实验三 用FFT对信号进行频谱分析及MATLAB程序

合集下载

用FFT对信号做频谱分析

用FFT对信号做频谱分析
j 由图得: X k 是 X e 的频率域等间隔采样。

3. 选择合适的变换区间长度 N,用 DFT 对下列序列进行谱分析,并绘制幅频特性曲线。 (1) x1 n 2cos 0.2 n (2) x2 n sin 0.45 n sin 0.55 n (3) x3 n 2 n R21 n 10 第(1)问的 MATLAB 程序: clear all; n=0:9; x=2*cos(0.2*pi*n); subplot(211); plot(x); title('x1(n)=2cos(0.2\pin)') grid on; y=fft(x,10); y1=abs(y); subplot(212) plot(y1); title('幅频特性曲线') grid on; 第二问的 MATLAB 程序: clear all; n=0:40;
subplot(311); stem(0:7,abs(y1)) title('X(n)的 8 点 DFT 幅频特性'); y2=fft(x,16); subplot(312); stem(0:15,abs(y2)); title('X(n)的 16 点 DFT 幅频特性'); y=fft(x,1024); subplot(313); plot(abs(y)); title('X(e^j^w)的幅频特性'); axis([0 1020 0 20]);
x=sin(0.45*pi*n).*sin(0.55*pi*n); subplot(211); plot(x); title('x2(n)=sin(0.45\pin)sin(0.55\pin)') grid on; y=fft(x,20); y1=abs(y); subplot(212); plot(y1); title('幅频特性曲线') grid on;

用MATLAB进行FFT频谱分析

用MATLAB进行FFT频谱分析

用MATLAB进行FFT频谱分析假设一信号:()()292.7/2cos1.0996.2/2sin1.06.0+++=ttRππ画出其频谱图。

分析:首先,连续周期信号截断对频谱的影响。

DFT变换频谱泄漏的根本原因是信号的截断。

即时域加窗,对应为频域卷积,因此,窗函数的主瓣宽度等就会影响到频谱。

实验表明,连续周期信号截断时持续时间与信号周期呈整数倍关系时,利用DFT变换可以得到精确的模拟信号频谱。

举一个简单的例子:()ππ2.0100cos+=tY其周期为。

截断时不同的持续时间影响如图一.1:(对应程序)140.0160.0180.02截断时,时间间期为周期整数倍,频谱图0.0250.0320406080100截断时,时间间期不为周期整数倍,频谱图图错误!文档中没有指定样式的文字。

.1其次,采样频率的确定。

根据Shannon 采样定理,采样带限信号采样频率为截止频率的两倍以上,给定信号的采样频率应>1/,取16。

再次,DFT 算法包括时域采样和频域采样两步,频域采样长度M 和时域采样长度N 的关系要符合M ≧N 时,从频谱X(k)才可完全重建原信号。

实验中信号R 经采样后的离散信号不是周期信号,但是它又是一个无限长的信号,因此处理时时域窗函数尽量取得宽一些已接近实际信号。

实验结果如图一.2:其中,0点位置的冲激项为直流分量造成(对应程序为)0204060801001201401601802000.40.50.60.70.800.050.10.150.20.250.30.350.40.450.550100150图 错误!文档中没有指定样式的文字。

.2♣ARMA (Auto Recursive Moving Average )模型:将平稳随机信号x(n)看作是零均值,方差为σu 2的白噪声u(n)经过线性非移变系统H(z)后的输出,模型的传递函数为()()()∑∑=-=-+==Pk kk Qr r rza zb z A z B z H 111用差分方程表示为()()()∑∑==-+--=Qr r P k k r n u b k n x a n x 01AR (Auto Recursive )自回归模型,即ARMA 模型中系数b 只有在r=0的情况下为1,其余都是零,获得一个全极点模型:()()()∑=-+==Pk kk za z A z B z H 111差分方程表示为:()()()n u k n x a n x Pk k +--=∑=1AR 模型的功率谱估计为:()()()Ω-ΩΩ=j j uj x e A e A eS 12σ程序:%%------------------------------------------------------------------------%%功能:利用MATLAB 的FFT 函数做双正弦信号频谱分析 %%------------------------------------------------------------------------ fs=16; t=0:1/fs:200;x6=+sin(2*pi*t/*+cos(2*pi*t/+2)*;subplot(2,1,1);plot(t,x6);N=length(t);subplot(212);plot((-N/2:N/2-1)*fs/N,abs(fftshift(fft(x6,N)))) %绘制信号的频谱,横轴对应实际频率axis([0 0 160]);例子:%%------------------------------------------------------------------------%%功能:连续周期信号截断对频谱的影响%%------------------------------------------------------------------------fs=8000;n1=;n=0:1/fs:n1;n=n(1,1:end-1);N=length(n);y=cos(100*pi*n+*pi);subplot(2,2,1);plot(n,y);title('函数y=cos(100{\pi}t+{\pi})');subplot(2,2,2);stem((-N/2:N/2-1)*fs/N,abs(fftshift(fft(y,N))));axis([0 1000 0 100]);grid on;title('截断时,时间间期为周期整数倍,频谱图');n1=;n=0:1/fs:n1;n=n(1,1:end-1);N=length(n);y=cos(100*pi*n+*pi);subplot(2,2,3);plot(n,y);title('函数y=cos(100{\pi}t+{\pi})');subplot(2,2,4);stem((-N/2:N/2-1)*fs/N,abs(fftshift(fft(y,N))));axis([0 1000 0 100]);grid on;title('截断时,时间间期不为周期整数倍,频谱图');。

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序

实验三用FFT对信号进行频谱分析和MATLAB程序实验三中使用FFT对信号进行频谱分析的目的是通过将时域信号转换为频域信号,来获取信号的频谱信息。

MATLAB提供了方便易用的函数来实现FFT。

首先,我们需要了解FFT的原理。

FFT(快速傅里叶变换)是一种快速计算离散傅里叶变换(DFT)的算法,用于将离散的时间域信号转换为连续的频域信号。

FFT算法的主要思想是将问题划分为多个规模较小的子问题,并利用DFT的对称性质进行递归计算。

FFT算法能够帮助我们高效地进行频谱分析。

下面是一个使用MATLAB进行频谱分析的示例程序:```matlab%生成一个10秒钟的正弦波信号,频率为1Hz,采样率为100Hzfs = 100; % 采样率t = 0:1/fs:10-1/fs; % 时间范围f=1;%正弦波频率x = sin(2*pi*f*t);%进行FFT计算N = length(x); % 信号长度X = fft(x); % FFT计算magX = abs(X)/N; % 幅值谱frequencies = (0:N-1)*(fs/N); % 频率范围%绘制频谱图figure;plot(frequencies, magX);xlabel('频率(Hz)');ylabel('振幅');title('信号频谱');```上述代码生成了一个10秒钟的正弦波信号,频率为1 Hz,采样率为100 Hz。

通过调用MATLAB的fft函数计算信号的FFT,然后计算每个频率分量的幅值谱,并绘制出信号频谱图。

在频谱图中,横轴表示频率,纵轴表示振幅。

该实验需要注意以下几点:1.信号的采样率要与信号中最高频率成一定比例,以避免采样率不足导致的伪频谱。

2.FFT计算结果是一个复数数组,我们一般只关注其幅值谱。

3.频率范围是0到采样率之间的频率。

实验三的报告可以包含以下内容:1.实验目的和背景介绍。

Matlab编程实现FFT变换及频谱分析的程序代码

Matlab编程实现FFT变换及频谱分析的程序代码

Matlab编程实现FFT变换及频谱分析的程序代码内容1.用Matlab产生正弦波,矩形波,以及白噪声信号,并显示各自时域波形图2.进行FFT变换,显示各自频谱图,其中采样率,频率、数据长度自选3.做出上述三种信号的均方根图谱,功率图谱,以及对数均方根图谱4.用IFFT傅立叶反变换恢复信号,并显示恢复的正弦信号时域波形图源程序%*************************************************************** **********%% FFT实践及频谱分析%%*************************************************************** **********%%*************************************************************** **********%%***************1.正弦波****************%fs=100;%设定采样频率N=128;n=0:N-1;t=n/fs;f0=10;%设定正弦信号频率%生成正弦信号x=sin(2*pi*f0*t);figure(1);subplot(231);plot(t,x);%作正弦信号的时域波形xlabel('t');ylabel('y');title('正弦信号y=2*pi*10t时域波形');grid;%进行FFT变换并做频谱图y=fft(x,N);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(1);subplot(232);plot(f,mag);%做频谱图axis([0,100,0,80]);xlabel('频率(Hz)');ylabel('幅值');title('正弦信号y=2*pi*10t幅频谱图N=128');grid;%求均方根谱sq=abs(y);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('正弦信号y=2*pi*10t均方根谱');grid;%求功率谱power=sq.^2;figure(1);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('正弦信号y=2*pi*10t功率谱');grid;%求对数谱ln=log(sq);figure(1);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('正弦信号y=2*pi*10t对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(1);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的正弦信号波形');grid;%****************2.矩形波****************% fs=10;%设定采样频率t=-5:0.1:5;x=rectpuls(t,2);x=x(1:99);figure(2);subplot(231);plot(t(1:99),x);%作矩形波的时域波形ylabel('y');title('矩形波时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(2);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('矩形波幅频谱图');grid;%求均方根谱sq=abs(y);figure(2);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('矩形波均方根谱');grid;%求功率谱power=sq.^2;figure(2);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('矩形波功率谱');grid;%求对数谱ln=log(sq);figure(2);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('矩形波对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(2);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的矩形波波形');grid;%****************3.白噪声****************% fs=10;%设定采样频率t=-5:0.1:5;x=zeros(1,100);x(50)=100000;figure(3);subplot(231);plot(t(1:100),x);%作白噪声的时域波形xlabel('t');ylabel('y');title('白噪声时域波形');grid;%进行FFT变换并做频谱图y=fft(x);%进行fft变换mag=abs(y);%求幅值f=(0:length(y)-1)'*fs/length(y);%进行对应的频率转换figure(3);subplot(232);plot(f,mag);%做频谱图xlabel('频率(Hz)');ylabel('幅值');title('白噪声幅频谱图');grid;%求均方根谱sq=abs(y);figure(3);subplot(233);plot(f,sq);xlabel('频率(Hz)');ylabel('均方根谱');title('白噪声均方根谱');grid;%求功率谱power=sq.^2;figure(3);subplot(234);plot(f,power);xlabel('频率(Hz)');ylabel('功率谱');title('白噪声功率谱');grid;%求对数谱ln=log(sq);figure(3);subplot(235);plot(f,ln);xlabel('频率(Hz)');ylabel('对数谱');title('白噪声对数谱');grid;%用IFFT恢复原始信号xifft=ifft(y);magx=real(xifft);ti=[0:length(xifft)-1]/fs;figure(3);subplot(236);plot(ti,magx);xlabel('t');ylabel('y');title('通过IFFT转换的白噪声波形'); grid;。

matlab 信号 频谱分析实验报告

matlab 信号 频谱分析实验报告

matlab 信号频谱分析实验报告《Matlab 信号频谱分析实验报告》实验目的:通过Matlab软件对信号进行频谱分析,了解信号的频谱特性,并掌握频谱分析的基本方法。

实验原理:信号的频谱分析是指将信号在频域上进行分析,得到信号的频谱特性。

频谱分析可以帮助我们了解信号的频率成分,频率分布情况,以及信号的频谱密度等信息。

在Matlab中,可以使用fft函数对信号进行频谱分析,得到信号的频谱图像。

实验步骤:1. 生成信号:首先在Matlab中生成一个信号,可以是正弦信号、方波信号或者任意复杂的信号。

2. 采样信号:对生成的信号进行采样,得到离散的信号序列。

3. 频谱分析:使用fft函数对采样的信号进行频谱分析,得到信号的频谱特性。

4. 绘制频谱图像:将频谱分析得到的结果绘制成频谱图像,观察信号的频谱分布情况。

实验结果分析:通过频谱分析,我们可以得到信号的频谱图像,从图像中可以清晰地看出信号的频率成分,频率分布情况,以及信号的频谱密度等信息。

通过对信号频谱图像的观察和分析,可以更好地了解信号的频谱特性,为后续的信号处理和分析提供参考。

实验结论:通过本次实验,我们成功使用Matlab对信号进行了频谱分析,得到了信号的频谱特性,并且掌握了频谱分析的基本方法。

频谱分析是信号处理和分析的重要工具,对于理解信号的频率特性和频率分布情况具有重要意义。

希望通过本次实验,能够对信号的频谱分析有更深入的了解,并且能够在实际工程中应用到相关领域。

通过本次实验,我们对Matlab信号频谱分析有了更深入的了解,对信号处理和分析有了更深入的认识,也为我们今后的学习和工作提供了更多的帮助。

希望通过不断地实践和学习,能够更加深入地掌握信号频谱分析的相关知识,为实际工程应用提供更多的帮助。

实验三用FFT对信号进行频谱分析研究及MATLAB程序

实验三用FFT对信号进行频谱分析研究及MATLAB程序

实验三用FFT 对信号进行频谱分析一 实验目地1 能够熟练掌握快速离散傅立叶变换地原理及应用FFT 进行频谱分析地基本方法; 2了解用FFT 进行频谱分析可能出现地分析误差及其原因;二 实验原理1.用DFT 对非周期序列进行谱分析单位圆上地Z 变换就是序列地傅里叶变换,即()()j j z e X e X z ωω== (3-1)()j X e ω是ω地连续周期函数.对序列()x n 进行N 点DFT 得到()X k ,则()X k 是在区间[]0,2π上对()j X e ω地N 点等间隔采样,频谱分辨率就是采样间隔2Nπ.因此序列地傅里叶变换可利用DFT (即FFT )来计算.用FFT 对序列进行谱分析地误差主要来自于用FFT 作频谱分析时,得到地是离散谱,而非周期序列地频谱是连续谱,只有当N 较大时,离散谱地包络才能逼近连续谱,因此N 要适当选择大一些.2.用DFT 对周期序列进行谱分析已知周期为N 地离散序列)(n x ,它地离散傅里叶级数DFS 分别由式(3-2)和(3-3) 给出:DFS : ∑-=-=12)(1N n kn N j k e n x N a π , n =0,1,2,…,N -1 (3-2) IDFS : ∑-==102)(N k kn N j ke a n x π , n =0,1,2,…,N -1 (3-3) 对于长度为N 地有限长序列x (n )地DFT 对表达式分别由式(3-4)和(3-5)给出: DFT :∑-=-=102)()(N n kn N j e n x k X π , n =0,1,2,…,N -1 (3-4)IDFT : ∑-==102)(1)(N k kn N j e k X N n x π,n =0,1,2,…,N -1 (3-5) FFT 为离散傅里叶变换DFT 地快速算法,对于周期为N 地离散序列x (n )地频谱分析便可由式(3-6)和(3-7)给出:DTFS : 1*(())k a fft x n N= (3-6)IDTFS : ()*()k x n N i f f t a = (3-7)周期信号地频谱是离散谱,只有用整数倍周期地长度作FFT ,得到地离散谱才能代表周期信号地频谱.3.用DFT 对模拟周期信号进行谱分析对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号.对于模拟周期信号,也应该选取整数倍周期地长度,经采样后形成周期序列,按照周期序列地谱分析进行.如果不知道信号地周期,可以尽量选择信号地观察时间长一些.三 实验内容1.对以下序列进行谱分析:14()()x n R n =2103()84700n n x n nn thers +≤≤⎧⎪=-≤≤⎨⎪⎩3403()34700n n x n n n thers-≤≤⎧⎪=-≤≤⎨⎪⎩ 选择FFT 地变换区间N 为8和16两种情况进行频谱分析.分别打印其幅频特性曲线,并进行对比、分析和讨论.2.对以下周期序列进行谱分析:4()cos()4x n n π= 5()cos()cos()48x n n n ππ=+ 选择FFT 地变换区间N 为8和16两种情况进行频谱分析.分别打印其幅频特性曲线,并进行对比、分析和讨论.3.对模拟周期信号进行谱分析: 6()cos(8)cos(16)cos(20)x t t t t πππ=++选择采样频率64s F Hz ,对变换区间N 分别取16、32、64三种情况进行谱分析.分别打印其幅频特性曲线,并进行对比、分析和讨论.四 思考题1. 对于周期序列,如果周期不知道,如何用FFT 进行谱分析?2. 如何选择FFT 地变换区间?(包括非周期信号和周期信号)3. 当N=8时,2()x n 和3()x n 地幅频特性会相同吗?为什么?N=16呢?五 实验报告及要求1. 完成各个实验任务和要求,附上程序清单和有关曲线.2. 简要回答思考题.程序代码:%用FFT 对信号作频谱分析clear all;close all;%实验(1)x1n=[ones(1,4)]; %产生序列向量R4(n)M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb]; %产生长度为8地三角波序列x2(n)、x3(n)x3n=[xb,xa];X1k8=fft(x1n,8); %计算x1n地8点DFTX1k16=fft(x1n,16); %计算x1n地16点DFTX2k8=fft(x2n,8); %计算x2n地8点DFTX2k16=fft(x2n,16); %计算x2n地16点DFTX3k8=fft(x3n,8); %计算x3n地8点DFTX3k16=fft(x3n,16); %计算x3n地16点DFT%幅频特性曲线N=8;wk=2/N*(0:N-1);subplot(3,2,1);stem(wk,abs(X1k8),'.'); %绘制8点DFT地幅频特性图title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,3);stem(wk,abs(X2k8),'.');title('(2a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,5);stem(wk,abs(X3k8),'.');title('(3a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');N=16;wk=2/N*(0:N-1);subplot(3,2,2);stem(wk,abs(X1k16),'.'); %绘制16点DFT地幅频特性图title('(1b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,4);stem(wk,abs(X2k16),'.');title('(2b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,6);stem(wk,abs(X3k16),'.');title('(3b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');%实验2对周期序列作频谱分析clear all;close all;N=8;n=0:N-1; %FFT地变换区间N=8x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n); %计算x4n地8点DFTX5k8=fft(x5n); %计算x5n地8点DFTN=16;n=0:N-1; %FFT地变换区间N=16x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n); %计算x4n地16点DFTX5k16=fft(x5n); %计算x5n地16点DFTN=8;w1k=2/N*(0:N-1);subplot(2,2,1);stem(w1k,abs(X4k8),'.'); %绘制8点DFT地幅频特性图title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k8))]);subplot(2,2,3);stem(w1k,abs(X5k8),'.'); %绘制8点DFT地幅频特性图title('(5a)8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k8))]);N=16;w2k=2/N*(0:N-1);subplot(2,2,2);stem(w2k,abs(X4k16),'.'); %绘制16点DFT地幅频特性图title('(4b) 16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k16))]);subplot(2,2,4);stem(w2k,abs(X5k16),'.'); %绘制16点DFT地幅频特性图title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k16))]);%实验3对模拟周期信号作谱分析(归一化)Fs=64;T=1/Fs;N=16;n=0:N-1; %FFT地变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)16点采样X6k16=fft(x6nT); %计算x6nT地16点DFTTp=N*T;F=1/Tp; %频率分辨率Fk=0:N-1;fk=2*k/N; %产生16点DFT对应地采样点频率(以零频率为中心)subplot(3,1,1);stem(fk,abs(X6k16),'.'); %绘制16点DFT地幅频特性图title('(6a) 16点DFT[x_6(nT)]|');xlabel('\omega/\pi');ylabel('幅度');N=32;n=0:N-1; %FFT地变换区间N=32x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)32点采样X6k32=fft(x6nT); %计算x6nT地32点DFTTp=N*T;F=1/Tp; %频率分辨率Fk=0:N-1;fk=2*k/N; %产生32点DFT对应地采样点频率(以零频率为中心)subplot(3,1,2);stem(fk,abs(X6k32),'.');%绘制32点DFT地幅频特性图title('(6b) 32点DFT[x_6(nT)]|');xlabel('\omega/\pi');ylabel('幅度');N=64;n=0:N-1; %FFT地变换区间N=64x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)64点采样X6k64=fft(x6nT); %计算x6nT地64点DFTTp=N*T;F=1/Tp; %频率分辨率Fk=0:N-1;fk=2*k/N; %产生64点DFT对应地采样点频率(以零频率为中心)subplot(3,1,3);stem(fk,abs(X6k64),'.'); %绘制64点DFT地幅频特性图title('(6c) 64点DFT[x_6(nT)]|');xlabel('\omega/\pi');ylabel('幅度');五、思考题及实验体会4.思考题(1)对于周期序列,如果周期不知道,如何用FFT进行谱分析?(2)如何选择FFT地变换区间?(包括非周期信号和周期信号)(3)当N=8时,)(2n x 和)(3n x 地幅频特性会相同吗?为什么?N=16 呢?答:(1)、如果)(n x 地周期预先不知道,可截取M 点进行DFT ,即)]([)()()()(n x DFT n X n R n x n x M M M M == 0≤k ≤M-1再将截取长度扩大1倍,截取)]([)()()(2222n x DFT n X n R n x M M M M == 0≤k ≤2M-1比较)(k x M 和 )(2k X M ,如果两者地主谱差别满足分析误差要求,则以)(k x M 或 )(2k X M 近似表示)(n x 地频谱,否则,继续将截取长度加倍,直至前后两次分析所得主谱频率差别满足误差要求.设最后截取长度为,iM 则)(0k X iM 表示0)]/(2[k iM πω=点地谱线强度.(2)频谱分辨率直接D 和FFT 地变换区间N 有关,因为FFT 能够实现地频率分辨率是N /2π,因此要求D N ≤/2π.可以根据此式选择FFT 地变换区间N.(3)当N=8时,)(2n x 和)(3n x 地幅频特性会相同.当N=16时,)(2n x 和)(3n x 地幅频特性会不相同.通过实验,我知道了用FFT 对信号作频谱分析是学习数字信号处理地重要内容.经常需要进行谱分析地信号是模拟信号和时域离散信号.对信号进行谱分析地重要问题是频谱分辨率D 和分析误差.频谱分辨率直接和FFT 地变换区间N 有关,因为FFT 能够实现地频率分辨率是2л/N ≤D.可以根据此式选择FFT 地变换区间N.误差主要来自于用FFT 作频谱分析时,得到地是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时,离散谱地包络才能逼近于连续谱,因此N 要适当选择大一些.周期信号地频谱是离散谱,只有用整数倍周期地长度作FFT ,得到地离散谱才能代表周期信号地频谱.如果不知道信号周期,可以尽量选择信号地观察时间长一些.对模拟信号进行频谱分析时,首先要按照采样定理将其变成时域离散信号.如果是模拟周期信号,也应该选取整数倍周期地长度,经过采样后形成周期序列,按照周期序列地普分析进行.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.IAg9q。

利用FFT对信号进行频谱分析

利用FFT对信号进行频谱分析

∑-=--==101,....,0,)(1)(N k nk N N n W k X N n x (3.2) 离散傅立叶反变换与正变换的区别在于N W 变为1-N W ,并多了一个N 1的运算。

因为N W 和1-N W 对于推导按时间抽取的快速傅立叶变换算法并无实质性区别,因此可将FFT 和快速傅立叶反变换(IFFT )算法合并在同一个程序中。

2.利用FFT 进行频谱分析若信号本身是有限长的序列,计算序列的频谱就是直接对序列进行FFT 运算求得)(k X ,)(k X 就代表了序列在[]π2,0之间的频谱值。

幅度谱 )()()(22k X k X k X I R +=相位谱 )()(arctan )(k X k X k R I =ϕ 若信号是模拟信号,用FFT 进行谱分析时,首先必须对信号进行采样,使之变成离散信号,然后就可按照前面的方法用FFT 来对连续信号进行谱分析。

按采样定理,采样频率s f 应大于2倍信号的最高频率,为了满足采样定理,一般在采样之前要设置一个抗混叠低通滤波器。

用FFT 对模拟信号进行谱分析的方框图如下所示。

3.在运用DFT 进行频谱分析的过程中可能产生三种误差:(1)混叠序列的频谱是被采样信号频谱的周期延拓,当采样速率不满足Nyquist 定理时,就会发生频谱混叠,使得采样后的信号序列频谱不能真实的反映原信号的频谱。

避免混叠现象的唯一方法是保证采样速率足够高,使频谱混叠现象不致出现,即在确定采样频率之前,必须对频谱的性质有所了解。

在一般情况下,为了保证不出现频谱混叠,在采样前,先进行抗混叠滤波。

(2)泄漏实际中我们往往用截短的序列来近似很长的甚至是无限长的序列,这样可以使用较短的DFT 来对信号进行频谱分析,这种截短等价于给原信号序列乘以一个矩形窗函数,也相当于在频域将信号的频谱和矩形窗函数的频谱卷积,所得的频谱是原序列频谱的扩展。

抗混叠低通滤波器 采样T=1/f s N 点FFT泄漏不能与混叠完全分开,因为泄漏导致频谱的扩展,从而造成混叠。

数字信号处理第三版用MATLAB上机实验

数字信号处理第三版用MATLAB上机实验

实验二:时域采样与频域采样一、时域采样1.用MATLAB编程如下:%1时域采样序列分析fs=1000A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=1000;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,1);stem(n,xn);xlabel('n,fs=1000Hz');ylabel('xn');title('xn');subplot(3,2,2);plot(n,abs(Xk));xlabel('k,fs=1000Hz'); title('|X(k)|');%1时域采样序列分析fs=200A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=200;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs);Xk=fft(xn);subplot(3,2,3);stem(n,xn);xlabel('n,fs=200Hz'); ylabel('xn');title('xn');subplot(3,2,4);plot(n,abs(Xk));xlabel('k,fs=200Hz'); title('|X(k)|');%1时域采样序列分析fs=500A=444.128; a=222.144; w=222.144; ts=64*10^(-3); fs=500;T=1/fs;n=0:ts/T-1; xn=A*exp((-a)*n/fs).*sin(w*n/fs); Xk=fft(xn);subplot(3,2,5);stem(n,xn);xlabel('n,fs=500Hz');ylabel('xn');title('xn');subplot(3,2,6);plot(n,abs(Xk));xlabel('k,fs=500Hz'); title('|X(k)|');2.经调试结果如下图:20406080-200200n,fs=1000Hzxnxn2040608005001000k,fs=1000Hz|X (k)|51015-2000200n,fs=200Hzx nxn510150100200k,fs=200Hz |X(k)|10203040-2000200n,fs=500Hzx nxn102030400500k,fs=500Hz|X (k)|实验结果说明:对时域信号采样频率必须大于等于模拟信号频率的两倍以上,才 能使采样信号的频谱不产生混叠.fs=200Hz 时,采样信号的频谱产生了混叠,fs=500Hz 和fs=1000Hz 时,大于模拟信号频率的两倍以上,采样信号的频谱不产生混叠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 用FFT 对信号进行频谱分析一 实验目的1 能够熟练掌握快速离散傅立叶变换的原理及应用FFT 进行频谱分析的基本方法; 2了解用FFT 进行频谱分析可能出现的分析误差及其原因;二 实验原理1.用DFT 对非周期序列进行谱分析单位圆上的Z 变换就是序列的傅里叶变换,即()()j j z e X e X z ωω== (3-1)()j X e ω是ω的连续周期函数。

对序列()x n 进行N 点DFT 得到()X k ,则()X k 是在区间[]0,2π上对()j X e ω的N 点等间隔采样,频谱分辨率就是采样间隔2Nπ。

因此序列的傅里叶变换可利用DFT (即FFT )来计算。

用FFT 对序列进行谱分析的误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而非周期序列的频谱是连续谱,只有当N 较大时,离散谱的包络才能逼近连续谱,因此N 要适当选择大一些。

2.用DFT 对周期序列进行谱分析已知周期为N 的离散序列)(n x ,它的离散傅里叶级数DFS 分别由式(3-2)和(3-3) 给出:DFS : ∑-=-=12)(1N n kn N j k e n x N a π , n =0,1,2,…,N -1 (3-2) IDFS : ∑-==102)(N k kn N j ke a n x π , n =0,1,2,…,N -1 (3-3) 对于长度为N 的有限长序列x (n )的DFT 对表达式分别由式(3-4)和(3-5)给出: DFT : ∑-=-=102)()(N n kn N j e n x k X π , n =0,1,2,…,N -1 (3-4)IDFT : ∑-==102)(1)(N k kn N j e k X N n x π, n =0,1,2,…,N -1 (3-5) FFT 为离散傅里叶变换DFT 的快速算法,对于周期为N 的离散序列x (n )的频谱分析便可由式(3-6)和(3-7)给出:DTFS : 1*(())k a fft x n N= (3-6) IDTFS : ()*()k x n N ifft a = (3-7) 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

3. 用DFT 对模拟周期信号进行谱分析对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

对于模拟周期信号,也应该选取整数倍周期的长度,经采样后形成周期序列,按照周期序列的谱分析进行。

如果不知道信号的周期,可以尽量选择信号的观察时间长一些。

三 实验内容1. 对以下序列进行谱分析:14()()x n R n =2103()84700n n x n nn thers +≤≤⎧⎪=-≤≤⎨⎪⎩3403()34700n n x n n n thers-≤≤⎧⎪=-≤≤⎨⎪⎩ 选择FFT 的变换区间N 为8和16两种情况进行频谱分析。

分别打印其幅频特性曲线,并进行对比、分析和讨论。

2. 对以下周期序列进行谱分析:4()cos()4x n n π= 5()cos()cos()48x n n n ππ=+ 选择FFT 的变换区间N 为8和16两种情况进行频谱分析。

分别打印其幅频特性曲线,并进行对比、分析和讨论。

3. 对模拟周期信号进行谱分析: 6()cos(8)cos(16)cos(20)x t t t t πππ=++选择采样频率64s F Hz ,对变换区间N 分别取16、32、64三种情况进行谱分析。

分别打印其幅频特性曲线,并进行对比、分析和讨论。

四 思考题1. 对于周期序列,如果周期不知道,如何用FFT 进行谱分析?2. 如何选择FFT 的变换区间?(包括非周期信号和周期信号)3. 当N=8时,2()x n 和3()x n 的幅频特性会相同吗?为什么?N=16呢?五 实验报告及要求1. 完成各个实验任务和要求,附上程序清单和有关曲线。

2. 简要回答思考题。

程序代码:%用FFT对信号作频谱分析clear all;close all;%实验(1)x1n=[ones(1,4)]; %产生序列向量R4(n)M=8;xa=1:(M/2);xb=(M/2):-1:1;x2n=[xa,xb]; %产生长度为8的三角波序列x2(n)、x3(n)x3n=[xb,xa];X1k8=fft(x1n,8); %计算x1n的8点DFTX1k16=fft(x1n,16); %计算x1n的16点DFTX2k8=fft(x2n,8); %计算x2n的8点DFTX2k16=fft(x2n,16); %计算x2n的16点DFTX3k8=fft(x3n,8); %计算x3n的8点DFTX3k16=fft(x3n,16); %计算x3n的16点DFT%幅频特性曲线N=8;wk=2/N*(0:N-1);subplot(3,2,1);stem(wk,abs(X1k8),'.'); %绘制8点DFT的幅频特性图title('(1a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,3);stem(wk,abs(X2k8),'.');title('(2a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,5);stem(wk,abs(X3k8),'.');title('(3a) 8点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');N=16;wk=2/N*(0:N-1);subplot(3,2,2);stem(wk,abs(X1k16),'.'); %绘制16点DFT的幅频特性图title('(1b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,4);stem(wk,abs(X2k16),'.');title('(2b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');subplot(3,2,6);stem(wk,abs(X3k16),'.');title('(3b) 16点DFT[x_1(n)]');xlabel('ω/π');ylabel('幅度');%实验2对周期序列作频谱分析clear all;close all;N=8;n=0:N-1; %FFT的变换区间N=8x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k8=fft(x4n); %计算x4n的8点DFTX5k8=fft(x5n); %计算x5n的8点DFTN=16;n=0:N-1; %FFT的变换区间N=16x4n=cos(pi*n/4);x5n=cos(pi*n/4)+cos(pi*n/8);X4k16=fft(x4n); %计算x4n的16点DFTX5k16=fft(x5n); %计算x5n的16点DFTN=8;w1k=2/N*(0:N-1);subplot(2,2,1);stem(w1k,abs(X4k8),'.'); %绘制8点DFT的幅频特性图title('(4a) 8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k8))]);subplot(2,2,3);stem(w1k,abs(X5k8),'.'); %绘制8点DFT的幅频特性图title('(5a)8点DFT[x_4(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k8))]);N=16;w2k=2/N*(0:N-1);subplot(2,2,2);stem(w2k,abs(X4k16),'.'); %绘制16点DFT的幅频特性图title('(4b) 16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X4k16))]);subplot(2,2,4);stem(w2k,abs(X5k16),'.'); %绘制16点DFT的幅频特性图title('(5b)16点DFT[x_5(n)]');xlabel('ω/π');ylabel('幅度');axis([0,2,0,1.2*max(abs(X5k16))]);%实验3对模拟周期信号作谱分析(归一化)Fs=64;T=1/Fs;N=16;n=0:N-1; %FFT的变换区间N=16x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)16点采样X6k16=fft(x6nT); %计算x6nT的16点DFTTp=N*T;F=1/Tp; %频率分辨率Fk=0:N-1;fk=2*k/N; %产生16点DFT对应的采样点频率(以零频率为中心)subplot(3,1,1);stem(fk,abs(X6k16),'.'); %绘制16点DFT的幅频特性图title('(6a) 16点DFT[x_6(nT)]|');xlabel('\omega/\pi');ylabel('幅度');N=32;n=0:N-1; %FFT的变换区间N=32x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)32点采样X6k32=fft(x6nT); %计算x6nT的32点DFTTp=N*T;F=1/Tp; %频率分辨率Fk=0:N-1;fk=2*k/N; %产生32点DFT对应的采样点频率(以零频率为中心)subplot(3,1,2);stem(fk,abs(X6k32),'.');%绘制32点DFT的幅频特性图title('(6b) 32点DFT[x_6(nT)]|');xlabel('\omega/\pi');ylabel('幅度');N=64;n=0:N-1; %FFT的变换区间N=64x6nT=cos(8*pi*n*T)+cos(16*pi*n*T)+cos(20*pi*n*T); %对x6(t)64点采样X6k64=fft(x6nT); %计算x6nT的64点DFTTp=N*T;F=1/Tp; %频率分辨率Fk=0:N-1;fk=2*k/N; %产生64点DFT对应的采样点频率(以零频率为中心)subplot(3,1,3);stem(fk,abs(X6k64),'.'); %绘制64点DFT的幅频特性图title('(6c) 64点DFT[x_6(nT)]|');xlabel('\omega/\pi');ylabel('幅度');五、思考题及实验体会4.思考题(1)对于周期序列,如果周期不知道,如何用FFT 进行谱分析?(2)如何选择FFT 的变换区间?(包括非周期信号和周期信号)(3)当N=8时,)(2n x 和)(3n x 的幅频特性会相同吗?为什么?N=16 呢?答:(1)、如果)(n x 的周期预先不知道,可截取M 点进行DFT ,即)]([)()()()(n x DFT n X n R n x n x M M M M == 0≤k ≤M-1再将截取长度扩大1倍,截取)]([)()()(2222n x DFT n X n R n x M M M M == 0≤k ≤2M-1比较)(k x M 和 )(2k X M ,如果两者的主谱差别满足分析误差要求,则以)(k x M 或 )(2k X M 近似表示)(n x 的频谱,否则,继续将截取长度加倍,直至前后两次分析所得主谱频率差别满足误差要求。

相关文档
最新文档