掷多少次 解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多. 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布: 的随机变量.求. 解:

相关文档
最新文档