核酸以及核苷酸的基本换算
核苷酸到核酸的过程

核苷酸到核酸的过程
嘿,朋友们!今天咱来聊聊从核苷酸到核酸这神奇的过程呀!
核苷酸啊,就像是小小的积木块儿。
你看,搭积木咱都玩过吧,一块一块往上堆,就能搭出各种各样的形状。
核苷酸也差不多是这样的角色呢!它们有着不同的类型,就像不同形状的积木。
这些小小的核苷酸,它们可不甘寂寞,它们要凑在一起干大事儿呢!当它们一个接一个地连接起来,哇塞,就形成了核酸。
这核酸呀,就好比是用那些小积木搭成的大城堡。
核酸有两种,一种是脱氧核糖核酸,也就是咱常说的 DNA 啦。
DNA 可太重要啦!它就像是我们身体的设计图纸,记录着我们身体的各种信息。
你的眼睛是啥样,鼻子是啥样,这可都是 DNA 说了算呢!你说神奇不神奇?
还有一种核酸叫核糖核酸,也就是 RNA 啦。
RNA 就像是个勤劳的小助手,帮着把 DNA 里的信息传递出来,然后让身体按照这些信息去干活儿。
咱就说,这核苷酸变成核酸的过程,像不像一场奇妙的变身之旅?它们从一个个单独的个体,通过奇妙的组合,变成了有着重要作用的大分子。
你想想看,要是没有核苷酸,哪里来的核酸呢?没有核酸,我们的身体又怎么能正常运转呢?这就好像没有砖头,哪来的房子呀!
核苷酸就像是一群小精灵,它们在我们身体里欢快地跳跃、组合,为我们的生命提供着最基本的保障。
我们得好好感谢它们呀!
所以说呀,这小小的核苷酸可别小瞧了它们,它们能创造出大大的奇迹呢!它们通过自己的努力,构建出了我们生命的基石。
是不是很厉害?是不是很让人惊叹?我们的身体就是这么神奇,这么充满奥秘!这从核苷酸到核酸的过程,不就是大自然给我们的一份最珍贵的礼物吗?我们可得好好珍惜这份礼物,好好爱护我们的身体呀!。
第三章核酸的化学

DNA特有
RNA特有
O
O
C
C
HN C CH3 HN CH
C CH ON
C CH ON
H
H
3、磷酸:DNA、RNA均有
HO OH
RNA(AMP)
HO OH
H
DNA(dAMP)
两类核酸的基本化学组成比较
组成成分 DNA
腺嘌呤(A) 嘌呤碱 鸟嘌呤(G)
碱基
嘧啶碱
胞嘧啶 (C) 胸腺嘧啶(T)
NH2
N
N
~ ~ O
O- P O-
O O- P
O-
O O- P
O-
NN OCH2 O
HH
H
H
OH OH 三磷酸腺苷 (ATP)
AMP ADP
ATP
1、腺苷三磷酸(ATP)
▪ 主要功能: 提供能量
能量储存
AMP
能量释放
能量储存
ADP
能量释放
AMP ADP ATP
ATP
2、环苷酸
▪ 主要功能:细胞内信号传导过程中的重 要信息分子。
➢ 1952年,Hershey和Chase利用病毒完成更有说服力的“噬菌体” 实验。
➢ 1953年J.D.Watson和F.Crick提出DNA的双螺旋结构,20世纪自 然科学最伟大的成就之一。
1990年 美国启动人类基因组计划(HGP)
一、核酸的发现和研究简史
➢ 1953年J.D.Watson和F.Crick提出DNA的双螺旋结 构,20世纪自然科学最伟大的成就之一。
RNA:NTP
三磷酸腺苷酸ATP 三磷酸鸟苷酸 GTP 三磷酸胞苷酸 CTP 三磷酸尿苷酸 UTP
核苷酸代谢

(三)嘧啶核苷酸合成的调控
三个酶受终产物的反馈抑制:氨甲酰磷酸合成酶Ⅱ
1)氨甲酰磷酸合成酶Ⅱ受 UMP抑制,影响UMP、CTP 合成。
ATCase
2)ATCase受CTP抑制;影响 UMP、CTP合成。
3)CTP合成酶受CTP抑制,只 影响CTP合成。
CTP合成酶
不同生物关键酶不同
都受终产物反馈抑制,但具体机制不同: 动物:氨甲酰磷酸合成酶Ⅱ
HGPRT缺陷的男性儿童表现为一种自毁容貌综合症 (Lesch-Nyhan Syndrome ) ,为先天性遗传疾病(缺 乏HGPRT),行为对立,侵略性强,自咬手指、脚趾、 嘴唇等,智力低下。
3、生理意义:
节省能量和氨基酸的消耗; 某些器官(脑、骨髓等)因酶的缺乏,
只能进行补救途径合成。
①核糖核苷酸还原酶(RR)含R1和R2蛋白; ②硫氧还蛋白(T)含巯基; ③硫氧还蛋白还原酶(TR)催化氧化型T的还
原,FAD为辅基。
酶体系催化反应由NADPH提供氢: NADPH →TR→T→RR→核糖核苷酸还原→ 脱氧核糖核苷酸。
孤电子转移
3’-自由基核苷酸形成
脱氧核苷酸形成
孤电子转移
2’-脱氧3’-自由基核苷酸形成
三、嘧啶的分解:
在肝中进行,分解产物均易溶于水。
§12 -2 核苷酸的生物合成
基本途径: 1、“从无到有”途径(de novo synthesis)
利用简单化合物,主要在肝中进行 2、补救途径(salvage)
替补途径,利用核苷酸分解产物,在 脑、骨髓中进行
2. 从头合成途径的三个特征:
1)参与从头合成途径的酶在细胞中以庞大 的多酶融合体出现;
1、经碱基(嘧啶或嘌呤)核苷磷酸化酶催化
核苷酸核酸dna之间的关系

核苷酸核酸dna之间的关系嘿,咱今天就来唠唠核苷酸、核酸和 DNA 之间那点事儿哈!
你看哈,核苷酸就像是小小的积木块,它们一个个的可可爱爱。
这些小家伙们排排队、组组合,就变成了核酸。
核酸呢,就像是一条长长的链子。
这核酸里面有两种很重要的家伙,一个叫核糖核酸,也就是 RNA,另一个呢就是大名鼎鼎的脱氧核糖核酸,也就是 DNA 啦!DNA 那可牛了,它就像是一个超级大宝藏,里面藏着生命的密码。
可以说,DNA 就是老大呀,它指挥着生物体该怎么长、怎么发育。
而核苷酸呢,就是构成这个老大的基础材料。
没有核苷酸,哪来的 DNA 呀。
咱就打个比方哈,核苷酸就像是建房子的砖头,核酸就是用砖头垒起来的墙,而 DNA 就是整栋房子。
要是没有那些砖头,房子可就建不起来喽。
而且呀,它们三个的关系那是相当紧密,谁也离不开谁。
就像我们和好朋友一样,互相支持、互相依靠。
总之呢,核苷酸、核酸和 DNA 它们就是一个奇妙的组合,共同构建了生命的奥秘。
它们就像一个神奇的魔法阵,让我们的世界变得丰富多彩。
哎呀,说了这么多,是不是对它们的关系有点清楚啦?哈哈,下次再看到这些名词,可别迷糊啦,要记得它们之间那有趣又紧密的联系哟!就像我们生活中的各种关系一样,看似普通,实则奇妙无比呀!好啦,今天就聊到这儿咯,下次再和你们唠别的有趣事儿!。
04章核苷酸和核酸1

DNA结构变化的意义
• 复制、转录、重组——起始、调节位点
3. DNA的三级结构
DNA的三级结构是指DNA分子(双螺旋) 通过扭曲和折叠所形成的特定构象。包括不同
二级结构单元间的相互作用、单链与二级结构
单元间的相互作用以及DNA的拓扑特征。超螺 旋结构是三级结构的一种。
(2)特殊的二级结构
回文结构(palindromic structure)也称反 向重复(inverted repeats):链内互补
发夹形和十字形结构
镜象重复(mirror repeat)
H-DNA——三螺旋DNA
Hoogsteen碱基配对 三链DNA的碱基配对形式
双链DNA的碱基配对形式
2.一些核苷酸是细胞通讯的媒介(第二信 使分子):cAMP , cGMP
ATP
腺苷酸环化酶
cAMP + PPi
3. 核苷酸是许多酶辅助因子的结构成分
第二节 磷酸二酯键与 多核苷酸
1. 核苷酸的连接
5´端
C
核苷酸之间以磷酸
二酯键(phosphodiester
linkage)连接形成多核
苷酸链(polynucleotide chain)。 寡核苷酸:<50核苷酸 多核苷酸
第四节
DNA的结构
Structure of DNA
一、DNA储存遗传信息的证实
1. 细 菌 转 化 实 验 1928年Frederick Griffith和1944年O. Avery
Avery细菌转化实验(1944)
噬菌体
2. 噬菌体侵染细菌的实验
二、各物种DNA有着独特的碱基组成
• DNA结构有关重要线索来自Chargaff等(1950)的 研究结果:
浓度换算公式

核酸、核苷酸的基本换算核酸、核苷酸的基本换算1.核酸的换算:(1)摩尔数与质量:1 μg 1,000bp DNA = 1.52 pmol1 μg pUC18/19 DNA (2,688bp) = 0.57 pmol1 μg pBR322 DNA (4,361bp) = 0.35 pmol1 μg SV40 DNA (5,243bp) = 0.29 pmol1 μg FX174 DNA (5,386bp) = 0.28 pmol1 μg M13mp18/19 DNA (7.250bp) = 0.21 pmol1 μg l phage DNA (48,502bp) = 0.03 pmol1 pmol 1,000bp DNA = 0.66 μg1 pmol pUC18/19 DNA (2,688bp) = 1.77 μg1 pmol pBR322 DNA (4,361bp) = 2.88 μg1 pmol SV40 DNA (5,243bp) = 3.46 μg1 pmol FX174 DNA (5,386bp) = 3.54 μg1 pmol M13mp18/19 DNA (7.250bp) = 4.78 μg1 pmol l phage DNA (48,502bp) = 32.01 μg(2)光吸收值与浓度:1 OD260 dsDNA = 50 μg/ml = 0.15 mmol/L1 OD260 ssDNA = 33 μg/ml = 0.10 mmol/L1 OD260 ssRNA = 40 μg/ml = 0.12 mmol/L1 mmol/L dsDNA = 6.7 OD2601 mmol/L ssDNA = 10.0 OD2601 mmol/L ssRNA = 8.3 OD260 (3)分子量:1个脱氧核糖核酸碱基的平均分子量为333 Daltons1个核糖核酸碱基的平均分子量为340 Daltons(4)核酸末端浓度:环状DNApmol ends = pmol DNA × number of cuts ×2线性DNApmol ends = pmol DNA×(number of cuts ×2 + 2)1 μg 1,000 bp DNA = 3.04 pmol ends1 μg pUC18/19 DNA (2,688 bp) = 1.14 pmol ends1 μg pBR322 DNA (4,361 bp) = 0.7 pmol ends1 μg SV40 DNA (5,243 bp) = 0.58 pmol ends1 μg FX174 DNA (5,386 bp) = 0.56 pmol ends1 μg M13mp18/19 DNA (7.250 bp) = 0.42 pmol ends1 μg l phage DNA (48,502 bp) = 0.06 pmol ends2.核苷酸的换算:(1)分子量:MW (Da) = 333 × N (number of bases)(2)浓度:C (μmol/L or pmol/ml) = OD260 / (0.01 × N)C (ng/ml) = OD260? MW / (0.01 × N)MW -- molecular weightN -- number of basesOD260 -- absorbance at 260 nm(3)双链DNA与寡核苷酸的熔点短于25bp的双链寡核苷酸Tm = 2 (A + T) + 4 (G + C)长于25bp的双链寡核苷酸Tm = 81.5 + 16.6 ( lg[J+] ) + 0.41 (%GC) - (600/N) - 0.63(%formamide)N -- 引物的长度(以碱基数计算)J+ -- 单价阳离子浓度(4)DNA与表达蛋白之间分子量换算1 kb DNA = 333 amino acid ≈3.7 × 104 Da10,000 Da Protein ≈ 270 bp DNA30,000 Da Protein≈ 810 bp DNA50,000 Da Protein ≈2701 bp DNA100,000 Da Protein ≈ 27 kb DNADNA电泳基本参数1.琼脂糖和聚丙烯酰胺凝胶中DNA迁移率(线性DNA分离建议凝胶浓度)分离范围(bp) 琼脂糖浓度分离范围(bp) PAGE浓度1,000~30,000 0.5% 100~1,000 3.5%800~12,000 0.7% 80~500 5.0%500~10,000 1.0% 60~400 8.0%400~7,000 1.2% 40~200 12.0%200~4,000 1.5% 5~100 20.0%50~2,000 2.0%2.变性、非变性PAGE胶中染料迁移率PAGE浓度溴酚蓝二甲苯青(相当核苷酸片段大小,bp)3.5% 100 4605.0% 65 2608.0% 45 16012.0% 20 7015.0% 15 6020.0% 12 45。
精选高一生物必修一核酸计算习题

精选高一生物必修一核酸计算习题题目一:核苷酸的组成计算题目描述:一个DNA分子含有100个碱基对,已知其中腺嘌呤(A)的数量为40,胸腺嘧啶(T)的数量为40,胞嘧啶(C)的数量为15,鸟嘌呤(G)的数量为15。
请计算该DNA分子中:1. 核苷酸的数量2. 核糖核苷酸的数量3. 脱氧核糖核苷酸的数量4. 含有A和T的核苷酸数量5. 含有C和G的核苷酸数量解答:1. 核苷酸的数量 = 总碱基数 = 100个碱基对 * 2 = 200个2. 核糖核苷酸的数量 = 腺嘌呤(A)的数量 = 40个3. 脱氧核糖核苷酸的数量 = 胸腺嘧啶(T)的数量 = 40个4. 含有A和T的核苷酸数量 = 腺嘌呤(A)的数量 = 40个5. 含有C和G的核苷酸数量 = 胞嘧啶(C)的数量 + 鸟嘌呤(G)的数量 = 15 + 15 = 30个题目二:DNA复制过程中的计算题目描述:一个DNA分子含有100个碱基对,已知其中腺嘌呤(A)的数量为40,胸腺嘧啶(T)的数量为40,胞嘧啶(C)的数量为30,鸟嘌呤(G)的数量为30。
假设DNA复制过程中,每个A与一个T配对,每个C与一个G配对。
请计算DNA复制一次后:1. 子代DNA分子中腺嘌呤(A)的数量2. 子代DNA分子中胸腺嘧啶(T)的数量3. 子代DNA分子中胞嘧啶(C)的数量4. 子代DNA分子中鸟嘌呤(G)的数量5. 子代DNA分子中核苷酸的总数量解答:1. 子代DNA分子中腺嘌呤(A)的数量 = 亲代DNA中腺嘌呤(A)的数量 = 40个2. 子代DNA分子中胸腺嘧啶(T)的数量 = 亲代DNA中胸腺嘧啶(T)的数量 = 40个3. 子代DNA分子中胞嘧啶(C)的数量 = 亲代DNA中胞嘧啶(C)的数量 = 30个4. 子代DNA分子中鸟嘌呤(G)的数量 = 亲代DNA中鸟嘌呤(G)的数量 = 30个5. 子代DNA分子中核苷酸的总数量 = 亲代DNA中核苷酸的总数量 * 2 = 200个 * 2 = 400个题目三:RNA转录过程中的计算题目描述:一个DNA分子含有80个碱基对,已知其中腺嘌呤(A)的数量为30,胸腺嘧啶(T)的数量为30,胞嘧啶(C)的数量为20,鸟嘌呤(G)的数量为20。
核酸的代谢

第十一章核酸的代谢第一节核酸降解和核苷酸代谢⏹核酸的基本结构单位是核苷酸,核酸代谢与核苷酸代谢密切相关,细胞内存在多种游离的核苷酸,是代谢中极为重要的物质,几乎参加细胞内所有的生化过程:⏹ 1、核苷酸是核酸生物合成的前体。
⏹ 2、核苷酸衍生物是许多生物合成的中间物。
如:UDP-葡萄糖是糖原合成的中间物。
CDP-二脂酰甘油是磷酸甘油酯合成的中间物。
⏹ 3、ATP是生物能量代谢中通用的高能化合物。
⏹ 4、腺苷酸是三种重要辅酶:烟酰胺核苷酸(NAD NADP)、黄素嘌呤二核苷酸(FAD)和辅酶A的组分。
⏹ 5、某些核苷酸是代谢的调节物质。
⏹ cAMP,cGMP是许多激素引起的胞内信使⏹核酸降解为核苷酸,核苷酸还能进一步分解,在生物体内核苷酸可由其他化合物合成,某些辅酶的合成与核酸的代谢亦有关。
⏹讲授内容:核糖核酸、脱氧核糖核酸的分解与合成。
一. 核酸的解聚和核苷酸的降解⏹核酸降解酶种类⏹核酸外切酶: 催化核酸从3’端或5’端解聚,形成5’-核苷酸和3’-核苷酸。
⏹核酸内切酶: 水解核酸分子内的磷酸二酯键。
⏹限制性内切酶: 专一识别并水解外源双链DNA上特定位点的核酸内切酶。
⏹核苷酸降解酶:⏹核苷酸酶:核苷酸水解为核苷和磷酸。
⏹核苷酸 + H2O 核苷+Pi⏹核苷磷酸化酶: 水解核苷为碱基和戊糖-1-磷酸。
核苷 + 磷酸核苷磷酸化酶碱基 + 戊糖-1-磷酸⏹核苷水解酶: 水解核苷为碱基和戊糖。
⏹存在于植物和微生物中。
核糖核苷 + H2O 核苷水解酶碱基 + 戊糖只对核糖核苷作用,反应不可逆。
二. 碱基降解⏹㈠. 嘌呤碱的分解⏹⒈ 脱氨⏹动物组织腺嘌呤脱氨酶含量极少,而腺嘌呤核苷酸脱氨酶和腺嘌呤核苷脱氨酶的活性高,腺嘌呤的脱氨可在其核苷和核苷酸水平上进行。
⏹鸟嘌呤脱氨在鸟嘌呤水平上。
⏹鸟嘌呤核苷鸟嘌呤黄嘌呤尿酸⏹⒉ 转变为尿酸⏹鸟嘌呤 + H2O 鸟嘌呤脱氨酶黄嘌呤 + NH3⏹次黄嘌呤 + O2 + H2O 黄嘌呤氧化酶黄嘌呤 + H2O2⏹黄嘌呤 + O2 + H2 O 黄嘌呤氧化酶尿酸 + H2O2痛风:嘌呤代谢障碍有关,正常血液:2-6mg /100ml, 大于8mg/100ml,尿酸钾盐或钠盐沉积于软组织、软骨及关节等处,形成尿酸结石及关节炎,沉积于肾脏为肾结石,基本特征为高尿酸血症。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1.4) 核酸末端浓度: 环状 DNA: pmol ends = pmol DNA ′ number of cuts ′ 2 线性 DNA: pmol ends = pmol DNA ′ (number of cuts ′ 2 + 2)
1 pmol 1,000bp DNA = 0.66 mg 1 pmol pUC18/19 DNA (2,688bp) = 1.77 mg 1 pmol pBR322 DNA (4,361bp) = 2.88 mg 1 pmol SV40 DNA (5,243bp) = 3.46 mg 1 pmol FX174 DNA (5,386bp) = 3.54 mg 1 pmol M13mp18/19 DNA (7.250bp) = 4.78 mg 1 pmol l phage DNA (48,502bp) = 32.01 mg
(2.3) 双链 DNA 与寡核苷酸的熔点 短于 25bp 的双链寡核苷酸: Tm = 2 (A + T) + 4 (G + C) 长于 25bp 的双链寡核苷酸: Tm = 81.5 + 16.6 ( lg[J+] ) + 0.41 (%GC) – (600/N) – 0.63 (%Formamide) N —— 引物的长度(以碱基数计算) J+ —— 单价阳离子浓度
核酸以及核苷酸的基本换算
1.核酸的换算: (1.1) 摩尔数与质量: 1 mg 1,000bp DNA = 1.52 pmol 1 mg pUC18/19 DNA (2,688bp) = 0.57 pmol 1 mg pBR322 DNA (4,361bp) = 0.35 pmol 1 mg SV40 DNA (5,243bp) = 0.29 pmol 1 mg FX174 DNA (5,386bp) = 0.28 pmol 1 mg M13mp18/19 DNA (7.250bp) = 0.21 pmol 1 mg l phage DNA (48,502bp) = 0.03 pmol
(1.2) 光吸收值与浓度: 1 OD260 dsDNA = 50 mg/ml = 0.15 mmol/L 1 OD260 ssDNA = 33 mg/ml = 0.10 mmol/L 1 OD260 ssRNA = 40 mg/ml = 0.12 mmol/L 1 mmol/L dsDNA = 6.7 OD260 1 mmol/L ssDNA = 10.0 OD260 1 mmol/L ssRNA = 8.3 OD260
(2.4) DNA 与表达蛋白之间分子量换算 1 kb DNA = 333 amino acid ≈ 3.7 ′ 104 Da 10,000 Da Protein ≈ 270 bp DNA 30,000 Da Protein ≈ 810 bp DNA 50,000 Da Protein ≈ 2701 bp DNA 100,000 Da Protein ≈ 27 kb DNA
1 mg 1,000bp DNA = 3.04 pmol ends 1 mg pUC18/19 DNA (2,688bp) = 1.14 pmol ends 1 mg pBR322 DNA (4,361bp) = 0.7 pmol ends 1 mg SV40 DNA (5,243bp) = 0.58 pmol ends 1 mg FX174 DNA (5,386bp) = 0.56 pmol ends
1 mg M13mp18/19 DNA (7.250bp) = 0.42 pmol ends 1 mg l phage DNA (48,502bp) = 0.06 pmol ends
2.核苷酸的换算: (2.1) 分子量: MW (Da) = 333 ′ N (number of bases)
(2.2) 浓度: C (mmol/L or pmol/ml) = OD260 / (0.01 ′ N) C (ng/ml) = OD260 ′ MW / (0.01 ′ N) MW —— molecular weight N —— number of bases Байду номын сангаасD260 —— absorbance at 260 nm