迈克尔逊干涉仪的调节和使用数据处理
迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用教学目的1、了解光的干涉花样形成的原理,能区别等倾干涉和等厚干涉;2、学会使用迈克尔逊干涉仪,并能用其测量激光的波长;3、形成实事求是的科学态度和严谨、细致的工作作风。
重难点重点:迈克尔逊干涉仪的调整和使用难点:1)干涉花样形成的原理;2)白光干涉图样的调节教学方法讲授与演示相结合学时3学时一、实验简介光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。
两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。
相干光源的获取除用激光外,在实验室中一般是将同一光源采用分波阵面或分振幅两种方法获得,并使其在空间经不同路径后会合产生干涉。
根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以测出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。
在物理学史上,迈克尔逊曾用自己发明的光学干涉仪器进行实验,精确地测量微小“长度”,否定了“以太”的存在,这个著名实验为近代物理学的诞生和兴起开辟了道路,1907年获诺贝尔奖。
迈克尔逊干涉仪原理简明,构思巧妙,堪称精密光学仪器的典范。
随着对仪器的不断改进,还能用于光谱线精细结构的研究和利用光波标定标准米尺等实验。
目前,根据迈克尔逊干涉仪的基本原理,研制的各种精密仪器已广泛地应用于生产生活和科技领域。
如观察干涉现象,研究许多物理因素(如温度、压强、电场、磁场等)对光传播的影响,测波长、测折射率等。
二、实验目的1、了解迈克尔逊干涉仪的结构和干涉花样的形成原理;2、学会迈克尔逊干涉仪的调整和使用方法;3、观察等倾干涉条纹,测量He Ne -激光的波长;4、了解钠光、白光干涉花样的特点。
在迈克尔逊干涉仪中产生的干涉等效于膜'12,M M 的薄膜干涉。
两束光的光程差为:(一)、扩展光源产生的干涉图(定域干涉)1、1M 和'2M 严格平行——等倾干涉条纹特点:1)明暗相间的同心圆纹,条纹定域在 无穷远(需用会聚透镜成像在光屏上);2)中心级次最高,2k d =; 3)d 增大,条纹从中心向外“涌出”, d 减小,条纹向中心“陷入”,每“涌出” 或“陷入”一个条纹,间距的改变为2λ,“涌出”和“陷入”的交接点为0d =情况(无条纹)。
迈克尔逊干涉仪的调整与应用实验要点

要点(1)实验前请认真阅读“实验须知”、“实验内容”及本要点:测波长的同学需每冒出(或缩进)50环,读一次M镜的位置,至少连续测18组,将数据填入表格,并观察其实验现象。
测线膨胀系数的同学可以采用按升高(降低)一定的温度(例如2℃)测量试件伸长量的方法(采用逐差法)进行测量,要求连续测量8组;也可以采用按试件一定的伸长量(例如由20个干涉环变化算出的光程差),测出所需升高(降低)温度的方法进行测量,要求连续测量8组。
注:测波长或测线膨胀系数只需做其中之一,但两个实验都需要掌握;请注意F盘上的数据处理文件(迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数))。
(2)将所测量数据输入相应的数据处理文件(位于F盘,共有迈克尔逊干涉仪的调整与应用数据处理、线膨胀系数测量数据处理(据环数记温度)、线膨胀系数测量数据处理(据温度记环数)三个文件)让老师检查数据是否合格。
(3)数据合格后重新用新报告纸按要求记录所测数据(并记录其标准值或参考值,详见附录1 数据记录要求),将原始数据与仪器使用登记本一并让老师签字,并了解如何处理所测数据(详见附录2 数据处理要求)及逐差法相关知识(附录3 逐差法处理实验数据);(4)在预习报告后根据实际实验加上实验内容、实验步骤;(5)重新对仪器进行调节,熟悉调节要点,并观察相应的实验现象,掌握迈克尔逊干涉仪及线膨胀系数测定仪的调节与使用;(6)掌握迈克尔逊干涉仪仿真实验的使用,并利用其进行复习及进行实验,注意“迈克尔逊干涉仪(仿真实验演示).swf”文件(可以回去再做)。
(7)拟定利用迈克尔逊干涉仪测量透明薄片的折射率(厚度)的实验方案,并利用仿真实验来验证实验方案(可以回去再做)。
(8)(选做)利用仿真实验测量测量钠光的波长、钠黄光双线的波长差、钠光的相干长度等(可以回去再做)。
(9)完成相应实验后,请收拾好仪器,整理好桌面,关好计算机才能离开实验室。
迈克耳孙干涉仪的调节和使用实验报告

实验十四迈克耳孙干涉仪的调节和使用迈克耳孙干涉仪在近代物理学的发展中起过重要作用。
19世纪末,迈克耳孙(A.A.Michelson )与其合作者曾用此仪器进行了“以太漂移”实验、标定米尺及推断光谱精细结构等三项著名的实验。
第一项实验解决了当时关于“以太”的争论,并为爱因斯坦创立相对论提供了实验依据;第二项工作实现了长度单位的标准化。
迈克耳孙发现镉红线(波长Q643.84696nm )是一种理想的单色光源。
可用它的波长作为米尺标准化的基准。
他定义1m=1553164.13镉红线波长,精度达到10-9,这项工作对近代计量技术的发展作出了重要贡献;迈克耳孙研究了干涉条纹视见度随光程差变化的规律,并以此推断光谱线的精细结构。
今天,迈克耳孙干涉仪已被更完善的现代干涉仪取代,但迈克耳孙干涉仪的基本结构仍然是许多现代干涉仪的基础。
【实验目的与要求】1•学习迈克耳孙干涉仪的原理和调节方法。
2•观察等倾干涉和等厚干涉图样。
3•用迈克耳孙干涉仪测定He - Ne激光束的波长和钠光双线波长差。
【实验仪器】迈克耳孙干涉仪,He- Ne激光束,钠光灯,扩束镜,毛玻璃迈克耳孙干涉仪是应用光的干涉原理,测量长度或长度变化的精密的光学仪器,其光路图如图7-1所示。
S-激光束;L-扩束镜;G1-分光板;G2-补偿板;M1、M2-反射镜;E-观察屏。
图7-1迈克耳孙干涉仪光路图从氦氖激光器发出的单色光s,经扩束镜L将光束扩束成一个理想的发散光束,该光束射到与光束成45?顷斜的分光板G1 上, G1的后表面镀有铝或银的半反射膜,光束被半反射膜分成强度大致相同的反射光(1)和(2)。
这两束光沿着不同的方向射到两个平面镜M1和M2上,经两平面镜反射至G1后汇合在一起。
仔细调节M1和M2,就可以在E处观察到干涉条纹。
G2为补偿板,其材料和厚度与G1相同,用以补偿光束(2)的光程,使光束⑵与光精品文档束⑴在玻璃中走过的光程大致相等。
I. 12~M VMUifif调节粥丝;4TMS%刍一现察屏:了-粗谀手轮;螺络9一微调鼓轮土Uh 口一反射S1M2的微调装逐’HS 丁一2边克耳孙干渉仪的结构国迈克耳孙干涉仪的结构图如图7-2所示。
迈克尔逊干涉仪实验报告数据处理

迈克尔逊干涉仪实验报告数据处理篇一:迈克尔逊干涉仪实验报告迈克尔逊干涉仪的调整与应用1. 原始数据及处理1.1 测量钠光灯波长(?Na?589.3nm)不确定度计算:?A?2.48?x?mm, ?B?0.00004mm?U?d?mm U??U2U?d=4.4nm,Ur????100%=0.74%. ?N?1.2 双线的波长差:??Na?0.59nm 2.思考题及分析:2.1、为什么白光干涉不易观察到?答:两光束能产生干涉现象除满足同频、同向、相位差恒定三个条件外,其光程差还必须小于其相干长度。
而白光的相干长度只有微米量级,所以只能在零光程附近才能观察到白光干涉。
2.2、为什么M1和M2没有严格垂直时,眼睛移动干涉条纹会吞吐?答:因为没有严格垂直时,会形成一个披肩状的光学腔。
各处的光程差不相同,其干涉条纹的级数也会不同。
所以眼睛移动时,干涉条纹会吞吐。
2.3、讨论干涉条纹吐出或吞入时的光程差变化情况。
答:吞入时,光程差变小。
而吐出时,光程差则变大。
2.4、为什么要加补偿板?答:因为分束板的加入,使其中一路光束比另一光束附加了一定的光程。
所以加入与分束板厚度相同的补偿板来补偿这部分光程差。
2.5、如何设计一个实验,利用迈克尔逊干涉仪测玻璃的折射率?答:以白光发生干涉现象时,确定零光程处。
测定在光路中加入玻璃与否,白光产生干涉时M2镜移动的距离。
再根据所加入玻璃的厚度,计算出玻璃的折射率。
2.6、试根据迈克尔逊干涉仪的光路,说明各光学元件的作用,并简要叙述调出等倾干涉、等厚干涉和白光干涉条纹的条件及程序.答:分束板:将光束分为两路光束。
补偿板:补偿因分束板产生的光程差。
粗调螺丝:调节使其与M1镜大致垂直。
细调拉丝:精密调节M2镜的方位,使使其与M1M2镜的方位,镜严格垂直。
鼓轮:调节M2镜的位置,使光学腔的厚度改变。
等倾干涉:光学腔应严格平行。
等厚干涉:此时光学腔为披肩状。
白光干涉:零光程处附近。
2.7、如何利用干涉条纹“吞”、“吐”现象,测定单色光的波长? 答:数一定量的“吞”或“吐”,再根据公式??2?d?N计算。
迈克尔逊干涉仪的调整和使用

150 37.07750 400 37.15680 250 0.07930
200 37.09330 450 37.17255 250 0.07925
干涉环变化数 k2 位置读数 环数差
d2 mm
k k2 k1
di d2 d1 mm
平均值
代入数据
d
d
i 1
2 0.00004 U mm 3 1010 m k 250 2U d
测量结果表示
U (6337 3) 1010 m
迈克尔逊干涉仪的调节和使用
测量结果的相对误差
标 测 6328 6337 0 E 100 0 100 0 0 0.14 0 0 标 6328
M1 '
S
1'
迈克尔逊干涉仪的调节和使用
3、白光照射下看到彩色干涉条纹 条件:对于等倾干涉,要求 d 接近于零;对于等厚 干涉,只有ห้องสมุดไป่ตู้ M1′、M2 交线附近才可以看到。
点光源照明产生的干涉图(非定域干涉) 两个相干的单色点光源所发出的球面波在空间多 处相遇皆可产生干涉,此干涉不局限于某一特定区域, 称为非定域干涉。
迈克尔逊干涉仪的调节和使用
五、数据处理
干涉环变化数 k1 位置读数
d1 mm
0 37.03005 250 37.10915 250 0.07910
50 37.04590 300 37.12505 250 0.07915
100 37.06170 350 37.14095 250 0.07925
迈克尔逊干涉仪的调节和使用
四、实验内容
迈克尔逊干涉仪的调节
满分大物实验迈克尔逊数据处理-V1

满分大物实验迈克尔逊数据处理-V1
本文将为大家整理介绍一下满分大物实验——迈克尔逊干涉仪实验中的数据处理。
该实验是物理学中非常重要的实验之一,因为它可以验证相对论的基本概念,并且数据处理过程也相对较为复杂。
以下将对实验步骤和数据处理进行详细说明。
一、实验步骤
1.调整干涉仪:首先,需要调整干涉仪的镜子,让光线以等长的时间通过两条路线,且两条光路的光程差小于光波长的一半。
2.测量光程差:用红光光源照射干涉仪,使用微调节固定平台调节平台距离,测量光程差。
3.取样数据:每测一组数据,需将光源位置改变一个可测量的角度,共取多组数据。
4.测量环形条纹:最后,使用目镜对干涉图形进行观察,记录下环形条纹的条数。
二、数据处理
1.计算光程差:通过所测得的干涉仪两条光线达到的光程差ΔL,可以根据下面的公式来计算出干涉仪镜子间的距离L:
L=ΔL/2
2.计算平均光程差:将多组数据的光程差求平均,可以得到平均光程
差。
3.计算光速:根据光速公式:v=c/f(波长λ=c/f),来计算光的速度。
4.计算狭缝间距:通过所测得的环形条纹数n,可以计算得到狭缝间距d:
d=λ/(2n)
5.计算误差:根据多组数据的光程差和平均光程差的差值,可以计算
得到误差值,进一步验证实验的准确性。
以上就是整个实验过程以及数据处理过程的详细介绍。
通过实验和数
据处理,我们可以更加深入地了解迈克尔逊干涉仪的基本原理和物理
学理论的应用。
大学物理实验实验12迈克尔逊干涉仪的调整与使用

3.调整方法
1、确定M1镜的位置。 2、均匀转松M1、 M2后的三个螺丝。 3、旋松M2的两个拉簧螺丝。 4、移动光源,使光源上的十字叉丝在视场的中心位置
7、调整零点。 8、转到手轮可以改变干涉条纹的间距和清晰度。
5.测单色光的波长
使M1沿光轴移动△d,将使 圆心处相干光束的光程差改 变,则将观察到条纹涌出(或 陷入),由此可用来测定光波 波长。若测知有N个环纹由中 心涌出(或陷入),则表明 M1改变的距离△d为 △d=N· λ/2 则波长λ为: λ=2△d/N
注意事项:
( 1 )实验过程中,不允许触摸仪器中所 有的光学面。
(2)平面反光镜M 1、M 2背后的三个螺 钉 以及 两个微动拉簧 螺丝要 十分爱护 , 只能轻微旋动,切勿用力旋转螺钉,
以免拧滑丝扣或把反射镜压坏。
注意事项:
(3)不要直视激光,以免损伤眼睛!
(4)镜后螺丝及拉簧一定要轻拧,且不可拧的过紧! (5)不要调节活动反射镜后
不可直视!
思考题
实验仪器
1、迈克尔逊干涉仪; 2、氦-氖多光速激光器; 3、白炽灯
实 验 仪器介绍:
分光板
M1活动反光镜
补偿板
读数窗口
M2固定反 光镜
手轮 鼓轮
水平拉簧 垂直拉簧
标尺
主尺读数
实验原理
实验原理
点光源产生的非定域干涉条纹的形成
从光学角度看,E处的干涉图样和
M 1M 2
2d cos
实验内容
1.仪器调节
目测使激光头水平且大致和M2等高,细调激光头
位置使扩展光束均匀照满反射镜。
调节固定反射镜后的方位螺丝,使透过滤光片看到 的两排对应光点一一重合 装上观察屏,观察条纹的涌出和淹没。
迈克尔逊干涉仪的调节和使用

迈克尔逊干涉仪的调节和使用迈克尔逊干涉仪是光学实验中一种重要的仪器,它的原理是基于干涉现象来测量长度、速度、折射率等物理量。
因此,正确地调节和使用迈克尔逊干涉仪对于实验结果的准确性和可靠性至关重要。
一、调节步骤1、粗调:首先调整干涉仪的粗调旋钮,使干涉条纹大致对称。
2、细调:然后调整干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
具体步骤如下:(1)将光源对准干涉仪的入射缝,调整干涉仪的三个脚螺旋,使干涉条纹出现在视野中。
(2)调节干涉仪的粗调旋钮,使干涉条纹大致对称。
(3)调节干涉仪的细调旋钮,使干涉条纹更加清晰、对称。
可以通过观察干涉条纹的移动方向和距离来判断调节是否正确。
(4)重复以上步骤,直到干涉条纹完全对称、清晰。
二、使用注意事项1、保持干涉仪的清洁,避免灰尘和污垢进入干涉仪内部。
2、在调节过程中,要轻拿轻放,避免损坏干涉仪的精密部件。
3、在使用过程中,要避免过度调节粗调旋钮和细调旋钮,以免损坏干涉仪的调节机构。
4、在记录实验数据时,要保证记录的准确性和完整性。
5、在实验结束后,要将干涉仪恢复到初始状态,以便下一次使用。
正确地调节和使用迈克尔逊干涉仪需要耐心和细心。
只有掌握了正确的调节方法,才能更好地发挥其作用,提高实验的准确性和可靠性。
迈克尔逊干涉仪法测定玻璃折射率迈克尔逊干涉仪是一种精密的光学仪器,其原理基于干涉现象,能够用于测量微小的长度变化和折射率。
本文将介绍如何使用迈克尔逊干涉仪法测定玻璃的折射率。
一、实验原理折射率是光学材料的一个重要参数,它反映了光在材料中传播速度的改变。
迈克尔逊干涉仪法利用干涉现象来测量折射率。
当光线通过不同介质时,其速度和波长都会发生变化,这就导致了光程差的产生。
通过测量光程差,我们可以计算出介质的折射率。
二、实验步骤1、准备实验器材:迈克尔逊干涉仪、单色光源(如激光)、测量尺、待测玻璃片。
2、将单色光源通过分束器分为两束相干光束,一束直接照射到参考镜,另一束经过待测玻璃片后照射到测量镜。