X荧光光谱分析仪工作原理
x荧光光谱仪的原理

x荧光光谱仪的原理
X荧光光谱仪的原理是基于X射线荧光(XRF)分析的。
当样品受到X射线激发后,原子中的电子会被激发到高能态。
当这些电子回到低能态时,会释放出X荧光,即X射线。
通过测量这些X射线的能量和强度,可以确定样品中元素的种类和浓度。
具体来说,X荧光光谱仪的工作流程如下:
1.X射线管产生入射X射线(一次X射线),激发被测样品。
2.样品中的原子吸收X射线能量后,内层电子被激发跃迁至高能态。
3.随后,高能态的电子通过发射荧光(二次X射线)回到低能态,同时释放
出X荧光。
4.探测器检测这些X荧光,并通过分析系统确定元素的种类和浓度。
因此,通过测量X荧光光谱仪的特定波长和能量,可以确定样品中不同元素的种类和含量,进而用于各种元素分析。
X射线荧光光谱分析原理

一 X射线荧光光谱分析原理利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态研究的方法。
按激发、色散和探测方法的不同,分为X射线光谱法(波长色散)和X 射线能谱法(能量色散)。
当原子受到X射线光子(原级X射线)或其他微观粒子的激发使原子内层电子电离而出现空位,原子内层电子重新配位,较外层的电子跃迁到内层电子空位,并同时放射出次级X射线光子,此即X射线荧光。
较外层电子跃迁到内层电子空位所释放的能量等于两电子能级的能量差,因此,X射线荧光的波长对不同元素是特征的。
根据色散方式不同,X射线荧光分析仪相应分为X射线荧光光谱仪(波长色散)和X射线荧光能谱仪(能量色散)。
X射线荧光光谱仪主要由激发、色散、探测、记录及数据处理等单元组成。
激发单元的作用是产生初级X射线。
它由高压发生器和X 光管组成。
后者功率较大,用水和油同时冷却。
色散单元的作用是分出想要波长的X射线。
它由样品室、狭缝、测角仪、分析晶体等部分组成。
通过测角器以1∶2速度转动分析晶体和探测器,可在不同的布拉格角位置上测得不同波长的X射线而作元素的定性分析。
探测器的作用是将X射线光子能量转化为电能,常用的有盖格计数管、正比计数管、闪烁计数管、半导体探测器等。
记录单元由放大器、脉冲幅度分析器、显示部分组成。
通过定标器的脉冲分析信号可以直接输入计算机,进行联机处理而得到被测元素的含量。
X射线荧光能谱仪没有复杂的分光系统,结构简单。
X射线激发源可用X射线发生器,也可用放射性同位素。
能量色散用脉冲幅度分析器。
探测器和记录等与X射线荧光光谱仪相同。
X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。
前者分辨率高,对轻、重元素测定的适应性广。
对高低含量的元素测定灵敏度均能满足要求。
后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。
可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。
对于能量小于2万电子伏特左右的能谱的分辨率差。
X-荧光光谱仪基本理论及工作原理

自从1895年伦琴发现X-射线以来,产生的X-射线仪器多种多样。
但是进入80年代,由于20世纪末,半导体材料和计算及技术的迅速发展,出现了Si(Li) 探测器技术和能量色散分析技术。
最近十几年在国际上一种新的多元素分析仪器迅速发展起来。
已经成为一种成熟的,应用广泛的分析仪器。
他就是X-射线荧光能谱仪,全称为:能量色散X-射线荧光光谱仪。
以下介绍一下这种仪器的情况:一. X-荧光能谱技术基本理论1.X-荧光物质是由原子组成的,每个原子都有一个原子核,原子核周围有若干电子绕其飞行。
不同元素由于原子核所含质子不同,围绕其飞行的电子层数、每层电子的数目、飞行轨道的形状、轨道半径都不一样,形成了原子核外不同的电子能级。
在受到外力作用时,例如用X-光子源照射,打掉其内层轨道上飞行的电子,这时该电子腾出后所形成的空穴,由于原子核引力的作用,需要从其较外电子层上吸引一个电子来补充,这时原子处于激发态,其相邻电子层上电子补充到内层空穴后,本身产生的空穴由其外层上电子再补充,直至最外层上的电子从空间捕获一个自由电子,原子又回到稳定态(基态)。
这种电子从外层向内层迁移的现象被称为电子跃迁。
由于外层电子所携带的能量要高于内层电子,它在产生跃迁补充到内层空穴后,多余的能量就被释放出来,这些能量是以电磁波的形式被释放的。
而这一高频电磁波的频率正好在X波段上,因此它是一种X射线,称X-荧光。
因为每种元素原子的电子能级是特征的,它受到激发时产生的X-荧光也是特征的。
注意,这里的X-荧光要同宝石学中所描述的宝石样品在X射线照射下所发出可见光的荧光概念相区别。
2.X荧光的激发源使被测物质产生特征X-射线,即X-荧光,需要用能量较高的光子源激发。
光子源可以是X-射线,也可以是低能量的γ-射线,还可以是高能量的加速电子或离子。
对于一般的能谱技术,为了实现激发,常采用下列方法。
a. 源激发放射性同位素物质具有连续发出低能γ-射线的能力,这种能力可以用来激发物质的X荧光。
X-射线荧光光谱仪基本原理与应用

2.3 检测记录系统
X射线荧光光谱仪用的检测器有流气正比计数器和闪烁计数器。
上图是流气正比计数器结构示意图。它主要由金属圆筒负极和芯线正 极组成,筒内充氩(90%)和甲烷(10%)的混合气体,X射线射入管内, 使Ar原子电离,生成的Ar+在向阴极运动时,又引起其它Ar原子电离,雪 崩式电离的结果,产生一脉冲信号,脉冲幅度与X射线能量成正比。所以 这种计数器叫正比计数器,为了保证计数器内所充气体浓度不变,气体一 直是保持流动状态的。流气正比计数器适用于轻元素的检测。
比尔 - 朗伯定律(Berr-Lambert's law )是反应样品吸收状况的定律, 涉及到理论X射线荧光相对强度的计算问题。 当X射线穿过物质时,由于物质产生光电效应、康普顿效应及热效 应等,X射线强度会衰减,表现为改变能量或者改变运动方向,从而使 向入射X射线方向运动的相同能量X射线光子数目减少,这个过程称作吸 收。 对于任意一种元素,其质量吸收系数随着波长的变化有着一定数量 的突变,当波长(或者说能量)变化到一定值时,吸收的性质发生了明 显变化,即发生突变,发生突变的波长称为吸收限(或称吸收边),在 各个吸收限之间,质量吸收系数随波长的增大而增大。对于 X射线荧光 分析技术来说,原级射线传入样品的过程中要发生衰减,样品被激发后 产生的荧光 X射线在传出样品的过程中也要发生衰减,由于质量吸收系 数的不同,使得元素强度并不是严格的与元素浓度成正比关系,而是存 在一定程度的偏差。因而需要对此效应进行校正,才能准确的进行定量 分析。
2.2 分光系统
分光系统的主要部件是晶体分光器,它的作用是通过晶体衍射现象把 不同波长的X射线分开。根据布拉格衍射定律2dsinθ=nλ,当波长为λ的X射 线以θ角射到晶体,如果晶面间距为d,则在出射角为θ的方向,可以观测 到波长为λ=2dsinθ的一级衍射及波长为λ/2,λ/3等高级衍射。改变θ角,可 以观测到另外波长的X射线,因而使不同波长的X射线可以分开。
X-射线荧光光谱仪基本原理及应用

2.6 X射线荧光光谱的应用
广泛应用于地质、冶金、矿山、电子机械、石油、化工、航空航天 材料、农业、生态环境、建筑材料、商检等领域的材料化学成分分析。
直接分析对象: 固体: 块状样品(规则,不规则)比如:钢铁,有色行业(纯金属或多元合 金等),金饰品等 固体: 线状样品,包括线材,可以直接测量
进行X射线荧光光谱分析的样品,可以是固态,也可以是 水溶液。无论什么样品,样品制备的情况对测定误差影响很大。 对金属样品要注意成份偏析产生的误差;化学组成相同,热处 理过程不同的样品,得到的计数率也不同;成分不均匀的金属 试样要重熔,快速冷却后车成圆片;对表面不平的样品要打磨 抛光;对于粉末样品,要研磨至 300 目 -400 目,然后压成圆片, 也可以放入样品槽中测定。对于固体样品如果不能得到均匀平 整的表面,则可以把试样用酸溶解,再沉淀成盐类进行测定。 对于液态样品可以滴在滤纸上,用红外灯蒸干水份后测定,也 可以密封在样品槽中。总之,所测样品不能含有水、油和挥发 性成分,更不能含有腐蚀性溶剂。
1 基础理论与知识
利用X射线荧光进行元素定性、定量分析工作,需要以下 三方面的理论基础知识:
三大定律
1 莫塞莱定律
2 布拉格定 律
3 朗伯-比尔 定律
莫塞莱定律 (Moseley's law) ,是反映各元素 X 射线特征光谱规律 的实验定律。1913 年H.G.J.莫塞莱研究从铝到金的 38种元素的X射 线特征光谱K和L线,得出谱线频率的平方根与元素在周期表中排列 的序号成线性关系。 莫塞莱认识到这些X 射线特征光谱是由于内层电子的跃迁产生的, 表明X射线的特征光谱与原子序数是一一对应的,使X荧光分析技术 成为定性分析方法中最可靠的方法之一。
2.5 能量色散谱仪
x射线荧光分析原理

x射线荧光分析原理
X射线荧光分析原理是一种无损分析技术,通过样品中的元素发射的特征X射线进行分析。
该技术基于原子的特性,当样
品受到X射线照射后,其内部原子会受到激发,然后返回稳
定状态时会发出特定的能量X射线。
X射线荧光分析仪器主要由X射线源、样品台和能谱仪组成。
首先,X射线管产生高能的X射线,这些X射线经过准直器
照射到样品上。
样品吸收了一部分X射线,并将其中的一部
分能量转化为内部原子的电磁能量。
被激发的原子将返回基态时,会发出特定能量的荧光X射线。
这些荧光X射线由能谱仪探测到,并进行能量分析。
能谱仪
可以根据不同能量的X射线,将其转化为电信号,并生成能
谱图。
根据荧光X射线的特征能量,可以确定样品中存在的元素以
及其相对含量。
每个元素都有自己独特的能量谱线,因此可以通过比较荧光X射线的能谱图与标准库中的谱线进行定性和
定量分析。
X射线荧光分析具有灵敏度高、分析速度快、多元素同时分析的特点。
它被广泛应用于材料分析、环境监测、地质矿产勘探等领域。
由于其非破坏性和准确性,X射线荧光分析成为一种重要的分析技术。
X射线荧光光谱分析仪ppt课件PPT

加强国际合作,制定统一的法 规和标准,促进市场规范发展
。
感谢您的观看
THANKS
用途
X射线荧光光谱分析仪广泛应用于地质、冶金、石油、化工、 农业、医药、环境等领域,可对各种材料进行元素分析和化 学成分分析,如金属、非金属、矿物、环境样品等。
优缺点分析
优点
X射线荧光光谱分析仪具有快速、准确、非破坏性、多元素同时测定等优点。同 时,该仪器操作简便,可对各种材料进行无损检测,适用于现场分析和大量样品 分析。
食品安全
用于检测食品中的添加剂、农 药残留等。
考古学
用于鉴定文物年代和成分。
生物医学
用于研究生物组织、药物成分 等。
未来发展方向与挑战
智能化与自动化
提高分析仪器的智能化和自动 化水平,减少人为操作误差。
多元素同时分析
发展多元素同时测量的技术, 提高分析效率。
降低成本与维护
降低仪器成本和维护成本,提 高普及率和应用范围。
信号放大器用于放大测量系统输出的 信号,多道分析器用于将信号分道, 计算机和相关软件则用于处理和分析 数据,并输出结果。
数据处理系统通常包括信号放大器、 多道分析器、计算机和相关软件等部 件。
03 X射线荧光光谱分析仪的 应用
元素分析
总结词
X射线荧光光谱分析仪能够准确测定样品中各元素的含量,广泛应用于地质、环保、化工等领域。
环境样品分析
总结词
X射线荧光光谱分析仪能够用于环境样品中污染物的快速检测和定量分析。
详细描述
环境样品中的污染物通常以痕量或超痕量水平存在,X射线荧光光谱分析仪具有高灵敏度和低检测限 的特点,能够准确测定这些污染物元素的含量,为环境监测和污染治理提供有力支持。
x荧光光谱仪的工作原理

x荧光光谱仪的工作原理宝子!今天咱来唠唠X荧光光谱仪这个超酷的家伙的工作原理呀。
你可以把X荧光光谱仪想象成一个超级侦探,专门去探寻物质里面都藏着啥元素呢。
这个光谱仪呀,它有一个很厉害的本事,就是能让物质发出一种特殊的光,这就是X荧光啦。
那它是怎么做到的呢?其实呀,它会发射出X射线去照射咱们要检测的样品。
这X射线就像一个个小小的能量子弹,冲向样品。
当这些X射线的小子弹打到样品里的原子上的时候,就像在原子世界里引发了一场小小的“能量风暴”。
原子里的电子呢,本来是安安稳稳地待在自己的小轨道上的,被这X射线一刺激,有些电子就像被惊扰的小飞鸟,一下子就从自己的内层轨道飞出去啦。
然后呢,原子就不乐意啦,它可不想自己的电子乱跑,于是就想办法把这个空缺补上。
这时候,外层的电子就会赶紧跑到内层来填空位。
这一跑呀,就会释放出能量,这个能量就以X荧光的形式出现啦。
就好像原子在说:“哼,我的电子跑了,不过我能把它弄回来,还能发出点光给你看看呢!”不同的元素呢,它的原子结构就不一样。
就像每个家庭都有自己独特的相处模式一样,不同元素的原子里电子的轨道和能量状态都不同。
所以当它们的电子发生这种跃迁的时候,发出的X荧光的能量也就不一样啦。
比如说,铁元素的原子发出的X荧光能量就和铜元素原子发出的不一样。
X荧光光谱仪呢,就像一个很灵敏的耳朵,能听出这些不同能量的X荧光。
它能把这些不同能量的X荧光都收集起来,然后分析这些X荧光的能量大小呀、强度呀之类的。
通过这些分析呢,就能知道这个样品里都有哪些元素啦。
就好像它在说:“嘿我听出来啦,这里面有铁,还有铜呢!”而且呀,这个光谱仪还能根据X荧光的强度来判断元素的含量。
如果某个元素发出的X荧光强度很强,那就说明这个元素在样品里的含量比较多;要是强度很弱呢,那这个元素的含量就比较少啦。
这就像看一群人里谁的声音大,谁就可能比较强壮一样的道理呢。
这个X荧光光谱仪在好多地方都特别有用呢。
在环保领域,它可以检测土壤里有没有有害的重金属元素,就像给土壤做一个全面的健康检查。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X荧光光谱分析仪工作原理用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。
由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。
下图是这两类仪器的原理图。
用X射线照射试样时,试样可以被激发出各种波长的荧光X射线,需要把混合的X射线按波长(或能量)分开,分别测量不同波长(或能量)的X射线的强度,以进行定性和定量分析,为此使用的仪器叫X射线荧光光谱仪。
由于X光具有一定波长,同时又有一定能量,因此,X射线荧光光谱仪有两种基本类型:波长色散型和能量色散型。
下图是这两类仪器的原理图。
现将两种类型X射线光谱仪的主要部件及工作原理叙述如下:1.X射线管两种类型的X射线荧光光谱仪都需要用X射线管作为激发光源。
上图是X射线管的结构示意图。
灯丝和靶极密封在抽成真空的金属罩内,灯丝和靶极之间加高压(一般为40KV),灯丝发射的电子经高压电场加速撞击在靶极上,产生X射线。
X射线管产生的一次X射线,作为激发X射线荧光的辐射源。
只有当一次X射线的波长稍短于受激元素吸收限lmin时,才能有效的激发出X射线荧光。
笥?SPAN lang=EN-US>lmin的一次X射线其能量不足以使受激元素激发。
X射线管的靶材和管工作电压决定了能有效激发受激元素的那部分一次X射线的强度。
管工作电压升高,短波长一次X射线比例增加,故产生的荧光X射线的强度也增强。
但并不是说管工作电压越高越好,因为入射X射线的荧光激发效率与其波长有关,越靠近被测元素吸收限波长,激发效率越高。
X射线管产生的X射线透过铍窗入射到样品上,激发出样品元素的特征X射线,正常工作时,X射线管所消耗功率的0.2%左右转变为X射线辐射,其余均变为热能使X射线管升温,因此必须不断的通冷却水冷却靶电极。
2.分光系统分光系统的主要部件是晶体分光器,它的作用是通过晶体衍射现象把不同波长的X 射线分开。
根据布拉格衍射定律2dsinθ=nλ,当波长为λ的X射线以θ角射到晶体,如果晶面间距为d,则在出射角为θ的方向,可以观测到波长为λ=2dsinθ的一级衍射及波长为λ/2, λ/3----- 等高级衍射。
改变θ角,可以观测到另外波长的X射线,因而使不同波长的X射线可以分开。
分光晶休靠一个晶体旋转机构带动。
因为试样位置是固定的,为了检测到波长为λ的荧光X射线,分光晶体转动θ角,检测器必须转动2θ角。
也就是说,一定的2θ角对应一定波长的X射线,连续转动分光晶体和检测器,就可以接收到不同波长的荧光X射线见(图10.5)。
一种晶体具有一定的晶面间距,因而有一定的应用范围,目前的X射线荧光光谱仪备有不同晶面间距的晶体,用来分析不同范围的元素。
上述分光系统是依靠分光晶体和检测器的转动,使不同波长的特征X射线接顺序被检测,这种光谱仪称为顺序型光谱仪。
另外还有一类光谱仪分光晶体是固定的,混合X射线经过分光晶体后,在不同方向衍射,如果在这些方向上安装检测器,就可以检测到这些X射线。
这种同时检测不波长X射线的光谱仪称为同时型光谱仪,同时型光谱仪没有转动机构,因而性能稳定,但检测器通道不能太多,适合于固定元素的测定。
此外,还有的光谱仪的分光晶体不用平面晶体,而用弯曲晶体,所用的晶体点阵面被弯曲成曲率半径为2R的圆弧形,同时晶体的入射表面研磨成曲率半径为R的圆弧,第一狭缝,第二狭缝和分光晶体放置在半径为R的圆周上,使晶体表面与圆周相切,两狭缝到晶体的距离相等(见图10.6),用几何法可以证明,当X射线从第一狭缝射向弯曲晶体各点时,它们与点阵平面的夹角都相同,且反射光束又重新会聚于第二狭缝处。
因为对反射光有会聚作用,因此这种分光器称为聚焦法分光器,以R为半径的圆称为聚焦圆或罗兰圆。
当分光晶体绕聚焦圆圆心转动到不同位置时,得到不同的掠射角θ,检测器就检测到不同波长的X射线。
当然,第二狭缝和检测器也必须作相应转动,而且转动速度是晶体速度的两倍。
聚焦法分光的最大优点是荧光X射线损失少,检测灵敏度高。
3.检测记录系统X射线荧光光谱仪用的检测器有流气正比计数器和闪烁计数器。
上图是流气正比计数器结构示意图。
它主要由金属圆筒负极和芯线正极组成,筒内充氩(90%)和甲烷(10%)的混合气体,X射线射入管内,使Ar原子电离,生成的Ar+在向阴极运动时,又引起其它Ar原子电离,雪崩式电离的结果,产生一脉冲信号,脉冲幅度与X射线能量成正比。
所以这种计数器叫正比计数器,为了保证计数器内所充气体浓度不变,气体一直是保持流动状态的。
流气正比计数器适用于轻元素的检测。
另外一种检测装置是闪烁计数器如上图。
闪烁计数器由闪烁晶体和光电倍增管组成。
X射线射到晶体后可产生光,再由光电倍增管放大,得到脉冲信号。
闪烁计数器适用于重元素的检测。
除上述两种检测器外,还有半导体探测器,半导体探测器是用于能量色散型X射线的检测(见下节)。
这样,由X光激发产生的荧光X射线,经晶体分光后,由检测器检测,即得2θ-荧光X射线强度关系曲线,即荧光X射线谱图,下图是一种合金钢的荧光X射线谱。
4 能量色散谱仪以上介绍的是利用分光晶体将不同波长的荧光X射线分开并检测,得到荧光X射线光谱。
能量色散谱仪是利用荧光X射线具有不同能量的特点,将其分开并检测,不必使用分光晶体,而是依靠半导体探测器来完成。
这种半导体探测器有锂漂移硅探测器,锂漂移锗探测器,高能锗探测器等。
X光子射到探测器后形成一定数量的电子-空穴对,电子-空穴对在电场作用下形成电脉冲,脉冲幅度与X光子的能量成正比。
在一段时间内,来自试样的荧光X射线依次被半导体探测器检测,得到一系列幅度与光子能量成正比的脉冲,经放大器放大后送到多道脉冲分析器(通常要1000道以上)。
按脉冲幅度的大小分别统计脉冲数,脉冲幅度可以用X光子的能量标度,从而得到计数率随光子能量变化的分布曲线,即X光能谱图。
能谱图经计算机进行校正,然后显示出来,其形状与波谱类似,只是横座标是光子的能量。
能量色散的最大优点是可以同时测定样品中几乎所有的元素。
因此,分析速度快。
另一方面,由于能谱仪对X射线的总检测效率比波谱高,因此可以使用小功率X光管激发荧光X 射线。
另外,能谱仪没有光谱仪那么复杂的机械机构,因而工作稳定,仪器体积也小。
缺点是能量分辨率差,探测器必须在低温下保存。
对轻元素检测困难。
5、样品制备进行X射线荧光光谱分析的样品,可以是固态,也可以是水溶液。
无论什么样品,样品制备的情况对测定误差影响很大。
对金属样品要注意成份偏析产生的误差;化学组成相同,热处理过程不同的样品,得到的计数率也不同;成分不均匀的金属试样要重熔,快速冷却后车成圆片;对表面不平的样品要打磨抛光;对于粉末样品,要研磨至300目-400目,然后压成圆片,也可以放入样品槽中测定。
对于固体样品如果不能得到均匀平整的表面,则可以把试样用酸溶解,再沉淀成盐类进行测定。
对于液态样品可以滴在滤纸上,用红外灯蒸干水份后测定,也可以密封在样品槽中。
总之,所测样品不能含有水、油和挥发性成分,更不能含有腐蚀性溶剂。
6、定性分析不同元素的荧光X射线具有各自的特定波长,因此根据荧光X射线的波长可以确定元素的组成。
如果是波长色散型光谱仪,对于一定晶面间距的晶体,由检测器转动的2θ角可以求出X射线的波长λ,从而确定元素成分。
事实上,在定性分析时,可以靠计算机自动识别谱线,给出定性结果。
但是如果元素含量过低或存在元素间的谱线干扰时,仍需人工鉴别。
首先识别出X射线管靶材的特征X射线和强峰的伴随线,然后根据2θ角标注剩斜谱线。
在分析未知谱线时,要同时考虑到样品的来源,性质等因素,以便综合判断。
7、定量分析X射线荧光光谱法进行定量分析的依据是元素的荧光X射线强度I1与试样中该元素的含量Wi成正比:Ii=IsWi式中,Is为Wi=100%时,该元素的荧光X射线的强度。
根据上式,可以采用标准曲线法,增量法,内标法等进行定量分析。
但是这些方法都要使标准样品的组成与试样的组成尽可能相同或相似,否则试样的基体效应或共存元素的影响,会给测定结果造成很大的偏差。
所谓基体效应是指样品的基本化学组成和物理化学状态的变化对X射线荧光强度所造成的影响。
化学组成的变化,会影响样品对一次X射线和X射线荧光的吸收,也会改变荧光增强效应。
例如,在测定不锈钢中Fe和Ni等元素时,由于一次X射线的激发会产生NiKα荧光X射线,NiKα在样品中可能被Fe吸收,使Fe激发产生FeKα,测定Ni时,因为Fe的吸收效应使结果偏低,测定Fe时,由于荧光增强效应使结果偏高。
但是,配置相同的基体又几乎是不可能的。
为克服这个问题,目前X射荧光光谱定量方法一般采用基本参数法。
该办法是在考虑各元素之间的吸收和增强效应的基础上,用标样或纯物质计算出元素荧光X射线理论强度,并测其荧光X射线的强度。
将实测强度与理论强度比较,求出该元素的灵敏度系数,测未知样品时,先测定试样的荧光X射线强度,根据实测强度和灵敏度系数设定初始浓度值,再由该浓度值计算理论强度。
将测定强度与理论强度比较,使两者达到某一预定精度,否则要再次修正,该法要测定和计算试样中所有的元素,并且要考虑这些元素间相互干扰效应,计算十分复杂。
因此,必须依靠计算机进行计算。
该方法可以认为是无标样定量分析。
当欲测样品含量大于1%时,其相对标准偏差可小于1%。