人教版第二十六章-反比例函数教案全章.
人教版九年级数学下册第二十六章反比例函数复习教学设计

3.鼓励学生提出疑问,针对学生的疑问进行解答,巩固所学知识。
4.布置课后作业,要求学生运用所学知识解决实际问题,提高学生的数学素养。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,重点掌握反比例函数的定义、性质和图像特点。
3.讲解反比例函数在实际问题中的应用,如速度与时间、物体在水平面上的运动等。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,针对反比例函数的性质、图像和应用进行讨论。
2.各小组分享自己的观点,讨论如何利用反比例函数解决实际问题。
3.教师巡回指导,针对学生的疑问进行解答,引导学生运用所学知识分析问题。
针对九年级学生,他们在之前的学习中已经掌握了函数的基本概念、一次函数、二次函数的性质和应用。在此基础上,学生对反比例函数的学习具备了一定的基础。然而,反比例函数作为函数学习的重要组成部分,其图像、性质和实际应用方面仍存在一定的难度。因此,在本章节的教学过程中,需要关注以下几点:
1.学生在理解反比例函数图像和性质时可能遇到困难,如对双曲线、渐近线等概念的理解。
5.针对课堂所学内容,编写一道反比例函数的应用题,要求题目具有一定的挑战性和趣味性。
6.阅读教材中关于反比例函数的相关内容,总结反比例函数的性质、图像和应用,形成自己的学习笔记。
2.自主探究,合作交流
-引导学生回顾一次函数、二次函数的性质,自主发现反比例函数的性质,组织学生进行小组讨论,共同总结反比例函数的图像特点及其应用。
3.精讲精练,突破难点
-对反比例函数的图像、性质进行详细讲解,结合具体例子,使学生深入理解双曲线、渐近线等概念。
人教版数学九年级下册第26章《反比例函数》课堂教学设计

人教版数学九年级下册第26章《反比例函数》课堂教学设计一. 教材分析人教版数学九年级下册第26章《反比例函数》是学生在学习了正比例函数和一次函数的基础上,进一步深化对函数概念的理解。
本章通过反比例函数的概念、图像和性质的学习,使学生掌握反比例函数的基本知识,提高学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了正比例函数和一次函数的知识,具备一定的函数观念。
但反比例函数的概念和性质与前两者的差异较大,学生可能存在理解上的困难。
因此,在教学过程中,要注重引导学生发现反比例函数与正比例函数、一次函数的联系和区别,激发学生学习兴趣,提高学生自主学习能力。
三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的抽象思维能力和创新能力。
四. 教学重难点1.反比例函数的概念。
2.反比例函数的性质。
3.反比例函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,发现反比例函数的性质,提高学生的动手实践能力和团队协作能力。
六. 教学准备1.教学课件。
2.反比例函数的实际问题案例。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考反比例函数的概念。
例如:一辆汽车以60公里/小时的速度行驶,行驶1小时后,距离是多少?当速度一定时,行驶的时间和距离之间的关系是什么?2.呈现(10分钟)讲解反比例函数的定义,引导学生发现反比例函数与正比例函数、一次函数的联系和区别。
通过多媒体课件,展示反比例函数的图像,使学生直观地理解反比例函数的性质。
3.操练(10分钟)让学生通过自主探究,发现反比例函数的性质。
教师提供几个实际问题,引导学生运用反比例函数解决问题。
例如:一个矩形的长和宽成反比例,长为8厘米,求矩形的面积。
4.巩固(10分钟)通过小组合作学习,让学生进一步巩固反比例函数的知识。
人教版第二十六章-反比例函数教案全章.

第二十六章 反比例函数26.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xk y =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k ;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0。
讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 三、课堂引入1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?3、阅读书P2思考题四、例习题分析例1.P3分析:因为y 是x 的反比例函数,所以先设x k y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成xk y =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是x x y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数?分析:反比例函数xk y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。
人教版九年级数学第26.1:反比例函数(教案)

2.案例分析:接下来,我们来看一个具体的案例。假设一辆汽车以固定的速度行驶,那么行驶的距离与时间成反比。这个案例展示了反比例函数在实际中的应用,以及它如何帮助我们解决问题。
突破方法:结合生活实例,引导学生学会从实际问题中提炼反比例函数模型,并运用模型解决问题。
(4)反比例函数与一次函数、二次函数的关系:理解反比例函数与其他函数之间的联系,提高学生对函数体系的整体认识。
突破方法:通过比较、分析反比例函数与一次函数、二次函数的图像和性质,使学生理解它们之间的关系。
四、教学流程
突破方法:引导学生通过对称性理解图像在第二、四象限的分布,并利用数形结合的方法加深理解。
(2)反比例函数性质的运用:如何将反比例函数的性质应用于解决具体问题,是学生需要突破的难点。
突破方法:通过大量典型例题,让学生掌握反比例函数性质的应用方法,培养学生的逻辑思维和推理能力。
(3)实际问题中的反比例函数建模:在解决实际问题时,学生可能难以从问题中抽象出反比例函数模型。
举例:探讨y=k/x的增减性和奇偶性,解释为何反比例函数在第一、三象限内具有相反的增减性。
(4)反比例函数的应用:学会将反比例函数应用于实际问题,构建数学模型并解决问题。
举例:根据速度和时间的关系,构建反比例函数模型,解决行程问题。
2.教学难点
(1)反比例函数图像的绘制:对于部分学生来说,绘制反比例函数图像可能存在困难,尤其是图像在第二、四象限的部分。
在实践活动环节,学生们分组讨论反比例函数在实际生活中的应用,并进行了实验操作。从成果展示来看,学生们能够将反比例函数的知识运用到实际问题中,但仍有部分学生在建立模型时感到困惑。为此,我计划在今后的教学中,多提供一些实际案例,让学生们有更多的实践机会,提高他们解决问题的能力。
二十六章反比例函数教案

二十六章反比例函数教案一、教学内容:本章的教学内容是反比例函数的相关概念、性质以及应用。
二、教学目标:1.理解反比例函数的定义及其特点;2.掌握反比例函数的基本图像和性质;3.能够求解反比例函数的参数及应用问题。
三、教学重点和难点:1.反比例函数的定义及其特点;2.反比例函数的图像和性质。
四、教学方法:1.教师讲解相应的知识点、概念和性质;2.学生通过举例和解题练习加深对知识点的理解和掌握;3.引导学生通过实际问题进行实际应用。
五、教学准备:1.教师准备好黑板、彩笔、教辅资料等;2.学生准备好课本、作业本等。
六、教学过程:(一)导入教师用一组例子告诉学生:当两个量成反比例关系时,其中一个量的值的变化与另一个量的值的变化相反(一个增加,另一个减少),我们把这种关系叫做反比例关系。
(二)引入教师给出一个具体的例子,让学生通过观察和思考找到两个变量之间的反比例关系。
比如:小明乘公交车上学,他发现公交车行驶的速度越快,所花的时间越短;而当公交车行驶的速度变慢,所花的时间也相应地变长。
教师用表格的形式记录下来速度和所花时间的变化。
(三)呈现教师用黑板或幻灯片展示反比例函数的数学表达式:y=k/x(k≠0),其中k是一个常数。
教师解释x和y的含义:x代表一个变量,y代表另一个变量。
教师再以速度和时间为例,让学生尝试画出相关的函数图像。
(四)探究教师引导学生以具体的例子来探究反比例函数的性质:1.设x1和y1是反比例函数y=k/x(k≠0)中的两个点,x1、y1的坐标为(x1,y1)。
根据定义,可得到y1=k/x1,即x1·y1=k。
用这个结果可以判断k的正负:-当x1和y1符号相同(都是正数或都是负数)时,k是正数;-当x1和y1符号反号(一个是正数,一个是负数)时,k是负数。
2.将上述函数中x的值变为x1+x,y的值变为y1-y,则新的函数表达式为:y0=k/(x1+x),通过简单的推理可以发现,x1+x的值与y1-y的值符号相反。
人教版 九年级下册数学 26.1 反比例函数 教案

反比例函数一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●会用描点法画反比例函数的图象●结合图象分析并掌握反比例函数的性质●体会函数的三种表示方法,领会数形结合的思想方法重点难点:●重点:理解并掌握反比例函数的图象和性质●难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质学习策略:●通过观察、分析及归纳,对比正比例和一次函数,更好地理解和掌握反比例函数的概念以及图象的性质与意义。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)一般地,在一个变化过程中,如果有两个变量X与Y ,并且对于X的每个确定的值,Y都有确定的值与其对应,那么我们就说X是,Y是X的函数。
(二)正比例函数的定义一次函数y=kx+b(k≠0),当时,一次函数y=kx(k≠0)就叫正比例函数。
(三)一般用法求一次函数的解析式。
(四)反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的一定,这两种量就叫成反比例的量,它们的关系叫做反比例关系。
知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其它补充填在右栏。
知识点一:反比例函数的概念一般地,形如 的函数称为反比例函数,其中x 是自变量,y是函数或叫因变量,x k y =也可以写成: , . 要点诠释:(1)在y=x k 中,自变量x 是分式x k 的分母,当 时,分式xk 无意义,所以自变量x 的取值范围是 ,因变量y 的取值范围是 .。
故函数图象与x 轴、y 轴 ;(2)x k中分母x 的指数为 ,如,2x 3y =就不是反比例函数;(3)y=x k (0k ≠)可以写成1y kx -=(0k ≠)的形式,自变量x 的指数是 ,在解决有关自变量指数问题时应特别注意系数_________这一条件;(4)y=x k(0k ≠)也可以写成 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式.两个变量的积均是一个常数(或定值),这也是识别两个量是否成反比例函数关系的关键.知识点二:反比例函数的图象(一)反比例函数的图象特征:(1)反比例函数的图象是一条 ,它有 个分支,这两个分支分别位于第____、_____象限或第_____、_______象限;(2)若点(a ,b )在反比例函数x ky =的图象上,则点(-a ,-b )也在此图象上,故反比例函数的图象关于 对称;(3)在反比例函数中由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y轴相交,只是无限靠近两坐标轴.(二)画反比例函数的图象的基本步骤:(1)________:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)_________:描出一侧的点后,另一侧可根据中心对称去描点;(3)_________:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当k >0时,两支曲线分别位于第 、 象限内,当k <0时,两支曲线分别位于第 、 象限内.知识点三:反比例函数的性质要点诠释:(1)反比例函数xk y =(k 为常数,k 不等于零)的图象是 ; (2)当k >0时,双曲线的两个分支分别位于第 、 象限,在每个象限内,y 值随x 值的 ;(3)当k <0时,双曲线的两个分支分别位于第 、 象限,在每个象限内,y 值随x 值的 ;(4)在反比例函数x ky =(k 为常数,k 不等于零)中,由于00x y ≠≠且,所以两个分支都无限___________但永远不能达到x 轴和y 轴.知识点四:反比例函数ky x =(0k ≠)中的比例系数k 的意义如图所示,过双曲线上任一点(,)P x y 作x 轴、y 轴垂线段PM 、PN ,所得矩形PMON 的面积_________||_______S PM x =⋅=⋅=.∵ ky x =,∴ xy k =.∴ ||S k =,即反比例函数(0)ky k x =≠中的比例系数k 的绝对值表示______________________________________________________.如图所示,过双曲线上一点Q 向x 轴或y 轴引垂线,则所得的三角形的面积_______AOQ S ∆=,即反比例函数(0)ky k x =≠中的比例系数k 的绝对值的一半表示___________________________________________________________________________________________________________________________.知识点五:反比例函数解析式的确定要点诠释:(1)待定系数法,由于在反比例函数关系式x ky =中,只有一个待定系数k ,只要确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入x ky =中即可求出 的值,从而确定反比例函数的关系式.(2)用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:xk y =(k ≠0); ②根据已知条件,列出含 的方程;③解出待定系数k 的值;④把k 值代入函数关系式xk y =中. 类型一:反比例函数的概念例1.下列等式中,哪些是反比例函数(1)3x y =; (2)2y x =-; (3)21xy =; (4)52y x =+; (5)32y x =-; (6)13y x =+; (7)4y x =-.思路点拨:根据反比例函数的定义,关键看上面各式能否改写成 (k 为常数,0k≠)的形式,这里 、 是整式, 的分母不是只单独含x ,改写后是13x y x +=,分子不是常数,只有 能写成定义的形式.解: 是反比例函数.总结升华:.举一反三:【变式1】已知函数22)1(--=m x m y 是反比例函数,则此函数解析式为 .解:总结升华:.经典例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计

教师讲解:“大家总结得很好。反比例函数是我们学习函数的重要部分,希望大家能够掌握其定义、性质和几何意义,并在实际问题中灵活运用。”
五、作业布置
为了巩固学生对反比例函数知识的掌握,提高学生的应用能力和思维能力,特布置以下作业:
1.基础知识巩固:
(1)根据反比例函数的定义,求出以下函数的表达式,并说明k的几何意义:y=3/x、y=-2/x、y=5/|x|。
作业要求:
1.学生在完成作业时,要认真思考,规范解答,注意细节。
2.对于实践应用题,要求学生结合反比例函数的性质和几何意义,分析问题,列出方程,并求解。
3.拓展提高题要求学生独立思考,尝试不同的解题方法,锻炼数学思维能力。
4.思考题要求学生在理解反比例函数的基础上,深入思考,形成自己的见解。
2.教学策略:
(1)情境创设:以生活实例或有趣的故事引入反比例函数的学习,激发学生的学习兴趣;
(2)任务驱动:设置具有挑战性的任务,引导学生主动探究反比例函数的性质和应用;
(3)分层教学:针对不同学生的学习需求,设计难易适度的练习题,使每个学生都能在原有基础上得到提高;
(4)反馈与评价:及时关注学生的学习进度,给予有效的反馈和激励,提高学生的学习积极性。
教师提问:“同学们,我们之前学习了正比例函数和一次函数,谁能来说说它们的特点和性质?”
2.创设情境:通过生活中的实例,如物体在反比例力作用下的运动轨迹,引出反比例函数的概念。
教师讲解:“在生活中,我们经常会遇到一些与反比例关系相关的问题。比如,当物体受到一个与速度成反比的阻力时,它的运动轨迹是怎样的呢?这就涉及到我们今天要学习的反比例函数。”
人教版九年级数学下册第二十六章26.1.1反比例函数k的几何意义教学设计
人教版数学九年级下册第26章反比例函数教学设计

4.布置课后作业,要求学生在课后进一步巩固反比例函数的知识。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.完成课本第26章课后习题,包括基础题和拓展题,特别是与反比例函数性质相关的问题,要求学生通过自主练习,进一步掌握反比例函数的定义和性质。
-基础题:选择2-3题,重点考查反比例函数的基本概念和图像绘制。
-拓展题:选择1-2题,旨在提高学生运用反比例函数解决实际问题的能力。
2.结合生活实际,自行设计一个反比例关系的情境问题,并运用反比例函数的知识进行解答。
-要求学生将情境问题清晰地描述出来,并展示出解题思路和过程。
-鼓励学生进行创新设计,可以将问题与个人兴趣或社会热点相结合。
-设计互动环节,让学生分享自己对反比例关系的理解,增强课堂的趣味性。
2.自主探究,合作交流
-采用小组合作的形式,引导学生自主探究反比例函数的性质,通过讨论、交流,共同解决问题。
-教师巡回指导,针对学生的疑问提供及时解答,帮助学生突破重难点。
3.分层教学,关注个体差异
-针对不同学生的学习基础和接受能力,设计难易程度不同的练习题,使每个学生都能在课堂上得到有效训练。
2.学生独立完成练习题,巩固所学知识。
3.教师对学生的练习结果进行点评,针对错误较多的题目,进行讲解和解答。
4.鼓励学生分享解题思路,提高学生的解题能力。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、性质、图像等方面的知识点。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识的重要性。
-教师以生动形象的语言、丰富多样的教学手段,引导学生感受数学的乐趣。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六章 反比例函数26.1.1反比例函数的意义一、教学目标1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想二、重、难点1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式2.难点:理解反比例函数的概念3.难点的突破方法:(1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解(2)注意引导学生对反比例函数概念的理解,看形式xk y =,等号左边是函数y ,等号右边是一个分式,自变量x 在分母上,且x 的指数是1,分子是不为0的常数k ;看自变量x 的取值范围,由于x 在分母上,故取x ≠0的一切实数;看函数y 的取值范围,因为k ≠0,且x ≠0,所以函数值y 也不可能为0。
讲解时可对照正比例函数y =kx (k ≠0),比较二者解析式的相同点和不同点。
(3)xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 三、课堂引入1、回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的?2、体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?3、阅读书P2思考题四、例习题分析例1.P3分析:因为y 是x 的反比例函数,所以先设x k y =,再把x =2和y =6代入上式求出常数k ,即利用了待定系数法确定函数解析式。
例1.(补充)下列等式中,哪些是反比例函数(1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y (5)x y 23-= (6)31+=xy (7)y =x -4 分析:根据反比例函数的定义,关键看上面各式能否改写成xk y =(k 为常数,k ≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x ,(6)改写后是x x y 31+=,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m 取什么值时,函数23)2(m x m y --=是反比例函数?分析:反比例函数xk y =(k ≠0)的另一种表达式是1-=kx y (k ≠0),后一种写法中x 的次数是-1,因此m 的取值必须满足两个条件,即m -2≠0且3-m 2=-1,特别注意不要遗漏k ≠0这一条件,也要防止出现3-m 2=1的错误。
解得m =-2例3.(补充)已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5(1) 求y 与x 的函数关系式(2) 当x =-2时,求函数y 的值分析:此题函数y 是由y 1和y 2两个函数组成的,要用待定系数法来解答,先根据题意分别设出y 1、 y 2与x 的函数关系式,再代入数值,通过解方程或方程组求出比例系数的值。
这里要注意y 1与x 和y 2与x 的函数关系中的比例系数不一定相同,故不能都设为k ,要用不同的字母表示。
略解:设y 1=k 1x (k 1≠0),x k y 22=(k 2≠0),则x k x k y 21+=,代入数值求得k 1=2, k 2=2,则xx y 22+=,当x =-2时,y =-5 五、随堂练习1.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为2.若函数28)3(m x m y -+=是反比例函数,则m 的取值是3.矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为4.已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y =5.函数21+-=x y 中自变量x 的取值范围是 六、课后练习已知函数y =y 1+y 2,y 1与x +1成正比例,y 2与x 成反比例,且当x =1时,y =0;当x =4时,y =9,求当x =-1时y 的值答案:y =426.1.2反比例函数的图象和性质(1)一、教学目标1.会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法二、重点、难点1.重点:理解并掌握反比例函数的图象和性质2.难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质3.难点的突破方法:画反比例函数图象前,应先让学生回忆一下画函数图象的基本步骤,即:列表、描点、连线,其中列表取值很关键。
反比例函数xk y =(k ≠0)自变量的取值范围是x ≠0,所以取值时应对称式地选取正数和负数各一半,并且互为相反数,通常取的数值越多,画出的图象越精确。
连线时要告诉学生用平滑的曲线连接,不能用折线连接。
教学时,老师要带着学生一起画,注意引导,及时纠错。
在探究反比例函数的性质时,可结合正比例函数y =kx (k ≠0)的图象和性质,来帮助学生观察、分析及归纳,通过对比,能使学生更好地理解和掌握所学的内容。
这里要强调一下,反比例函数的图象位置和增减性是由反比例系数k 的符号决定的;反之,双曲线的位置和函数性质也能推出k 的符号,注意让学生体会数形结合的思想方法。
四、课堂引入提出问题:1.一次函数y =kx +b (k 、b 是常数,k ≠0)的图象是什么?其性质有哪些?正比例函数y =kx (k ≠0)呢?2、画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3、反比例函数的图象是什么样呢?五、例习题分析例2.见教材P4,用描点法画图,注意强调:(1)列表取值时,x ≠0,因为x =0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y 值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴例1.(补充)已知反比例函数32)1(--=mx m y 的图象在第二、四象限,求m 值,并指出在每个象限内y 随x 的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1-=kx y (k ≠0)自变量x 的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k <0,则m -1<0,不要忽视这个条件略解:∵32)1(--=m x m y 是反比例函数 ∴m 2-3=-1,且m -1≠0又∵图象在第二、四象限 ∴m -1<0 解得2±=m 且m <1 则2-=m例2.(补充)如图,过反比例函数xy 1=(x >0)的图象上任意两点A 、B 分别作x 轴的垂线,垂足分别为C 、D ,连接OA 、OB ,设△AOC 和△BOD 的面积分别是S 1、S 2,比较它们的大小,可得( )(A )S 1>S 2 (B )S 1=S 2(C )S 1<S 2 (D )大小关系不能确定 分析:从反比例函数xk y =(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积k xy S ==,由此可得S 1=S 2 =21 ,故选B 五、随堂练习1.已知反比例函数xk y -=3,分别根据下列条件求出字母k 的取值范围 (1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大2.函数y =-ax +a 与xa y -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xk y =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数解析式为七、课后练习1.若函数x m y )12(-=与x m y -=3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是 3. 已知反比例函数y a x a =--()226,当x >0时,y 随x 的增大而增大,求函数关系式答案:3.xy a 25,5--=-=26.1.2反比例函数的图象和性质(2)一、教学目标1.使学生进一步理解和掌握反比例函数及其图象与性质2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法二、重点、难点1.重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题2.难点:学会从图象上分析、解决问题3.难点的突破方法:在前一节的基础上,可适当增加一些较综合的题目,帮助学生熟练掌握反比例函数的图象和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。
三、课堂引入复习上节课所学的内容1.什么是反比例函数?2.反比例函数的图象是什么?有什么性质?四、例习题分析例3.见教材P7 分析:反比例函数xk y =的图象位置及y 随x 的变化情况取决于常数k 的符号,因此要先求常数k ,而题中已知图象经过点A (2,6),即表明把A 点坐标代入解析式成立,所以用待定系数法能求出k ,这样解析式也就确定了。
例4.见教材P7例1.(补充)若点A (-2,a )、B (-1,b )、C (3,c )在反比例函数x k y =(k <0)图象上,则a 、b 、c 的大小关系怎样?分析:由k <0可知,双曲线位于第二、四象限,且在每一象限内,y 随x 的增大而增大,因为A 、B 在第二象限,且-1>-2,故b >a >0;又C 在第四象限,则c <0,所以 b >a >0>c说明:由于双曲线的两个分支在两个不同的象限内,因此函数y 随x 的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k <0时y 随x 的增大而增大,就会误认为3最大,则c 最大,出现错误。
此题还可以画草图,比较a 、b 、c 的大小,利用图象直观易懂,不易出错,应学会使用。
例2. (补充)如图, 一次函数y =kx +b 的图象与反比例函数x m y =的图象交于A (-2,1)、B (1,n )两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围分析:因为A 点在反比例函数的图象上,可先求出反比例函数的解析式xy 2-=,又B 点在反比例函数的图象上,代入即可求出n 的值,最后再由A 、B 两点坐标求出一次函数解析式y =-x -1,第(2)问根据图象可得x 的取值范围x <-2或0<x <1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。