第26章--反比例函数单元教学计划
人教版九年级数学下册第二十六章反比例函数复习教学设计

3.鼓励学生提出疑问,针对学生的疑问进行解答,巩固所学知识。
4.布置课后作业,要求学生运用所学知识解决实际问题,提高学生的数学素养。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.请同学们结合课堂所学,完成课后练习题第1、2、3题,重点掌握反比例函数的定义、性质和图像特点。
3.讲解反比例函数在实际问题中的应用,如速度与时间、物体在水平面上的运动等。
(三)学生小组讨论,500字
1.教师将学生分成若干小组,针对反比例函数的性质、图像和应用进行讨论。
2.各小组分享自己的观点,讨论如何利用反比例函数解决实际问题。
3.教师巡回指导,针对学生的疑问进行解答,引导学生运用所学知识分析问题。
针对九年级学生,他们在之前的学习中已经掌握了函数的基本概念、一次函数、二次函数的性质和应用。在此基础上,学生对反比例函数的学习具备了一定的基础。然而,反比例函数作为函数学习的重要组成部分,其图像、性质和实际应用方面仍存在一定的难度。因此,在本章节的教学过程中,需要关注以下几点:
1.学生在理解反比例函数图像和性质时可能遇到困难,如对双曲线、渐近线等概念的理解。
5.针对课堂所学内容,编写一道反比例函数的应用题,要求题目具有一定的挑战性和趣味性。
6.阅读教材中关于反比例函数的相关内容,总结反比例函数的性质、图像和应用,形成自己的学习笔记。
2.自主探究,合作交流
-引导学生回顾一次函数、二次函数的性质,自主发现反比例函数的性质,组织学生进行小组讨论,共同总结反比例函数的图像特点及其应用。
3.精讲精练,突破难点
-对反比例函数的图像、性质进行详细讲解,结合具体例子,使学生深入理解双曲线、渐近线等概念。
人教版数学九年级下册第26章《反比例函数》课堂教学设计

人教版数学九年级下册第26章《反比例函数》课堂教学设计一. 教材分析人教版数学九年级下册第26章《反比例函数》是学生在学习了正比例函数和一次函数的基础上,进一步深化对函数概念的理解。
本章通过反比例函数的概念、图像和性质的学习,使学生掌握反比例函数的基本知识,提高学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了正比例函数和一次函数的知识,具备一定的函数观念。
但反比例函数的概念和性质与前两者的差异较大,学生可能存在理解上的困难。
因此,在教学过程中,要注重引导学生发现反比例函数与正比例函数、一次函数的联系和区别,激发学生学习兴趣,提高学生自主学习能力。
三. 教学目标1.了解反比例函数的概念,理解反比例函数的性质。
2.能够运用反比例函数解决实际问题。
3.培养学生的抽象思维能力和创新能力。
四. 教学重难点1.反比例函数的概念。
2.反比例函数的性质。
3.反比例函数在实际问题中的应用。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究,发现反比例函数的性质,提高学生的动手实践能力和团队协作能力。
六. 教学准备1.教学课件。
2.反比例函数的实际问题案例。
3.小组合作学习材料。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考反比例函数的概念。
例如:一辆汽车以60公里/小时的速度行驶,行驶1小时后,距离是多少?当速度一定时,行驶的时间和距离之间的关系是什么?2.呈现(10分钟)讲解反比例函数的定义,引导学生发现反比例函数与正比例函数、一次函数的联系和区别。
通过多媒体课件,展示反比例函数的图像,使学生直观地理解反比例函数的性质。
3.操练(10分钟)让学生通过自主探究,发现反比例函数的性质。
教师提供几个实际问题,引导学生运用反比例函数解决问题。
例如:一个矩形的长和宽成反比例,长为8厘米,求矩形的面积。
4.巩固(10分钟)通过小组合作学习,让学生进一步巩固反比例函数的知识。
初中九年级数学下册第26章反比例函数26.1.1反比例函数教案(新版)新人教版

第26章反比例函数26.1.1反比例函数教学目标1.知识与技能会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式.2.过程与方法通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函数在实际问题中的应用. 3.情感、态度与价值观让学生体会数学来源于生活,又能为社会服务,在实际问题的分析中感受数学美.教学重点:理解反比例函数的意义,确定反比例函数的解析式难点:反比例函数的解析式的确定专家建议:函数是在探索具体问题中数量关系和变化规律的基础上抽象出的数学概念,是研究现实世界变化规律的重要数学模型。
在前面已学习过“变化之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念,为后续学习产生积极的影响。
本节课通过对具体情景的分析,概括出反比例函数的概念。
通过例题和举例可以丰富对函数的认识,理解反比例函数的意义.教学方法:自主、合作、探究教学用具:多媒体教学过程:一、复习旧知1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y都有唯一确定的值与之对应,则称x为自变量,y叫x的函数 .2.一次函数的解析式是: y=kx+b;当b=0 时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),则该直线的解析式为.y=2x-1这种求函数解析式的方法叫:待定系数法.[教师投影出问题,学生动手完成。
]二、新知引入师:提出问题,让学生先独立思考完成,再合作交流,经历探索反比例函数意义的过程。
下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m 2的矩形草坪,草坪的长为y 随宽x 的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S (单位:平方千米/人)随全市人口n (单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么? 生:(1)v t 1262= (2)xy 1000=(3)S =n 41068.1⨯ 2、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗?生: 不可以,也不可以 师:这就是我们这节课要探讨学习的新内容:板书:反比例函数。
人教版数学九年级下册26.1《反比例函数》教学设计

人教版数学九年级下册26.1《反比例函数》教学设计一. 教材分析人教版数学九年级下册第26.1节《反比例函数》是本册教材的重要内容,主要让学生了解反比例函数的定义、性质及图象,学会利用反比例函数解决实际问题。
本节内容承上启下,为后续学习函数的其他类型打下基础。
教材通过实例引入反比例函数,使学生能够从实际问题中抽象出反比例函数模型,进一步培养学生的抽象思维能力。
二. 学情分析九年级的学生已经学习了函数的基本概念、一次函数和二次函数,对函数有一定的认识。
但是,对于反比例函数这一概念,学生可能较为陌生,需要通过具体实例来引导学生理解和掌握。
此外,学生对于函数图象的绘制和分析还有一定的困难,需要在教学中给予指导。
三. 教学目标1.了解反比例函数的定义,理解反比例函数的性质。
2.能够绘制反比例函数的图象,分析反比例函数图象的特点。
3.学会利用反比例函数解决实际问题,提高解决问题的能力。
4.培养学生的抽象思维能力和合作交流能力。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的特点。
3.利用反比例函数解决实际问题。
五. 教学方法1.情境教学法:通过实例引入反比例函数,使学生能够从实际问题中抽象出反比例函数模型。
2.合作学习法:引导学生分组讨论,共同探究反比例函数的性质和图象特点。
3.实践操作法:让学生动手绘制反比例函数的图象,提高学生的实践操作能力。
4.问题驱动法:提出问题,引导学生思考,激发学生的求知欲。
六. 教学准备1.准备相关的实例,用于引入反比例函数。
2.准备反比例函数的图象资料,用于分析反比例函数的性质。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入反比例函数的概念。
例如,一辆汽车以60千米/小时的速度行驶,行驶1小时后,行驶的距离与时间成反比例关系。
引导学生思考,如何表示这种关系。
2.呈现(10分钟)呈现反比例函数的定义,解释反比例函数的概念。
人教版 九年级下册数学 26.1 反比例函数 教案

反比例函数一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●会用描点法画反比例函数的图象●结合图象分析并掌握反比例函数的性质●体会函数的三种表示方法,领会数形结合的思想方法重点难点:●重点:理解并掌握反比例函数的图象和性质●难点:正确画出图象,通过观察、分析,归纳出反比例函数的性质学习策略:●通过观察、分析及归纳,对比正比例和一次函数,更好地理解和掌握反比例函数的概念以及图象的性质与意义。
二、学习与应用“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
知识回顾---复习学习新知识之前,看看你的知识贮备过关了吗?(一)一般地,在一个变化过程中,如果有两个变量X与Y ,并且对于X的每个确定的值,Y都有确定的值与其对应,那么我们就说X是,Y是X的函数。
(二)正比例函数的定义一次函数y=kx+b(k≠0),当时,一次函数y=kx(k≠0)就叫正比例函数。
(三)一般用法求一次函数的解析式。
(四)反比例关系:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的一定,这两种量就叫成反比例的量,它们的关系叫做反比例关系。
知识要点——预习和课堂学习认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习。
请在虚线部分填写预习内容,在实线部分填写课堂学习内容。
课堂笔记或者其它补充填在右栏。
知识点一:反比例函数的概念一般地,形如 的函数称为反比例函数,其中x 是自变量,y是函数或叫因变量,x k y =也可以写成: , . 要点诠释:(1)在y=x k 中,自变量x 是分式x k 的分母,当 时,分式xk 无意义,所以自变量x 的取值范围是 ,因变量y 的取值范围是 .。
故函数图象与x 轴、y 轴 ;(2)x k中分母x 的指数为 ,如,2x 3y =就不是反比例函数;(3)y=x k (0k ≠)可以写成1y kx -=(0k ≠)的形式,自变量x 的指数是 ,在解决有关自变量指数问题时应特别注意系数_________这一条件;(4)y=x k(0k ≠)也可以写成 的形式,用它可以迅速地求出反比例函数解析式中的k ,从而得到反比例函数的解析式.两个变量的积均是一个常数(或定值),这也是识别两个量是否成反比例函数关系的关键.知识点二:反比例函数的图象(一)反比例函数的图象特征:(1)反比例函数的图象是一条 ,它有 个分支,这两个分支分别位于第____、_____象限或第_____、_______象限;(2)若点(a ,b )在反比例函数x ky =的图象上,则点(-a ,-b )也在此图象上,故反比例函数的图象关于 对称;(3)在反比例函数中由于x ≠0,k ≠0,所以y ≠0,函数图象永远不会与x 轴、y轴相交,只是无限靠近两坐标轴.(二)画反比例函数的图象的基本步骤:(1)________:自变量的取值应以0为中心,在0的两侧取三对(或三对以上)互为相反数的值,填写y 值时,只需计算右侧的函数值,相应左侧的函数值是与之对应的相反数;(2)_________:描出一侧的点后,另一侧可根据中心对称去描点;(3)_________:按照从左到右的顺序连接各点并延伸,连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;(4)反比例函数图象的分布是由k 的符号决定的:当k >0时,两支曲线分别位于第 、 象限内,当k <0时,两支曲线分别位于第 、 象限内.知识点三:反比例函数的性质要点诠释:(1)反比例函数xk y =(k 为常数,k 不等于零)的图象是 ; (2)当k >0时,双曲线的两个分支分别位于第 、 象限,在每个象限内,y 值随x 值的 ;(3)当k <0时,双曲线的两个分支分别位于第 、 象限,在每个象限内,y 值随x 值的 ;(4)在反比例函数x ky =(k 为常数,k 不等于零)中,由于00x y ≠≠且,所以两个分支都无限___________但永远不能达到x 轴和y 轴.知识点四:反比例函数ky x =(0k ≠)中的比例系数k 的意义如图所示,过双曲线上任一点(,)P x y 作x 轴、y 轴垂线段PM 、PN ,所得矩形PMON 的面积_________||_______S PM x =⋅=⋅=.∵ ky x =,∴ xy k =.∴ ||S k =,即反比例函数(0)ky k x =≠中的比例系数k 的绝对值表示______________________________________________________.如图所示,过双曲线上一点Q 向x 轴或y 轴引垂线,则所得的三角形的面积_______AOQ S ∆=,即反比例函数(0)ky k x =≠中的比例系数k 的绝对值的一半表示___________________________________________________________________________________________________________________________.知识点五:反比例函数解析式的确定要点诠释:(1)待定系数法,由于在反比例函数关系式x ky =中,只有一个待定系数k ,只要确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入x ky =中即可求出 的值,从而确定反比例函数的关系式.(2)用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:xk y =(k ≠0); ②根据已知条件,列出含 的方程;③解出待定系数k 的值;④把k 值代入函数关系式xk y =中. 类型一:反比例函数的概念例1.下列等式中,哪些是反比例函数(1)3x y =; (2)2y x =-; (3)21xy =; (4)52y x =+; (5)32y x =-; (6)13y x =+; (7)4y x =-.思路点拨:根据反比例函数的定义,关键看上面各式能否改写成 (k 为常数,0k≠)的形式,这里 、 是整式, 的分母不是只单独含x ,改写后是13x y x +=,分子不是常数,只有 能写成定义的形式.解: 是反比例函数.总结升华:.举一反三:【变式1】已知函数22)1(--=m x m y 是反比例函数,则此函数解析式为 .解:总结升华:.经典例题——自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
人教版数学九年级下册26.1.1《反比例函数》教学设计

人教版数学九年级下册26.1.1《反比例函数》教学设计一. 教材分析《反比例函数》是人教版数学九年级下册第26章第一节的内容,主要介绍了反比例函数的定义、性质及图象。
这一节内容是学生在学习了正比例函数和一次函数的基础上进行的,是进一步深化函数知识的重要环节,也为后续学习函数的应用打下了基础。
二. 学情分析九年级的学生已经具备了一定的函数知识,能够理解正比例函数和一次函数的概念和性质。
但是,对于反比例函数这一概念,学生可能较难理解,需要通过具体实例和生活实际来帮助学生理解和掌握。
三. 教学目标1.了解反比例函数的定义和性质。
2.能够绘制反比例函数的图象。
3.能够运用反比例函数解决实际问题。
四. 教学重难点1.反比例函数的定义和性质。
2.反比例函数图象的绘制。
五. 教学方法1.采用问题驱动法,通过设置问题引导学生思考和探索。
2.利用信息技术手段,如多媒体演示和数学软件,帮助学生直观理解反比例函数的性质和图象。
3.结合实际例子,让学生感受反比例函数在生活中的应用。
六. 教学准备1.多媒体演示文稿。
2.数学软件。
3.实际例子和问题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入反比例函数的概念,如“一辆汽车以60千米/小时的速度行驶,行驶1小时后,剩余路程与速度之间的关系是什么?”引导学生思考和讨论。
2.呈现(10分钟)利用多媒体演示文稿,呈现反比例函数的定义和性质,引导学生直观理解。
同时,利用数学软件,展示反比例函数的图象,让学生感受反比例函数的特点。
3.操练(10分钟)让学生利用数学软件,自己绘制一些反比例函数的图象,加深对反比例函数性质的理解。
同时,让学生解答一些与反比例函数有关的问题,巩固所学知识。
4.巩固(10分钟)通过一些练习题,让学生进一步巩固反比例函数的概念和性质。
5.拓展(10分钟)让学生思考和讨论反比例函数在实际生活中的应用,如广告宣传、经济分析等,引导学生将所学知识运用到实际中。
人教版数学九年级下册第26章反比例函数教学设计

4.布置课后作业,要求学生在课后进一步巩固反比例函数的知识。
五、作业布置
为了巩固学生对反比例函数的理解和应用,特布置以下作业:
1.完成课本第26章课后习题,包括基础题和拓展题,特别是与反比例函数性质相关的问题,要求学生通过自主练习,进一步掌握反比例函数的定义和性质。
-基础题:选择2-3题,重点考查反比例函数的基本概念和图像绘制。
-拓展题:选择1-2题,旨在提高学生运用反比例函数解决实际问题的能力。
2.结合生活实际,自行设计一个反比例关系的情境问题,并运用反比例函数的知识进行解答。
-要求学生将情境问题清晰地描述出来,并展示出解题思路和过程。
-鼓励学生进行创新设计,可以将问题与个人兴趣或社会热点相结合。
-设计互动环节,让学生分享自己对反比例关系的理解,增强课堂的趣味性。
2.自主探究,合作交流
-采用小组合作的形式,引导学生自主探究反比例函数的性质,通过讨论、交流,共同解决问题。
-教师巡回指导,针对学生的疑问提供及时解答,帮助学生突破重难点。
3.分层教学,关注个体差异
-针对不同学生的学习基础和接受能力,设计难易程度不同的练习题,使每个学生都能在课堂上得到有效训练。
2.学生独立完成练习题,巩固所学知识。
3.教师对学生的练习结果进行点评,针对错误较多的题目,进行讲解和解答。
4.鼓励学生分享解题思路,提高学生的解题能力。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结反比例函数的定义、性质、图像等方面的知识点。
2.强调反比例函数在实际问题中的应用,让学生认识到数学知识的重要性。
-教师以生动形象的语言、丰富多样的教学手段,引导学生感受数学的乐趣。
人教版九年级数学下册第二十六章反比例函数大单元教学设计

3.引出反比例函数:通过以上问题,引导学生发现,当两个量的乘积为定值时,这两个量之间的关系就是反比例关系。从而引出反比例函数的定义。
(二)讲授新知
1.反比例函数的定义:y = k/x(k为常数,k≠0)。
3.学会运用数形结合的思想,将反比例函数与实际问题相结合,培养创新意识和实践能力。
4.通过对反比例函数的学习,掌握研究函数的一般方法,为学习其他函数打下基础。
(三)情感态度与价值观
1.增强对数学学科的兴趣和热情,认识到数学在日常生活和科学研究中的重要性。
2.培养勇于探究、积极思考的良好学习习惯,形成主动学习的态度。
2.选做题:
(1)课本习题26.3第1、2题,鼓励学有余力的学生挑战更高难度的题目,提高学生的数学思维;
(2)结合生活实际,自编一道反比例函数的应用题,并与同学分享解题思路。
3.探究性作业:
(1)研究反比例函数图像的对称性,探索其在实际生活中的应用;
(2)以小组为单位,总结反比例函数的解题技巧,形成小组学习报告。
(2)运用情境教学法,创设生活情境,让学生在实际问题中感受反比例函数的应用,提高学生的实际问题解决能力;
(3)利用信息技术手段,如几何画板等,动态展示反比例函数图像的变化,帮助学生形象地理解反比例函数的性质;
(4)组织小组合作学习,培养学生的团队协作能力和沟通能力。
2.教学过程:
(1)导入:通过一个简单的实际例子,如“一块固定面积的田地,耕种宽度与长度成反比,如何选择宽度与长度才能使耕种效率最高”,引起学生对反比例函数的兴趣;
2.反比例函数的性质:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第26章反比例函数单元教学计划
一、“课标要求”
1、探索简单实例中的数量关系和变化规律,了解常量、变量的意义。
2、结合实例,了解函数的概念和三种表示方法,能举出函数的实例。
3、能结合图象对简单实际问题中的函数关系进行分析。
4、能确定简单实际问题中函数自变量的取值范围,并会求出函数值。
5、能用适当的函数表示法刻画简单实际问题中变量之间的关系。
6、结合对函数关系的分析,能对变量的变化情况进行初步讨论。
7、结合具体情景体会反比例函数的意义,能根据已知条件确定函数的表达式。
8、能画出反比例函数的图象,根据图象和表达式探索并理解K>0与K<0时图像的变化。
9、能用反比例函数解决简单实际问题。
二、教材分析:
本章的主要内容有反比例函数的概念、解析式、性质和图象、本章是在已经学习了图形与坐标和一次函数的基础上,再次进入函数范畴,使学生进一步理解函数的内涵,并感受世界存在的各种函数及应用函数来解决实际问题、反比例函数是最基本的函数之一,是后续学习各类函数的基础。
本章的主要内容是反比例函数,教科书从几个学生熟悉的实际问题出发,引进反比例函数的概念,使学生逐步从对具体函数的感性认识上升到对抽象的反比例函数概念的理性认识。
三、教学目标
知识与技能:
(1)领会反比例函数的意义,理解反比例函数的概念。
(2)能根据实际问题中的条件确定反比例函数的关系式。
(3)掌握反比例函数的图象的性质。
(4)能利用反比例函数的图象的性质解决实际问题。
过程与方法:经历分析实际问题中变量之间的关系建立反比例函数模型,进而解决实际问题的过程。
运用反比例函数的解析式和图像表示问题情景中成反比例的量之间的关系,进而利用反比例函数的图像及性质解决问题。
情感态度与价值观:
体会数学与现实生活的紧密性,培养学生的情感、态度,增强应用意识,体会数形结合的数学思想。
培养学生自由学习、运用代数方法解决实际问题的能力。
四、教学重点、难点
反比例函数是继一次函数之后又一重要的基本函数,它为今后学习图象和曲线的关系(如二次函数)提供了研究方法、反比例函数本身在日常生活和生产中也有着许多直接应用,这对学生建模思想、数形结合思想等重要思想方法的形成,也会产生较大的影响,所以反比例函数是本章教学的重点。
反比例函数图象的两个分支,给反比例函数的性质带来复杂性,学生不易理解,是本章教学的难点之一;综合运用反比例函数的解析式、图象和性质解决实际问题时,往往会遇到较复杂的问题情境,需要建模,利用图象以及综合运用方程、不等式及其他数学模型,所以综合运用反比例函数知识解较复杂的实际问题是本章教学又一主要难点。
五、教学措施
(1)反比例函数概念和形成过程,应充分利用学生的生活经验和背景知识、生活经验就是学生已经知道两个量成反比例的概念,建立反比例函数离不开反比例关系这个基础;背景知识是八年级上册的“图形与坐标”及“一次函数”、所以在学习本章内容前可先与学生一起回顾一下以上已学内容,对扫清障碍,理解接受新概念很有益处。
(2)注重数学思想的渗透,从数学自身发展过程看,正是由于变量与函数概念的引入,标志着初等数学向高等数学迈进,尽管本章讲述的反比例函数仅是一种最基本、最初步的函数,但其中蕴涵的数学思想方法,对学生分析问题解决问题是十分有益的、教学中应让学生充分体会诸如变化与对应思想、数形结合思想,建模思想等。
(3)本章是实践性、应用性很强的内容,联系“科学”的知识特别多、这一方面体现教材的横向联系,又体现本章内容的实用价值、如密度、压强与体积、杠杆原理、欧姆定理、电功率计算等、若学生在这方面有缺陷,则直接影响到本章的学习、建议老师在教前在同学中广泛了解学生的基础,若有问题应给予补充说明。
(4)在画反比例函数的图象时充分发挥“自主探索—合作学习”这种学习方式的作用。
在按课本顺序指导学生画完图后,让学生回顾画图的全过程.体现课标要求“性质的探索过程——根据图象和解析表达式探索并理解其性质”。
引导学生分清:①两个分支是一个函数的图象,不是函数有两个图象。
②画曲线时,必须将自变量从小到大的顺序在各个象限里用光滑曲线连结起来,不能跨象限连结.③在图象所在的每个象限内,当k>0时,函数值y随自变量x的增大而减小;当k<0时,函数值y随自变量x的增大而增大。
(5)在教学中应充分利用,注意各章节之间的内在联系。
在这里就尽量用图形变换的思想叙述性质、用图形变换的角度观察、分析图形之间的联系.如反比例函数的图象是关于原点成中心对称,利用这一性质可以简化画图过程;x·y =1的图象与x y=-1的图象关于坐标轴对称,我们可以通过图形变换来作另一函数的图象。
(6)本章还渗透了建模的思想。
具体过程可概括为:由实验获得数据---用描点法画出图象---根据图象和数据判断或估计函数的类别---用待定系数法求出函数的关系式---用实验数据验证。
随着社会的发展和科学技术的不断进步,数学的应用已越来越被人们所重视,培养学生分析问题、解决实际问题的能力已成为当今数学教育的主流。
中学数学建模正顺应了这一时代发展的潮流,是对陈旧的数学教育观下的数学教育的有力冲击.中学数学建模从学生所经历,所接触到的客观实际中提出问题,对学生了解社会,认识社会都有积极作用。
通过数学建模,对数学的广泛应用有了进一步认识,促使学生在积极思考中,在问题的解决中发现数学的价值与美。
同时数学建模的复杂性,决不是凭个人的力量可以完美解决的,因此强调群体的协作.通过实际考察、实验统计、演义推理、总结提炼,最后又相互交流,共同探讨,共同解决。
解决问题过程中充分体现高度的协作精神,教科书中的渗透正是体现了这种思想。
六、课时安排
26.1 反比例函数4课时
26.2 实际问题与反比例函数4课时
第26章单元小结章与单元测试1课时。