2020年整理反比例函数教案.doc

合集下载

反比例函数教案设计(篇)

反比例函数教案设计(篇)

反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。

过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。

二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。

难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。

三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。

环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。

环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。

环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。

四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。

五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。

六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。

(完整版)第26章反比例函数教案

(完整版)第26章反比例函数教案

10,kk≠【教学说明】论.最后教师予以评讲,时没有区分比例系数),3x=时的反比例函数.的画图,在学生探索画反比例函数的图象过程中,教师应给予恰当点拨:如学生列表时,由于自变量x≠0,故在x <0和x>0时,应各取三个以上的数据,以便使描点画图更精确些;在连线上,x<0和x>0 的两个分支应根据变化趋势用平滑曲线连接,但它们是不能相交的;列表中数据,描点时点的位置等不能出错,以保证图象更能反映出反比例函数的性质.问题2 反比例函数y =-6x和y =-12x的图象有什么共同特点?它们之间有什么关系?反比例函数y = 6x和y =-6x的图象呢?同学间相互交流.【教学说明】让两组同学分别交流,找出图象的特征,教师可分别参与讨论,帮助学生获取正确认知.【归纳结论】由图象可发现:(1)它们都是由两条曲线组成,并且随|x|的不断增大(或减小),曲线越来越接近x轴(或y轴),但这两条曲线永不相交;(2) y = 6x和y =-6x及y =12x和y =-12x的图象分别关于x轴对称,也关于y轴对称.思考观察函数y = 6x和y =-6x以及y =12x和y =-12x的图象.(1)你能发现它们的共同特征以及不同点吗?(2)每个函数的图象分别位于哪几个象限?(3)在每个象限内y随x的变化如何变化?【归纳结论】反比例函数y =kx的图象及其性质:(1)反比例函数y=kx(k为常数,且k 0)的图象是双曲线;(2)当k>0时,双曲线的两个分支分别位于第一、三象限,在每个象限内,y随x值的增大而减小;(3)当k<0时,双曲线的两个分支分别位于第二、四象限,在每个象限内y随x值的增大而增大.三、合作研学、重组构建例如图,一次函数y = kx十b的图象与反比例函数y =mx的图象相交于A 、B 两点.(1)根据图象,分别写出A 、B 的坐标;(2)求出两函数的解析式;(3)根据图象回答:当x 为何值时,一次函数的 函数值大于反比例函数的函数值.【分析】(1)观察图象,可直接写出A 、B 两点的坐标;(2)利用A 、B 两点的坐标,用待定系数法建立方程组求解,可确定两函数的解析式;(3 )通过两函数的交点A 、B 的坐标得出答案.解:(1)观察图象可知A ( -6,-2),B (4,3)(2)由点B 在反比例函数y =m x 的图象上,所以把B (4,3)代入y =mx得3 =4m ,故m =12,所以y=12x.由点A 、B 在一次函数y =kx 十b的图象上,所以把A 、B 两点坐标代入y = kx 十b 得14326+2,1k b k k b b ⎧+==⎧⎪⎨⎨-=-⎩⎪=⎩解得 . 所以一次函数解析式为y =12x+1. (3)由图象可知,当一6<x <0或x >4时,一次函数的函数值大于反比例函数的函数值.【教学说明】本例有一定难度,教师可将题目展开,分步讲解,辅导学生克服对大题的恐惧.本题考查了从图象获取信息,应用待定系数法确定反比例函数与一次函数的关系式,以及利用图象比较函数值的大小等知识点. 四、当堂训练、基础达标 1 .若反比例函数 y =21m x-的图象的一个分支在第三象限,则m 的取值范围是 .2.如图是某一函数的一部分,则这个函数的表达式可能是( )A.y=5xB.y=-x+3C.y=-6x一、情境引学、目标激活问题(1)反比例函数kyx=(0k≠)的图象及其性质如何,不妨说说看.(2)反比例函数在各自象限内的增减性与kyx=(0k≠)中k的对应关系如何?与同伴交流,谈谈你的看法.【教学说明】学生相互交流,温习回顾上节知识,为本节的应用作铺垫,教师可予以总结,加深学生认知.二、自主探学、尝试解决反比例函数的性质主要研究它的图象的位置和函数值的增减情况,列表归纳如下:反比例函数kyx=(0k≠)k的符号k>0 k<0 图象性质(1)自变量x的取值范围为:x ≠0; (2)函数图象的两个分支分别在第一、第三象限,在每个象限内,y随x的增大而减小(1)变量x 的取值范围为:x≠0; (2)函数图象的两个分支分别在第二、第四象限,在每个象限内,y随x 的增大而增大【教学说明】通过上节课的学习,本节教师带领学生梳理一遍反比例函数的图象与性质,列表归纳,鼓励学生自主总结.【归纳结论】(1)反比例函数kyx=(0k≠),因为x≠0,y≠0,故图象不经过原点.双曲线是由两个分支组成的,一般不说两个分支经过第一、第三象限(或第二、第四象限),而说图象的两个分支分别在第一、第三象限(或第二、第四象限).(2)反比例函数的增减性不是连续的,因此在谈到反比例函数的增减性时,一般都是在各自的象限内的增减情况.(3)反比例函数的图象无限接近坐标轴,但永远不能和坐标轴相交,也不其性质的理解.四、当堂训练、基础达标1.如图是反比例函数7nyx+=的图象的一支,根据图象回答下列问题:(1)图象的另一支位于哪个象限,常数n的取值范围是什么?(2 ) 在这个函数图象的某一支上任取点A (a,b)和B (a' ,b' )如果a<a',那么b与b'的大小关系如何?为什么?2.如图,正比例函数y = kx与反比函数3 yx =的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC.求△ABC的面积.【教学说明】第1题学生能轻松获得结论,而第2题则需教师给予点拨引导,教师可让学生先分别求出S△AOB 和S△BOC,再求出S△ABC. 在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.五、归纳小结,拓展延学通过这节课的学习,你有哪些收获?你感觉到本节知识有哪些地方是较难理解的?与同伴交流.作业布置:教学反思:地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d=15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240 t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.三、合作研学、重组构建例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.一、情境引学、目标激活“给我一个支点,我可以撬动地球”,古希腊科学家阿基米德曾如是说,他的“杠杆定律”通俗地讲是:阻力×阻力臂=动力×动力臂.由上述等式,我们发现,当阻力、阻力臂一定时,动力和动力臂成反比例函数关系.二、自主探学、尝试解决例1 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200 N和0.5 m.(1 )动力F和动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【分析】显然本题应用杠杆定律相关知识来解决问题,首先由阻力和阻力臂的数据得到动力F与动力臂l的函数关系式为F=600l(l>0),再把l=1 . 5代入,求出动力的大小.注意“橇动石头至少需要多大的力”表面上看是不等关系,但用相等关系来解决更方便些.而(2)中的问题即可用F=400×12= 200代入求动力臂的长度的最小值,也可利用不等关系,600l≤400×12,得l的范围是l≥3,而动力臂至少应加长1.5米才行.【教学说明】在本例教学时,应仍由学生自主探究,构建适合题意的反比例函数关系式,让学生加深对反比例函数意义的理解,进一步增强分析问题和解决问题的能力.教师在学生练习过程中,巡视指导,帮助有困难同学形成正确认知,在大部分学生自主完成后,可提出以下问题让学生思考,巩固提高:(1 )用反比例函数知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?(2)你能再举一些应用杠杆原理做实际例子吗?三、合作研学、重组构建例2—个用电器的电阻是可调节的,其范围是110〜220 ,已知电压为220 V,这个用电器的电路图如图所示.(2)为了使住宅楼的外观更漂亮,开发商决 定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm 2,灰、白、蓝瓷砖使用比例为2:2: 1,则需要三种瓷砖各多少块?3.如图是放置在桌面上的一个圆台,已知圆台的上底面积是下底面积的1/4,此时圆台对桌面的压强为100 Pa.若把圆台翻过来放,则它对桌面的压强是多大呢?【教学说明】由学生独立完成,然后相互交流,发现问题,及时纠正,从而巩固对反比例函数的性质的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1. ( 1 )V =806t ⨯ ,V =480t (t >0). (2)V =4804= 120 (km/h). 2.(1)n • S = 5× 103 , n =3510S⨯ (S >0). (2)80cm 2=8×10-3m 2.353510 6.2510810n -⨯==⨯⨯(块), 则有n 灰=6.25×105×25= 2.5×105(块),n 白=6.25×105×25 =2.5×105(块) ,n 蓝=6.25×105×51=1.25×105(块).3. 解:设下底面积为S 0,则上底面积为04S . 由F p S= ,且当S = S 0时,p = 100,∴0100F pS S ==⨯ . 同一物体质量不变,∴ F=100S 0是定值.000100400(Pa)44S S F S p S S ∴====当时,. 因此,当把圆台翻过来放置时,它对桌面的压强是400Pa.五、归纳小结,拓展延学1.请举出一些应用反比例函数的实例,同伴之间相互交流.2.说说这节课你又有哪些收获?作业布置:教学反思:课题:章末复习备课人张成才王东梅[教学目标]1.系统地回顾本章主要知识,能熟练运用本章知识解决一些实际应用问题.2.进一步增强对反比例函数的图象及性质的理解,能运用它们解决具体问题.3、经历“知识回顾——问题与思考——拓展应用”的过程,进一步增强学生概括能力,发展学生分析问题,解决问题能力.[教学重点]反比例函数的图象及其性质的理解和运用.[教学难点]反比例函数图象中的面积不变性质.[教具准备][教学过程][教学环节 ] 附案一、情境引学、目标激活二、自主探学、尝试解决1.反比例函数y= kx(k 0,k为常数)的图象是怎样的?在描述反比例函数性质时应注意哪些问题?你能解释原因吗?2.你能列举几个现实生活中应用反比例函 数的实例吗?【教学说明】知识回顾中结构图的构建应是师生共同回顾本章主要知识过程中教师结合实际所展示的一种框图,然后教师给出问题与思考,让学生在回顾本章知识后进行必要反思.学生可相互交流,共同探讨,获得结论,最后教师可根据问题进行评析.三、合作研学、重组构建例1 (1)直角坐标系中有四个点P (2,6),Q (3,4),R (4,3)和S (5,1),其中三点在同一反比例函数的图象上,则不在这个图象上的点是 ( )A. P 点B.Q 点C. R 点D. S 点(2)在反比例函数12m y x-=的图象上有A(x 1 y 1),B(x 2,y 2 )两点,当 x 1<x 2<0 时,y 1<y 2,则m 的取值范围是( )A. m <0B. m >0C. m <12 D. m >12【分析】在(1)中,可结合反比例函数表达式y =k x 知k y x =⋅,即图象上点的横纵坐标之积是不变的,这样易知S 点坐标(5,1)的横纵坐标之积与另三点不同,故知点S 不在该反比例函数图象上;在(2)中,当x 1<x 2<0时,有y 1<y 2,知此双曲线的一支必在第二象限,从而有1—2m <0,∴m >12时,选D ,这里需要让学生结合反比例函数的图象及其各自象限的增减性有较深刻认识才能快速准确获得结论.例2 如图,双曲线y =k x(k >0,x >0)经过 Rt ∆ABO 的直角边AB 的中点D ,已知直角边OB 在x 轴上,且∆ABO的面积为3,则k 等于( )A .3B .6 C.8 D.9 【分析】例2中可连OD ,由D 为AB 边中点,故1322BOD AOD AOB S S S ∆∆∆=== .设D 点坐标为(m ,n ), 点D 在双曲线y = k x (k >0,x >0)上,故有n =k m,m n k ∴⨯= ,又由S △BOD =113222OB BD m n ⨯=⨯⨯= ,得3m n ⨯= ,3k ∴= ,故选A ,事实上,双曲线上任一点向坐标轴作垂线, 垂足和原点所组成的三角形的面积是不变的,为2k . 例3反比例函数y =k x(k ≠0)与一次函数y=kx-k(k ≠0)的图像在同一坐标系内的大致图象是( )【分析】本题可依据选项分别得到k 值的范围,A 、B 选项中k 值的取值范围各不相同,而C 、D 选项中直线与双曲线中k 值大致相同,但 D 选项中y= kx -k 所表示的直线应交于y 轴负半轴,从而知C 选项是符合要求的大致图象.例4 已知反比例函数y =1k x- (k 为常数,1k ≠ ). (1)若点A(1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一支上,y 随x 的增大而减小,求k 的取值范围.(3)若k = 13,试判断点 B(3,4),C(2,5)是 否在这个函数的图象上,并说明理由.【分析】(1)把x=1,y = 2代入y =1k x-,可求出k 值.(2)在每一支上y 随x 的增大而减小时,k -1>0. ( 3 )把B 、C 两点坐标分别代入解析式,看自变量是否与函数值对应.四、当堂训练、基础达标例5 如图,直线y =x+m 与双曲线y =k x相交于A(2,1),B 两点. (1)求m 及k 的值; (2)不解关于x ,y 的方程组y x m k y x =+⎧⎪⎨=⎪⎩,直接 写出点B 的坐标;(3)直线y=—2x+ 4m 经过点B 吗?请说理由.21。

反比例函数全章教案范文

反比例函数全章教案范文

反比例函数全章教案范文一、教学目标:1. 理解反比例函数的概念,掌握反比例函数的定义和性质。

2. 学会求反比例函数的导数,并能运用导数解决相关问题。

3. 能够运用反比例函数解决实际问题,提高解决问题的能力。

二、教学内容:1. 反比例函数的定义与性质2. 反比例函数的图像与方程3. 反比例函数的导数4. 反比例函数的应用5. 反比例函数的综合训练三、教学重点与难点:1. 反比例函数的定义与性质2. 反比例函数的图像与方程3. 反比例函数的导数及其应用四、教学方法:1. 采用问题驱动法,引导学生主动探究反比例函数的性质和应用。

2. 利用多媒体课件,展示反比例函数的图像和实例,增强直观感受。

3. 注重个体差异,分组讨论,提高学生的合作能力和表达能力。

4. 举一反三,引导学生将反比例函数与其他函数相结合,提高解决问题的能力。

五、教学安排:1. 课时:本章共计10课时。

2. 教学过程:第1-2课时:反比例函数的定义与性质第3-4课时:反比例函数的图像与方程第5-6课时:反比例函数的导数第7-8课时:反比例函数的应用第9-10课时:反比例函数的综合训练六、教学过程:第11-12课时:反比例函数与几何图形通过讲解反比例函数与几何图形之间的关系,使学生能够更好地理解反比例函数的性质。

结合具体实例,引导学生运用反比例函数解决几何问题。

七、教学过程:第13-14课时:反比例函数在不同领域的应用通过讲解反比例函数在物理学、经济学等领域的应用,让学生体会反比例函数在实际生活中的重要性,提高学生运用数学知识解决实际问题的能力。

八、教学过程:第15-16课时:反比例函数的拓展与深化引导学生从反比例函数的角度思考问题,探讨反比例函数与其他函数的关系,提高学生的逻辑思维能力和创新意识。

九、教学过程:第17-18课时:反比例函数的自测与反思十、教学过程:重点和难点解析一、反比例函数的定义与性质:重点关注环节:反比例函数的概念理解、性质的推导与证明。

反比例函数教案

反比例函数教案

反比例函数教案一、教学目标1. 理解什么是反比例函数及其基本性质;2. 掌握反比例函数的图像特点和变化规律;3. 能够解决与反比例函数相关的实际问题。

二、教学内容1. 反比例函数的定义和表示方法;2. 反比例函数图像的特点分析;3. 反比例函数的性质与变化规律;4. 反比例函数在实际问题中的应用。

三、教学过程导入:复习正比例函数的基本概念和性质。

1. 反比例函数的定义和表示方法反比例函数是指当自变量x的值增大时,函数值y的数量级会减小,且二者之间存在一个比例关系。

一般形式为 y = k/x,其中k为常数且k ≠ 0。

2. 反比例函数图像的特点分析(1)绘制反比例函数的图像:- 选取一些自变量的值,计算对应的函数值;- 按照坐标轴的刻度绘制函数图像;- 将各点连成一条曲线。

(2)观察反比例函数的图像特点:- 函数图像通过第一、第三象限的原点;- 函数图像在y轴的正半轴和x轴的负半轴上;- 函数图像近似于一个双曲线。

3. 反比例函数的性质与变化规律(1)解析性质:- 当x=0时,函数无定义;- 当x>0时,函数单调递减;- 当x<0时,函数单调递增。

(2)图像性质:- y轴正半轴上的函数值无上界,但接近于0;- x轴负半轴上,函数值无下界,但取值趋近于无穷大; - 函数图像关于y轴的负半轴对称。

4. 反比例函数在实际问题中的应用(1)解决实际问题:- 根据已知条件建立反比例函数模型;- 利用模型解决实际问题。

(2)例题分析:某贸易公司按照国际贸易规则计算货物的运输费用,运输费用与货物的重量成反比例关系,当货物重量为1000kg时,运费为500元,求运输4000kg货物的运费。

解:设运输费用为y(元),货物重量为x(kg),根据题意可建立反比例函数 y = k/x。

根据已知条件,当x=1000kg,y=500元,代入反比例函数求解常数k:500 = k/1000k = 500000代入x=4000kg,求解y:y = 500000/4000 = 125元答:运输4000kg货物的运费为125元。

6.1反比例函数(教案)(3)

6.1反比例函数(教案)(3)
5.培养学生的团队合作意识,通过小组讨论与合作,让学生在探讨反比例函数相关知识的过程中,学会倾听、交流、协作。
三、教学难点与重点
1.教学重点
(1)反比例函数的定义:y = k/x(k≠0),强调k不为零,这是反比例函数成立的前提条件。
举例:在实际问题中,如速度与时间的关系,当时间为零时,速度没有意义,因此k不能为零。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解反比例函数的基本概念。反比例函数是形如y = k/x(k≠0)的函数。它在描述现实生活中的反比关系方面具有重要应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了反比例函数在描述物体在反比例力作用下运动的应用,以及它如何帮助我们解决问题。
针对这个问题,我计划在接下来的课程中,增加一些与生活紧密相关的反比例函数实例,让学生更加直观地感受反比例函数的作用。此外,我还将加强对学生的引导,鼓励他们在小组讨论中积极发表自己的观点,提高他们的参与度。
另外,我在课程中强调了反比例函数与一次函数图像的关系,但感觉学生们对此部分的掌握程度并不理想。在今后的教学中,我需要更加注重这方面的讲解和练习,让学生更好地理解两者之间的联系和区别。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了反比例函数的基本概念、图像性质和实际应用。同时,我们也通过实践活动和小组讨论加深了对反比例函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(2)反比例函数的图像与性质:双曲线、在每个象限内y随x的增大而减小(k>0)或增大(k<0)。

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)

反比例函数教案(优秀8篇)《反比例函数》教学设计篇一一、知识与技能1、能灵活列反比例函数表达式解决一些实际问题。

2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。

二、过程与方法1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。

2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。

三、情感态度与价值观1、积极参与交流,并积极发表意见。

2、体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。

教学重点:掌握从实际问题中建构反比例函数模型。

教学难点:从实际问题中寻找变量之间的关系。

关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。

教具准备1、教师准备:课件(课本有关市煤气公司在地下修建煤气储存室等)。

2、学生准备:(1)复习已学过的反比例函数的图象和性质(2)预习本节课的内容,尝试收集有关本节课的情境资料。

教学过程一、创设问题情境,引入新课复习:反比例函数图象有哪些性质?反比例函数 y?kx 是由两支曲线组成,当K0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大。

二、讲授新课[例1]市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室。

(1)储存室的底面积S(单位:m2)与其深度d(单位:m)有怎样的函数关系?(2)公司决定把储存室的底面积S定为500m2,施工队施工时应该向下挖进多深?(3)当施工队按(2)中的计划挖进到地下15m时,碰上了坚硬的岩石,为了节约建设资金,公司临时改变计划把储存室的深改为15m,相应的,储存室的底面积应改为多少才能满足需要(保留两位小数)。

设计意图:让学生体验反比例函数是有效地描述现实世界的重要手段,让学生充分认识到数学是解决实际问题和进行交流的重要工具,此活动让学生从实际问题中寻找变量之间的关系。

反比例函数教案

反比例函数教案

反比例函数教案教学目标:1. 理解反比例函数的定义和特点;2. 掌握求解反比例函数的图像、增减性和零点等特征;3. 理解反比例函数在实际问题中的应用。

教学重点:1. 反比例函数的定义和性质;2. 反比例函数的图像、增减性和零点的求解;3. 反比例函数在实际问题中的应用。

教学方法:1. 探究法:通过问题引导学生发现反比例函数的特点和性质;2. 演示法:通过示例演示反比例函数的图像和求解过程;3. 合作学习:学生分组完成练习和应用问题;4. 归纳总结法:通过学生的归纳总结巩固所学知识。

教学过程:Step 1 导入新知1. 引入问题:小明每天去操场跑步,他的速度与他跑步的时间成反比例关系。

当他跑了1小时时,距离是8千米;当他跑了2小时时,距离是4千米。

那么,小明跑1小时距离是多少?小明跑2.5小时距离是多少?通过这个问题,你能想到什么关系呢?2. 让学生观察问题,思考速度和时间的关系,引导学生发现速度和时间成反比例关系,并以此引出反比例函数的概念。

Step 2 定义反比例函数1. 引入反比例函数的定义:如果两个变量x和y满足x乘以y 等于一个常数k(k≠0),那么y与x成反比例关系,可以用函数y=k/x表示,其中k为反比例函数的比例常数。

2. 观察反比例函数的图像:- 当x>0时,y随着x的增大而减小;- 当x<0时,y随着x的减小而增大;- 当x=0时,y不存在。

Step 3 反比例函数的图像、增减性和零点的求解1. 示范演示:例如y=5/x,画出其图像并讨论其特点。

2. 学生练习:- y=3/x- y=10/x- y=4/(x-1)3. 讨论反比例函数的增减性和零点的求解:- 当k>0时,反比例函数y=k/x在定义域内是单调递减的; - 当k<0时,反比例函数y=k/x在定义域内是单调递增的; - 反比例函数的零点是指使得y=0的x值,即求解k/x=0的x 值,得到x=0。

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)

反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。

运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。

案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。

师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。

通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。

二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。

复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。

案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。

师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。

那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。

生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

9.1 反比例函数
【教学目标】
知识与能力:(1)理解反比例函数的概念,能判断两个变量之间的关系是否是函数关系,进而识别反比例函数;
(2)能根据已知条件确定反比例函数的表达式;
过程与方法:经历从实际问题中概括出反比例函数模型的过程,体会反比例函数来源于实际问题。

情感、态度与价值观:(1)经历反比例函数的形成过程,使学生体会到函数是描
述变量间对应关系的重要数学模型。

(2)通过学习反比例函数,培养学生合作交流和探索的能
力。

【教学重难点】
重点:根据已知条件确定反比例函数的表达式.
难点:理解反比例函数的意义.
【教学过程】
一、创设情境,引入新课
同学们,你们还记得在小学里学过的,两个变量满足什么条件时成反比例关系吗?你能写出下列例子中的等式吗?
1.当路程s 一定时,时间t 与速度v的关系
2.当矩形面积S一定时,长a与宽b的关系
3.当三角形面积S 一定时,三角形的底边y 与高x的关系
学生通过回忆已学知识回答:如果两个量x和y满足xy=k(k为常数, k ≠0)那么x、y就成反比例关系.
现在我们来看生活中的例子。

活动一汽车从南京出发开往上海(全程约300km),全程所用的时间t(h)随着速度v(km/h)的变化而变化。

(1)你能用含v的代数式表示t吗?
(2)利用(1)的关系式完成下表:
随着速度的变化,全程所用时间发生怎样的变化?
(3)时间t是速度v的函数吗?
(4)时间t是速度v的一次函数吗?是正比例函数吗?
引导学生回忆函数、一次函数、正比例函数有关的概念,引出新知:反比例函数.
二、引导学生探索反比例函数的概念和表达式
活动二用函数关系式表示下列问题中两个变量之间的关系:
1.一个面积是64002
m的长方形的长a(m)随宽b(m)的变化而变化,则a与b的关系式为_____.
2.京沪线铁路全程为1463 km,某列车平均速度为v(km/h),全程运行时间为t(h),则v与t的关系式为_____
3.已知三角形的面积是8,它的底边长y与底边上的高x之间的关系式为_____
4.实数m与n的积是—200,m与n的关系式为_____
【讨论、交流】
1. 函数关系式
6400
a
b
=、
1463
v
t
=、
16
y
x
=、
200
m
n
=-具有什么共同特征?
2它们与正比例函数关系式有什么不同?
3.你能仿照y=kx的形式表示一下上面函数的一般形式吗?
结论:反比例函数的定义:
一般的,形如 (k为常数,k ≠0)的函数称为反比例函数.其中x是自变量,y是x的函数,k是比例系数。

注:(1)有时反比例函数也写成y=1
kx-或k=xy的形式.
52)2(--=m x m y (2)反比例函数的自变量x 的取值范围是不等于0的一切实数。

补充说明11k y k kx x x
-===,帮助学生理解. 三、例题讲解
例1.下列关系式中y 是x 的反比例函数吗?如果是,比例系数k 是多少? (1) y= 4x ;(2)12y x
=- ;(3)1y x =-;(4)1xy =; 练习 下列关系式中y 是x 的反比例函数的是: (1)12y x -= (2)21y x =
+ (3)35
y x = (4)y =2y x = (6)113y x
=+ 例2.若函数 是反比例函数,求出m 的值并写出解析式.
例3.若y 与x 成反比例,且x =-3时,y =7,则求y 与x 的函数关系式。

四、挑战自我
1.某住宅小区要种植一个面积为1000 2m 的矩形草坪,草坪长为 y m ,宽为 x m,则 y 关于 x 的关系式为______;
2.当a= 时,函数22(1)a
y a x -=+是反比例函数。

五、拓展应用:
已知y+2与1x -成反比例,且当x=2时,y=-5,求y 与x 间的函数关系式,并求出当x=5时,y 的值。

六、课堂小结
本节课你有什么收获?。

相关文档
最新文档