新人教版八年级数学下册导学案全册(136页)
最新部编人教版初中八年级下册数学表格式全册教案

部编版·八年级下册数学全册教案(新教材)学校:____ _______教师:_________2020年1月八年级下册数学教学计划第十六章二次根式一、教材内容1.本单元教学的主要内容: 二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用: 二次根式是在学完了八年级上册《平方根》的基础之上继续学习的,它也是今后学习《勾股定理及其应用》等知识的基础. 二、教学目标1.知识与技能 (1)理解二次根式的概念. (2)理解a (a ≥0)是一个非负数,(2)2)(a =a (a ≥0),2a =a(a ≥0).当a<0时,2a =-a (可结合a 结果的三种情况)(3)掌握a •b =ab (a ≥0,b ≥0),ab = a •b (a ≥0,b ≥0) ;ba =b a (a ≥0,b>0),b a =ba(a ≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减. 2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算. (3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•得出最简二次根式的概念.利用最简二次根式的概念,来对同类二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观 通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力. 三、教学重点1a ≥0a ≥0)是一个非负数;2=a (a ≥0)(a ≥0)•及其运用.2.二次根式乘除法的规定及其运用. 3.最简二次根式的概念. 4.二次根式的加减运算. 四、教学难点1a ≥02=a (a ≥0(a ≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式. 五、教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神. 六、学法教法建议1、在讲解二次根式的性质的时候,要注意()2a 与2a 的联系与区别。
人教版八年级数学下册导学案全册

第十七章反比例函数课题 17.1.1 反比例函数的意义课时:一课时【学习目标】1.理解并掌握反比例函数的概念。
2.会判断一个给定函数是否为反比例函数。
3.会根据已知条件用待定系数法求反比例函数的解析式。
【重点难点】重点:理解反比例函数的意义,确定反比例函数的表达式。
难点:反比例函数的意义。
【导学指导】复习旧知:1.什么是常量?什么是变量?函数是如何定义的?2.我们学过哪几种函数?每一种函数形式怎样?第1页共135页3.写出下列问题中的函数关系式并说明是什么函数.(1)梯形的上底长是2,下底长是4,一腰长是6,则梯形的周长y与另一腰长x之间的函数关系式。
(2)某种文具单价为3元,当购买m个这种文具时,共花了y元,则y与m的关系式。
学习新知:阅读教材P39-P40相关内容,思考,讨论,合作交流完成下列问题。
1.什么是反比例函数?反比例函数的自变量可以取一切实数吗?为什么?2.仔细观察反比例函数的解析式y=k/x,我们还可以把它写成什么形式?3.回忆我们学过的一次函数和正比例函数,我们是用什么方法求它们的解析式的?以此类推,我们也可以采用同样的方法来求反比例函数的解析式。
【课堂练习】1.下列等式中y是x的反比例函数的是()第2页共135页①y=4x ②y/x=3 ③y=6x-1 ④xy=12 ⑤y=5/x+2 ⑥y=x/2 ⑦y=-√2/x⑧y=-3/2x2.已知y是x的反比例函数,当x=3时,y=7,(1)写出y与x的函数关系式;(2)当x=7时,y等于多少?【要点归纳】通过今天的学习,你有哪些收获?与同伴交流一下。
【拓展训练】1.函数y=(m-4)x3-|m|是反比例函数,则m的值是多少?第3页共135页2.若反比例函数y=k/x与一次函数y=2x-4的图象都过点A(m,2)(1)求A点的坐标;(2)求反比例函数的解析式。
课题:17.1.2 反比例函数的图象和性质课时:二课时第一课时反比例函数的图象和性质的认识【学习目标】1.体会并了解反比例函数图象的意义。
新人教版八年级数学下导学案(全册)

, ,b - 3 等式子的实际意义.说一说他们的共同特征.第十六章 二次根式导学案二次根式(1)一、学习目标1、了解二次根式的概念,能判断一个式子是不是二次根式。
2、掌握二次根式有意义的条件。
3、掌握二次根式的基本性质: a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0)二、学习重点、难点重点:二次根式有意义的条件;二次根式的性质.难点:综合运用性质 a ≥ 0(a ≥ 0) 和 ( a ) 2 = a (a ≥ 0) 。
三、学习过程(一)复习回顾:(1)已知 x 2 = a ,那么 a 是 x 的_____; x 是 a 的____, 记为____, a 一定是 ____数。
(2)4 的算术平方根为 2,用式子表示为=______;正数 a 的算术平方根为4_____,0 的算术平方根为____;式子 a ≥ 0(a ≥ 0) 的意义是。
(二)自主学习(1) 16 的平方根是;(2)一个物体从高处自由落下,落到地面的时间是 t (单位:秒)与开始下落时的高度 h ( 单位:米 ) 满足关系式 h = 5t 2 。
如果用含 h 的式子表示 t ,则t =;(3)圆的面积为 S ,则圆的半径是 ;(4)正方形的面积为 b - 3 ,则边长为。
思考: 16 ,h 5s π定义: 一般地我们把形如 a ( a ≥ 0 )叫做二次根式,a 叫做______。
1、试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3 , - 16 , 34 , -5 , a (a ≥ 0) , x 2 + 13。
2、当a为正数时a指a的,而0的算术平方根是,负数,只有非负数a才有算术平方根。
所以,在二次根式a中,字母a必须满足,a才有意义。
3、根据算术平方根意义计算:(1)(4)2(2)(3)2(3)(0.5)2(4)(13)2根据计算结果,你能得出结论:(a)2=________,其中a≥0,4、由公式(a)2=a(a≥0),我们可以得到公式a=(a)2,利用此公式可以把任意一个非负数写成一个数的平方的形式。
新人教版八年级数学下册导学案全册(136页)

第十六章 二次根式 16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1a ≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程 一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________,问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________) (二)学生学习课本知识 (三)、探索新知1、知识:我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例11xx>01x y+(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 解:由 得: 。
当 时,在实数范围内有意义.(3)注意:1a≥0)的式子叫做二次根式的概念;2a≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x11x+在实数范围内有意义?例4(1)已知,求xy的值.(答案:2)(2),求a2004+b2004的值.(答案:2 5 )三、巩固练习教材练习.四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?x 1 x(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.(3)、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.3.有意义的未知数x有()个.A.0 B.1 C.2 D.无数4.已知a、b=b+4,求a、b的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 2014.02.18 课时: 2 学习内容:1a ≥0)是一个非负数; 2)2=a (a ≥0). 学习目标:1a ≥02=a (a ≥0),并利用它进行计算和化简.2a ≥0)是一个非负数,用具体数据结合算术2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0a<0 (二)学生学习课本知识 (三)、探究新知1a ≥0)是一个 数。
新人教版八年级数学下册导学案(全册136页)

第十六章 二次根式16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1、理解二次根式的概念,并利用a (a ≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.(3,3).问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.(46.) (二)学生学习课本知识 (三)、探索新知 1、知识: 如3、10、46,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,“”称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例1.下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x、x (x>0)、0、42、-2、1x y+、x y +(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 是多少时,31x -在实数范围内有意义? 解:由 得: 。
当 时,31x -在实数范围内有意义.(3)注意:1、形如a (a ≥0)的式子叫做二次根式的概念;2、利用“a (a ≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x 是多少时,23x ++11x +在实数范围内有意义? 例4(1)已知y=2x -+2x -+5,求xy的值.(答案:2)(2)若1a ++1b -=0,求a 2004+b 2004的值.(答案:25)三、巩固练习 教材练习. 四、课堂检测 (1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式? -7 37x x 4 16 8 1x(2)、填空题1.形如________的式子叫做二次根式. 2.面积为5的正方形的边长为________. (3)、综合提高题1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.若3x -+3x -有意义,则2x -=_______.3.使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数4.已知a 、b 为实数,且5a -+2102a -=b+4,求a 、b 的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 课时: 2 学习内容:1.a (a ≥0)是一个非负数; 2.(a )2=a (a ≥0). 学习目标:1、理解a (a ≥0)是一个非负数和(a )2=a (a ≥0),并利用它进行计算和化简.2、通过复习二次根式的概念,用逻辑推理的方法推出a (a ≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a )2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0时,a 叫什么?当a<0时,a 有意义吗? (二)学生学习课本知识 (三)、探究新知1、a (a ≥0)是一个 数。
19.3 课题学习 选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版

19.3 课题学习选择方案-(新导学案)2022春八年级下册初二数学(人教版)山西专版课题背景本课题为初二数学教学内容,主要讨论学生们在教学过程中,如何针对不同的问题,在多种可行方案中做出最优选择。
教学目标•了解并掌握选择方案的基本概念与思想方法。
•培养学生分析问题、解决问题的能力,增强其综合应用知识的能力。
•培养学生合作探讨的意识和能力,提高学生的团队合作精神。
•提高学生对数学学科的兴趣,增强学生的自主学习能力和创造力。
教学内容选择方案的基本概念选择方案是指在多种可行方案(包括选择、排列、组合等)中,选取一种科学、符合要求、优良的方案的过程。
选择方案一般需要考虑多种因素,如成本、时间、可行性、安全等。
选择方案的思想方法一般情况下,选择方案需要遵循以下几个步骤:1.明确目标和要求:选择方案的第一步就是明确目标和要求,以便选择出最优方案。
明确目标和要求需要结合实际情况,根据情况合理确定要求。
例如,考虑购买电脑时,需要先确定使用目的和购买预算,再选择性价比高、质量可靠等因素来确定要求。
2.收集情报资料:为了作出最优选择方案,需要充分收集相关情报和资料。
情报资料可以来自多个方面,如熟人介绍、网上搜索、问卷调查等。
例如,考虑购买电脑时,可以通过互联网搜索、问卷调查等方式收集相关资料。
3.分析和比较方案:收集到情报和资料后,需要对比分析多个可行方案。
对比分析需要综合考虑多种因素,如性价比、质量、售后服务等。
例如,考虑购买电脑时,需要比较多家电脑品牌的产品性价比、质量、售后服务等。
4.作出最终决策:在分析比较多个方案后,需要作出最终决策。
决策可以根据目标和要求,选取最优方案。
例如,考虑购买电脑时,在研究分析多个品牌的电脑产品性价比、质量、售后服务等因素后,做出最终决策选择最优方案。
实例分析以下是一个具体实例,以帮助学生了解和掌握选择方案的思想方法。
实例:如何选择健康的午餐?游客到一个小城市旅游,到处都是美食,但是游客不能放纵自己吃大餐或者垃圾食品。
人教版八年级数学下册导学案(全册)

第十六章 二次根式 第1课时 二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。
理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用 学法指导:小组合作交流 一对一检查过关 导:看书后填空:二次根式应满足两个条件:(1)形式上必须是a 的形式。
(2)被开方数必须是 数。
判断下列格式哪些是二次根式?⑴ 3.0 ⑵ 3- ⑶ 2)21(- ⑷ ()223≥-a a⑸ 12+a ⑹ 3+a ⑺ a ⑻()02〈-x x 学:代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。
(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0 当x 是怎样实数时,下列各式在实数范围内有意义?2-x ⑵x-21 ⑶13-+-x x ⑷2x ⑸3x (6)()01-a(1)常见的非负数有:a a a ,,2(2)几个非负数之和等于 0,则这几个非负数都为0. 已知:0242=-++b a ,求a,b 的值。
巩固练习:已知(),03122=-++b a 求a,b 的值2.已知053232=--+--y x y x 则y x 8-的值为 练:1.下列各式中:①52+-x ②2009 ③33 ④π ⑤22a - ⑥3+-x 其中是二次根式的有 。
2.若1213-+-x x 有意义,则x 的取值范围是 。
3.已知122+-+-=x x y ,则=yx4.函数x y +=2中,自变量x 的取值范围是()(A ) X>2 (B) X ≥2 (C) X>-2 (D) X ≥-2 5.若式子aba 1+-有意义,则P (a,b )在第( )象限(A )一 (B)二 (C)三 (D)四6.若,011=-++b a 则=+20112011b a7.方程084=--+-m y x x ,当y>0时,m 的取值范围是8.已知01442=-+++-y x y y ,求xy 的值展:小组展示成果,提出质疑 评:1. 组内互助,解决质疑并进行小组评价。
2019年【人教版】八年级下册数学:全册精品导学案(40份打包)-精品

第十六章 二次根式16.1 二次根式第1课时 二次根式的概念学习目标:1.理解二次根式的概念;2.掌握二次根式有意义的条件;3.会利用二次根式的非负性解决相关问题.重点:理解二次根式的概念及有意义的条件.难点:利用二次根式的有意义的条件及其非负性解题.一、知识链接1.什么叫作平方根?2.什么叫作算术平方根?什么数有算术平方根?二、新知预习1. 用带根号的式子填空:(1)如图①的海报为正方形,若面积为2m 2,则边长为 m ;若面积为S m 2,则边长为______ m .(2)如图②的海报为长方形,若长是宽的2倍,面积为6m 2,则它的宽为_____m .(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s )与开始落下的高度h (单位:m )满足关系 h =5t 2,如果用含有h 的式子表示 t ,那么t 为_____. 2.自主归纳:(1)二次根式的概念:一般地,我们把形如()0a a ____的式子叫作二次根式. “____”称为二次根号.(2)二次根式的双重非负性:二次根式的被开方数为________数,二次根式的值为_________数.三、自学自测1.下列各式中是二次根式的是( )A .33 B.4 C.3-π D.()31-自主学习教学备注学生在课前完成自主学习部分教学备注 配套PPT 讲授1.情景引入 (见幻灯片3-8)2.探究点1新知讲授(见幻灯片9-16)图① 图②四、我的疑惑____________________________________________________________一、要点探究探究点1:二次根式的意义及有意义的条件问题分别表示什么意义?问题2这些式子有什么共同特征?要点归纳:一般地,我们把形如)0a≥的式子叫作二次根式.为_______.例1 下列各式中,哪些是二次根式?哪些不是?))(1)(2)6;(3)0(5),;(6)mx y≤;异号1(1.下列各式:)1x≥一定是二次根式的个数有( )A.3个B.4个C.5个D.6个2.(1)x的取值范围是___________;(2)若式子12x +-x 的取值范围是___________.探究点2:二次根式的双重非负性问题1:当x问题2a 的取值范围是什么?它本身的取值范围又是什么?要点归纳:二次根式的实质是表示一个非负数(或式)的算术平方根.对于任意一个二次1)a 为被开方数,为保证其有意义,可知a ____0; (2例3 若22(4)0a c --=,求a -b +c 的值.【变式题】已知a ,b 为等腰三角形的两条边长,且a ,b 满足4b =,求此三角形的周长. 已知|31|和4的平方根. 2. ( ) A.x >2 B.x ≥2 C.x <2 D.x ≤2 3.当x =____取最小值,其最小值为______.2.使式子()2a有意义的条件是_______________.二、要点探究 探究点1:()()20a a ≥的性质活动1 如图是一块具有民族风的正方形方巾,面积为a ,求它的边长,并用所求得的边长表示出面积,你发现了什么?活动2 为了验证活动1的结论是否具有广泛性,下面根据算术平方根及平方的意义填空,你又发现了什么?a (a ≥0) 算术平方根 a 平方运算()2a观察两者有什么关系?要点归纳:一般地,()2a a =(a ____0),即一个非负数的算术平方根的平方等于_________. 典例精析例1(教材P3例2变式题)计算:2237(1);(2).54⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭例2 在实数范围内分解因式:242(1)3;(2)4 4.x y y --+方法总结:本题逆用了()()20aa a =≥在实数范围内分解因式.在实数范围内分解因式时,原来在有理数范围内分解因式的方法和公式仍然适用.针对训练 计算: 22(1)(5)(2)(22). ;课堂探究教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片12-21)2 413 ... ____________________ ...____________________ ...探究点2:2a 的性质 议一议:下面根据算术平方根的意义填空,你有什么发现?1.计算:=24 ;=22.0 ;=2)54( ; =220 .观察其结果与根号内幂底数的关系,归纳得到:当=>2,0a a 时 .2.计算:=-2)4( ;=-2)2.0( ;=-2)54( ;=-2)20( .观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 . 3.计算:=20 ;当==2,0a a 时 .要点归纳:将上面得到的结论综合起来,得到二次根式的又一条非常重要的性质:()()()2____0____=0____0.a a a a a ⎧⎪==⎨⎪⎩>,,<即任意一个数的平方的算术平方根等于它本身的绝对值. 典例精析例3 (教材P4例3变式题)化简:2(1)10;-2(2)(3.14).-π方法总结:利用2a a =化简求值时,先应确定a 的正负,再化简. 例4 实数a 、b 在数轴上的对应点如图所示,请你化简:()222.a b a b -+-【变式题】实数a 、b 在数轴上的对应点如图所示,化简:2244a ab b a b +++-.方法总结:利用数轴和二次根式的性质进行化简,关键是要要根据a ,b 的大小讨论绝对值内式子的符号.例5 已知a 、b 、c 是△AB C 的三边长,化简:()()()222.a b c b c a c b a ++-+-+-- 分析:教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片12-21)利用三角形三边关三边长均为正数,a +b >c 两边之和大于第三边,b +c -a >0,c -b -a <0针对训练 1.计算:22(1)(-2)(2)(-1.2). ;2.请同学们快速分辨下列各题的对错:()()()()()()()()2222(1)22(2)22(3)22(4)22-=--=--=---=-探究点3:代数式的定义用基本运算符号(包括加、减、乘、除、乘方和开方)把_______或____________连接起来的式子,我们称这样的式子为代数式. 典例精析例6 (1)一条河的水流速度是2.5 km/h ,船在静水中的速度是 v km/h ,用代数式表示船在这条河中顺水行驶和逆水行驶时的速度;(2)如图,小语要制作一个长与宽之比为5:3的长方形贺卡,若面积为S ,用代数式表示出它的长.方法总结:列代数式的要点:①要抓住关键词语,明确它们的意义以及它们之间的关系,如和、差、积、商及大、小、多、少、倍、分、倒数、相反数等;②理清语句层次明确运算顺序;③牢记一些概念和公式.针对训练1.在下列各式中,不是代数式的是( ) A.7 B.3>2 C .2x D.2223x y + 2.如图是一圆形挂钟,正面面积为S ,用代数式表示出钟的半径为__________.二、课堂小结 二次根式的性质 内容性质1一个非负数的算术平方根的平方等于它_______.即()()20.a a a =≥教学备注配套PPT 讲授4.探究点3新知讲授(见幻灯片22-25)5.课堂小结(见幻灯片30)1.化简16得( )A. ±4B. ±2C. 4D.-42.当1<x <3时,2(3)3x x --的值为( )A.3B.-3C.1D.-13.下列式子是代数式的有 ( )①a 2+b 2; ②ab ; ③13; ④x =2; ⑤3×(4-5);⑥x -1≤0; ⑦10x +5y =15 ; ⑧.ac b+ A.3个 B.4个 C.5个 D.6个 4.化简:(1)9=_______ ; (2)2(4)-=_______; (3)()27______-=; (4)()281______=.5. 实数a 在数轴上的位置如图所示,化简22(1)a a -+-的结果是_________.6.利用a =2()a (a ≥0),把下列非负数分别写成一个非负数的平方的形式: (1) 9;(2)5;(3)2.5;(4)0.25;(5)12;(6)0 . 能力提升7.(1)已知a 为实数,求代数式2242a a a +---+的值. (2)已知a 为实数,求代数式249a a a +--+-的值.第十六章 二次根式16.2 二次根式的乘除第1课时 二次根式的乘法学习目标:1.理解二次根式的乘法法则;2.会运用二次根式的乘法法则和积的算术平方根的性质进行简单运算. 重点:理解二次根式的乘法法则:()0,0≥≥=⋅b a ab b a .难点:会运用二次根式的乘法法则和积的算术平方根的性质解题.一、知识回顾1.二次根式的概念是什么?我们上节课学了它的哪些性质?2.使式子()2a 有意义的条件是_________.自主学习 当堂检测教学备注 配套PPT 讲授 6.当堂检测 (见幻灯片26-29)教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-5)2.探究点1新知讲授(见幻灯片6-15)三、要点探究 探究点1算一算 计算下列各式,并观察三组式子的结果:_____;94____;_______94)1(=⨯=⨯=⨯_____;2516____;_______2516)2(=⨯=⨯=⨯._____3625____;_______3625)3(=⨯=⨯=⨯思考 你发现了什么规律?你能用字母表示你所发现的规律吗?猜测 _____0,0ab a b ,你能证明这个猜测吗?要点归纳:一般地,二次根式相乘,_________不变,________相乘.语言表述:算术平方根的积等于各个被开方数积的算术平方根.例1(教材P6例1变式题)计算:二次根式乘法法则同0,k a b k a b ⋅⋅=⋅⋅⋅⋅≥≥(计算:37;1(2)427-3.2⎛⎫⨯ ⎪⎝⎭方法总结:当二次根式根号外的因数不为(a n b mn =比较大小(一题多解533与;(2)--方法总结: 比较两个二次根式大小的方法:可转化为比较两个被开方数的大小,即将根号外的正数平方后移到根号内,计算出被开方数后,再比较被开方数的大小被开方数大的,其算术平方根也大.也可以采用平方法.1.计算82⨯的结果是 ( ) A.10 B.4 C.6 D.22.下面计算结果正确的是 ( ) A.452585⨯= B. 5342205⨯= C. 433275⨯= D.5342206⨯=3.计算:61510⨯⨯=_________. 探究点2:积的算术平方根的性质 一般的()0,0≥≥=⋅b a ab b a ,反过来可写为______0,0_ab a b要点归纳:算术平方根的积等于各个被开方数积的算术平方根. 典例精析例4 (教材P7例2变式题)化简:(1)225328-;(2)()3226900x x y xy x y ,++≥≥ .方法总结: 当二次根式内的因数或因式可以化成含平方差或完全平方的积的形式,此时运用乘法公式可以简化运算.针对训练 1. 计算:()()31(1)144169(2)284a a ; . -⨯-⋅2.下面是意大利艺术家列奥纳多·达·芬奇所创作世界名画,若长为24,宽为8,求出它的面积.二、课堂小结二次根式的乘内容教学备注 配套PPT 讲授3.探究点2新知讲授(见幻灯片16-22)4.课堂小结(见幻灯片29)0,0a b a b多个二次根式相乘时此法则也适用,即(0,a b c n abc n a⋅⋅⋅=⋅⋅⋅≥()(0,m a n b mn ab a b=≥≥6x-,则()A.≥6 B.x≥0 C.0≤≤6 D.为一切实数2.下列运算正确的是()A.=B.532=-=(2)(4)8-⨯-=5315==⨯= 3.计算:(1)⨯______ ;(2)⨯_______ ;(3)_____.=4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):12()--8a,12b,求250a,332b,求7,70,a b==试着用 4.9.第十六章二次根式当堂检测4___________;_____;91616___________;_____;2525 3636___________;_____.49你发现了什么规律?你能用字母表示你所发现的规律吗?_____0,0a a b b.:(1)算术平方根的商等于被开方数商的算术平方根(2)当二次根式根号外的因数(式除以单项式法则,探究点2:商的算术平方根的性质要点归纳:把二次根式的除法法则反过来,就得到二次根式的商的算术平方根的性质:a b≥>_00)_____,.(语言表述:商的算术平方根,等于积中各因式的算术平方根的商.例2 (教材P8例5变式题)计算:)0;x>1.x的取值范围是()A..x≠2B..x≥0C..x>2D..x≥22.化简:探究点3:最简二次根式这样的式子分母的根号吗?思考要点归纳:(1)把分母中的根号化去,使分母变成有理数的这个过程就叫做分母有理化.(2)我们把满足以下两个条件的二次根式,叫做最简二次根式:①被开方数不含分母;②被开方数中不含能开得尽方的因数或因式.例3 在下列各式中,哪些是最简二次根式?哪些不是?对不是最简二次根式的进行化简.探究点4:二次根式除法的应用例4 (教材P9例7变式题)高空抛物现象被称为“悬在城市上空的痛”.据报道:一个30g的鸡蛋从18楼抛下来就可以砸破行人的头骨,从25楼抛下可以使人当场死亡.据研究从高空抛物时间t和高度h近似的满足公式t=从100米高空抛物到落地所需时间t2是从50米高空抛物到落地所需时间t1的多少倍?二、课堂小结 二次根式的除法内容二次根式的除法法则 算术平方根的积等于各个被开方数积的算术平方根.即0,0a aa b bb . 商的算术平方根的性质 商的算术平方根,等于积中各因式的算术平方根的商.即0,0a aa b bb. 最简二次根式最简二次根式满足两个条件:①被开方数不含分母; ②被开方数中不含能开得尽方的因数或因式.教学备注 配套PPT 讲授 4.探究点3新知讲授(见幻灯片15-19)5.探究点4新知讲授(见幻灯片20-21)6.课堂小结(见幻灯片27)1.满足什么条件的二次根式是最简二次根式?2.化简下列两组二次根式,每组化简后有什么共同特点?(1)8180.5;,, (2)804520.,,五、要点探究 探究点1:在二次根式的加减运算中可以合并的二次根式类比探究 在七年级我们就已经学过单项式加单项式的法则.观察下图并思考:(1)由左图,易得2a +3a = ;(2)当a 2时,分别代入左、右得_2__232=___; (3)当a 32333=_____+;......(4)根据右图,你能否直接得出当a 2,82a +3b 的值?结果能进行化简吗?.要点归纳:(1)判断几个二次根式是否可以合并(加减运算),一定都要化为最简二次根式再判断.(2)合并的方法与合并同类项类似,把根号外的因数(式)相加,根指数和被开方数(式)不变.如:(m a n a m n a =+典例精析例1 若最简根式2132m n +-3mn 的值.方法总结:确定可以合并的二次根式中字母取值的方法:利用被开方数相同,指数都为2列关于待定字母的方程求解即可.【变式题】38a -172a -可以合并,42a x x a--有意义,求x 的取值范围.针对训练 1.3是同类二次根式的是( )A.25 C.8128与最简二次根式1m +m =_____.课堂探究教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片11-19)3.下列二次根式,不能与12合并的是________(填序号). 1348125118.32①;②-;③;④;⑤探究点2:二次根式的加减及其应用思考 现有一块长7.5dm 、宽5dm 的木板,能否采用如图的方式,在这块木板上截出两个分别是8dm2和18dm2的正方形木板? 问题1 怎样列式求两个正方形边长的和?问题 2 所列算式能直接进行加减运算吗?如果不能,把式中各个二次根式化成最简二次根式后,再试一试(说出每步运算的依据).要点归纳:二次根式的加减法法则:一般地,二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.加减法的运算步骤:(1)化——将非最简二次根式的二次根式化简; (2)找——找出被开方数相同的二次根式; (3)并——把被开方数相同的二次根式合并. 典例精析例2 (教材P13例2变式题)计算: 1(1)8;50+ 1(2)312.27-例3 已知a ,b,c 满足()285320a b c -+-+-=.(1)求a ,b ,c 的值;(2)以a ,b ,c 为三边长能否构成三角形?若能构成三角形,求出其周长;若不能,请说明理由.分析:(1)若几个非负数的和为零,则这几个非负数必须为零;(2)根据三角形的三边关系来判断.【变式题】有一个等腰三角形的两边长分别为52,26,求其周长.二次根式的加减与等腰三角形的综合运用,关键是要分类讨论及会比较两个二次根式的大小. 针对训练1.下列计算正确的是( )教学备注配套PPT 讲授 3.探究点2新知讲授(见幻灯片11-19)4.课堂小结(见幻灯片27)A.222+=B. 3232⨯=C. 1233-=D.325+= 2.已知一个矩形的长为48,宽为12,则其周长为________. 二、课堂小结 二次根式的加减 内容法则 一般地,二次根式的加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意 (1)与实数的运算顺序一样;(2)实数的运算律仍然适用;(3)结果要化成最简形式.1.二次根式:31218272、、、中,与3能进行合并的是( )A .3122与B .3182与C .1227与D .1827与 2.下列运算中错误的是 ( )A.235+=B. 236⨯=C. 822÷=D.233()-= 3.三角形的三边长分别为204045,,,则这个三角形的周长为________. 4.计算:=( 1 ) 52 18 ______+;_________(2)418-92= ; -(3)102(3872)_______ +=;-.(4)512(38227)_______ +=5.计算:1(1)58-22718(2)218-5045.3++ ; ()1144311112484340.583(3)(4).⎛⎫⎛⎫+--- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭-;6.下图是某土楼的平面剖面图,它是由两个相同圆心的圆构成.已知大圆和小圆的面积分别为763.02m 2和150.72m 2,求圆环的宽度d (π取3.14).能力提升7.已知a ,b 都是有理数,现定义新运算:a *b=3a b +,求(2*3)-(27*32)的值.第十六章 二次根式当堂检测教学备注配套PPT 讲授 5.当堂检测(见幻灯片20-26)16.3 二次根式的加减第2课时 二次根式的混合运算学习目标:1.掌握二次根式的混合运算的运算法则;2.会运用二次根式的混合运算法则进行有关的运算.重点:二次根式的混合运算的运算法则.难点:运用二次根式的混合运算法则进行有关的运算.一、知识回顾1.二次根式的乘、除法则是什么?2.怎样进行二次根式的加减运算?3.填空:m (a +b +c )= ;(m +n )(a +b )= ;(ma +mb +mc )÷m = .六、要点探究 探究点1:二次根式的混合运算及应用 算一算:若把字母a ,b ,c ,m 都用二次根式代替(每个同学任选一组),然后对比归纳,你们发现了什么?要点归纳:二次根式的加、减、乘、除混合运算与整式运算一样,体现在:运算律、运算顺序、乘法法则仍然适用. 典例精析例1(教材P14例3变式题)计算:(1)32327+63();---06(2)20163+312.2()---方法总结:有绝对值符号的,同括号一样,先去绝对值,注意去掉绝对值后,得到的数应该为正数.例2 甲、乙两个城市间计划修建一条城际铁路, 其中有一段路基的横断面设计为上底宽42m ,下底宽 62m ,高6m 的梯形,这段路基长 500 m ,那么这段路基的土石方 (即路基的体积,其中路基的体积=路基横断面面积×路基的长度)为多少立方米呢?针对训练课堂探究 自主学习 教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3-4)2.探究点1新知讲授(见幻灯片5-10)教学备注配套PPT 讲授3.探究点2新知讲授(见幻灯片11-15)计算:(1 2 1⎝();() .探究点2:利用乘法公式进行二次根式的运算问题1 整式乘法运算中的乘法公式有哪些?问题2 整式的乘法公式对于二次根式的运算也适用吗?例3(教材P14例4变式题)计算:212);+((2);⨯201720192222.()((-⨯计算:())))2(1)1(2).;探究点3:求代数式的值n b的式子,构成2==2.计算2.=3.设,310,3101-=+=ba则a b(填“>”“ < ”或“= ”).4.计算:A BC C BAAB CC BA七、要点探究 探究点1:勾股定理的认识及验证 想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A ,B 和C 面积之间的关系,你能想到是什么关系吗? 2.右图中正方形A 、B 、C 所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A 、B 、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A 、B 、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考 你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法 利用我国汉代数学家赵爽的“赵爽弦图”课堂探究证明:∵S 大正方形=________,S 小正方形=________,S 大正方形=___·S 三角形+S 小正方形,∴________=________+__________.方法1:补形法(把以斜边为边长的正方形补成各 边都在网格线上的正方形):左图:S c =__________________________; 右图:S c =__________________________.方法2:分割法(把以斜边为边长的正方形分割成 易求出面积的三角形和四边形):左图:S c =__________________________; 右图:S c =__________________________. 教学备注 配套PPT 讲授2.探究点1新知讲授(见幻灯片6-19)3.探究点2新知讲授(见幻灯片20-24)要点归纳:勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 公式变形: 222222--.a c b b c a c a b ===+, ,探究点2:利用勾股定理进行计算 典例精析例1如图,在Rt △ABC 中, ∠C =90°. (1)若a =b =5,求c ; (2)若a =1,c =2,求b .变式题1 在Rt △ABC 中, ∠C =90°. (1)若a :b =1:2 ,c =5,求a ; (2)若b =15,∠A =30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2 在Rt △ABC 中,AB =4,AC =3,求BC 的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB =90°,CD ⊥AB ,AC =3,BC =4.求CD 的长.教学备注3.探究点2新知讲授(见幻灯片20-24)方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.针对训练求下列图中未知数x 、y 的值:二、课堂小结内 容勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.注 意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论1.下列说法中,正确的是 ( )A.已知a ,b ,c 是三角形的三边,则a 2+b 2=c 2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt △ABC 中,∠C =90°,所以a 2+b 2=c 2D.在Rt △ABC 中,∠B =90°,所以a 2+b 2=c22. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.3.在△ABC 中,∠C =90°.(1)若a =15,b =8,则c =_______. (2)若c =13,b =12,则a =_______.4.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.5.求斜边长17cm 、一条直角边长15cm 的直角三角形的面积.6.如图,在△ABC 中,AD ⊥BC ,∠B =45°,∠C =30°,AD =1,求△ABC 的周长.能力提升:7.如图,以Rt △ABC 的三边长为斜边分别向外作等腰直角三角形.若斜边AB =3,求△ABE 及阴影部分的面积.当堂检测 教学备注 配套PPT 讲授 4.课堂小结 (见幻灯片30)5.当堂检测 (见幻灯片25-29)第十七章 勾股定理17.1 勾股定理第2课时 勾股定理在实际生活中的应用学习目标:1.会运用勾股定理求线段长及解决简单的实际问题;2.能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长. 重点:运用勾股定理求线段长及解决简单的实际问题.难点:能从实际问题中抽象出直角三角形这一几何模型,利用勾股定理建立已知边与未知边长度之间的联系,并进一步求出未知边长.一、知识回顾1. 你能补全以下勾股定理的内容吗?如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么____________. 2. 勾股定理公式的变形:a =_________,b =_________,c =_________. 3. 在Rt△ABC 中,∠C =90°.(1)若a =3,b =4,则c =_________;(2)若a =5,c =13,则b =_________.八、要点探究 探究点1:勾股定理的简单实际应用 典例精析例1在一次台风的袭击中,小明家房前的一棵大树在离地面6米处断裂,树的顶部落在离树根底部8米处.你能告诉小明这棵树折断之前有多高吗?方法总结:利用勾股定理解决实际问题的一般步骤:(1)读懂题意,分析已知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.针对训练1. 湖的两端有A 、B 两点,从与BA 方向成直角的BC 方向上的点课堂探究 自主学习教学备注学生在课前完成自主学习部分配套PPT 讲授1.情景引入 (见幻灯片3)2.探究点1新知讲授(见幻灯片4-11)C 测得CA =130米,CB =120米,则 AB 为 ( )A.50米B.120米C.100米D.130米2.如图,学校教学楼前有一块长方形长为4米,宽为3米的草坪,有极少数人为了避开拐角走“捷径”,在草坪内走出了一条“径路”,却踩伤了花草. (1)求这条“径路”的长;(2)他们仅仅少走了几步(假设2步为1米)?探究点2:利用勾股定理求两点距离及验证“HL ”思考:在八年级上册中,我们曾经通过画图得到结论:斜边和一条直角边分别相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?证明:如图,在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C =∠C ’=90°, AB =A ’ B ’,AC =A ’ C ’.求证:△ABC ≌△A ’ B ’ C ’ .证明:在Rt △ABC 和Rt △A ’ B ’ C ’中,∠C=∠C ’=90°,根据勾股定理得BC =_______________,B ’ C ’=_________________. ∵AB=A ’ B ’,AC=A ’ C ’,∴_______=________. ∴____________≌____________ (________). 典例精析例2 如图,在平面直角坐标系中有两点A (-3,5),B (1,2)求A ,B 两点间的距离.方法总结:两点之间的距离公式:一般地,设平面上任意两点()()()()2211222121,,,,.A x yB x y AB x x y y =-+-则探究点3:利用勾股定理求最短距离想一想:1.在一个圆柱石凳上,若小明在吃东西时留下一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,蚂蚁怎么走最近(在以下四条路线中选择一条)?2.若已知圆柱体高为12 cm ,底面半径为3 cm ,π取3,请求出最短路线的长度.要点归纳:立体图形中求两点间的最短距离,一般把立体图形展开成平面图形,连接两点,根据两点之间线段最短确定最短路线. 典例精析例3 有一个圆柱形油罐,要以A 点环绕油罐建梯子,正好建在A 点的正上方点B 处,问梯子最短需多少米(已知油罐的底面半径是2 m ,高AB 是5 m ,π取3)?变式题 小明拿出牛奶盒,把小蚂蚁放在了点A 处,并在点B 处放上了点儿火腿肠粒,你能帮小蚂蚁找到完成任务的最短路程么?例4 如图,一个牧童在小河的南4km 的A 处牧马,而他正位于他的小屋B 的西8km 北7km 处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?方法总结:求直线同侧的两点到直线上一点所连线段的和的最短路径的方法:先找到其中一点关于这条直线的对称点,连接对称点与另一点的线段就是最短路径长,以连接对称点与另一个点的线段为斜边,构造出直角三角形,再运用勾股定理求最短路径. 针对训练1.如图,是一个边长为1的正方体硬纸盒,现在A 处有一只蚂蚁,想沿着正方体的外表面到达B 处吃食物,求蚂蚁爬行的最短距离是多少二、课堂小结1.从电杆上离地面5m 的C 处向地面拉一条长为7m 的钢缆,则地面钢缆A到电线杆底部B 的距离是( )A.24mB.12mC.74m D. 26c m当堂检测 勾股定理 的应用用勾股定理解决实际问题解决“HL ”判定方法证全等的正确性问题 用勾股定理解决点的距离及路径最短问题教学备注4.探究点3新知讲授(见幻灯片15-24)5.课堂小结 (见幻灯片31)2.如图,一支铅笔放在圆柱体笔筒中,笔筒的内部底面直径是9cm ,内壁高12cm ,则这只铅笔的长度可能是( )A.9cmB.12cmC.15cmD.18cm3.已知点(2,5),(-4,-3),则这两点的距离为_______.4.如图,有两棵树,一棵高8米,另一棵2米,两棵对相距8米.一只鸟从一棵树的树梢飞到另一棵的树梢,问小鸟至少飞行多少?5. 如图,是一个三级台阶,它的每一级的长、宽和高分别等于55cm ,10cm 和6cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?能力提升6.为筹备迎接新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图.已知圆筒的高为108cm ,其横截面周长为36cm ,如果在表面均匀缠绕油纸4圈,应裁剪多长的油纸?第十七章 勾股定理17.1 勾股定理第3课时 利用勾股定理作图或计算学习目标:1.会运用勾股定理确定数轴上表示实数的点及解决网格问题;2.灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.重点:会运用勾股定理确定数轴上表示实数的点及解决网格问题.难点:灵活运用勾股定理进行计算,并会运用勾股定理解决相应的折叠问题.我们知道数轴上的点与实数一一对应,有的表示有理数,有的表示无理数.你能在数轴上分别画出自主学习教学备注 配套PPT 讲授6.当堂检测 (见幻灯片25-30)第1题图 第2题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十六章 二次根式 16.1 《 二次根式(1)》学案课型: 新授课 上课时间: 课时: 1学习内容:二次根式的概念及其运用 学习目标:1a ≥0)的意义解答具体题目. 2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程 一、自主学习 (一)、复习引入(学生活动)请同学们独立完成下列三个问题: 问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________,问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________) (二)学生学习课本知识 (三)、探索新知1、知识:我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式,称为 .例如:形如 、 、 是二次根式。
形如 、 、 不是二次根式。
2、应用举例例11xx>01x y+(x ≥0,y•≥0). 解:二次根式有: ;不是二次根式的有: 。
例2.当x 解:由 得: 。
当 时,在实数范围内有意义.(3)注意:1a≥0)的式子叫做二次根式的概念;2a≥0)”解决具体问题3、要使二次根式在实数范围内有意义,必须满足被开方数是非负数。
二、学生小组交流解疑,教师点拨、拓展例3.当x11x+在实数范围内有意义?例4(1)已知,求xy的值.(答案:2)(2),求a2004+b2004的值.(答案:2 5 )三、巩固练习教材练习.四、课堂检测(1)、简答题1.下列式子中,哪些是二次根式那些不是二次根式?x 1 x(2)、填空题1.形如________的式子叫做二次根式.2.面积为5的正方形的边长为________.(3)、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.3.有意义的未知数x有()个.A.0 B.1 C.2 D.无数4.已知a、b=b+4,求a、b的值.16.1 《 二次根式(2)》学案课型: 新授课 上课时间: 2014.02.18 课时: 2 学习内容:1a ≥0)是一个非负数; 2)2=a (a ≥0). 学习目标:1a ≥02=a (a ≥0),并利用它进行计算和化简.2a ≥0)是一个非负数,用具体数据结合算术2=a (a ≥0);最后运用结论严谨解题. 教学过程 一、自主学习 (一)复习引入1.什么叫二次根式?2.当a ≥0a<0 (二)学生学习课本知识 (三)、探究新知1a ≥0)是一个 数。
(正数、负数、零) 因为 。
2、 3、根据算术平方根的意义填空:2=_______2=_______2=______2=_______;2=2, 2=9, )2=3, 2=13, )2=0,所以 (4) 例1 计算12 = 2、(2 = 32 = 4)2=(5)注意:1a ≥02=a (a ≥0)及其运用.2、a ≥0)是一个非负数;•用探究的方法导出)2=a (a ≥0). 二、学生小组交流解疑,教师点拨、拓展例2 计算 12(x ≥0) 22 3)2例3 在实数范围内分解下列因式:(1)x 2-3 (2)x 4-4 (3) 2x 2-3 三、巩固练习(一)计算下列各式的值:2= 2= (4)2= 2 = ( 2 = 22- (二) 课本P7、1 四、课堂检测 (一)、选择题1 ). A .4 B .3 C .2 D .1 (二)、填空题1.(2=________. 2_______数. (三)、综合提高题 1.计算(12 (2)--)2 (3)(- 2(4) = = = = = = = = 2.把下列非负数写成一个数的平方的形式:(1)5= (2)3.4= (3)16(4)x (x ≥0)=3,求x y 的值.4.在实数范围内分解下列因式:(1)x 2-2 (2)x 4-9 3x 2-516.1 《二次根式(3)》学案课型: 新授课上课时间:2014.2.19 课时: 3学习内容:a(a≥0)学习目标:1(a≥0)并利用它进行计算和化简.2(a≥0),并利用这个结论解决具体问题.教学过程一、自主学习(一)、复习引入1(a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.(二)、自主学习学生学习课本知识(三)、探究新知1、填空:根据算术平方根的意义,;;=__ ;=_ _ .2、(a≥0)例1 化简(1(2(3(4解:(1= (2=(3= (4=3、注意:(1a(a≥0).(2)、只有a≥0a才成立.二、学生小组交流解疑,教师点拨、拓展例2 填空:当a≥0;当a<0,•并根据这一性质回答下列问题.(1,则a可以是什么数?(2,则a可以是什么数?(3,则a可以是什么数?例3当x>2三、巩固练习教材练习四、课堂检测(一)、选择题1).A.0 B.23C.423(二)、填空题1..2m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│=a,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│16.2 二次根式的乘除(1)课型: 新授课上课时间:2014.2.20 课时: 4学习内容(a≥0,b≥0(a≥0,b≥0)及其运用.学习目标(a≥0,b≥0a≥0,b≥0),并利用它们进行计算和化简学习过程:一、自主学习(一)复习引入1.填空:(1;(2=____;(3.1、学生交流活动总结规律.2、一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3)×(4== == == ==例2 化简(1(2(3(4(5== == == == ==二、巩固练习(1)计算:①②×== == ==(2) 化简:; ;== == == == ==(3)教材练习三、学生小组交流解疑,教师点拨、拓展(一)例3.判断下列各式是否正确,不正确的请予以改正:(1(2=4(二)归纳小结(1=(a≥0,b≥0(a≥0,b≥0)及其运用.(2)a<0,b<0)a b,四、课堂检测(一)、选择题1.若直角三角形两条直角边的边长分别为cm和cm,•那么此直角三角形斜边长是().A.B.C.9cm D.27cm2.化简). A..311x-=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1( 二)、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm×30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?16.2 二次根式的乘除(2)课型: 新授课上课时间:2014.2.21 课时: 5学习内容:a≥0,b>0(a≥0b>0)及利用它们进行计算和化简.学习目标:a≥0,b>0(a≥0,b>0)及利用它们进行运算.教学过程一、自主学习(一)复习引入1.写出二次根式的乘法规定及逆向等式.2.填空=____;规律:(1;(2(3=____;.(4(二)、探索新知一般地,对二次根式的除法规定:下面我们利用这个规定来计算和化简一些题目.二、巩固练习(2(3(41、计算:(1== == == ==2、化简:(1(2(3(4== == == ==3、巩固练习教材练习.三、学生小组交流解疑,教师点拨、拓展1、 例3.=,且x 为偶数,求(1+x2、归纳小结(1a ≥0,b>0(a ≥0,b>0)及其运用.并利用它们进行计算和化简.四、课堂检测 (一)、选择题1的结果是( ).A .27 B .27 C D .72====).A .2B .6C .13D (二)、填空题1.分母有理化:(1)=_____;(3)2.已知x=3,y=4,z=5_______.三、综合提高题(1·(m>0,n>0)16.2 二次根式的乘除(3)课型: 新授课上课时间:2014.2.24 课时: 1 学习内容最简二次根式的概念及利用最简二次根式的概念进行二次根式的化简运算.学习目标理解最简二次根式的概念,并运用它把不是最简二次根式的化成最简二次根式.学习过程一、自主学习(一)复习引入1.计算(1,(2==,(32.现在我们来看本章引言中的问题:如果两个电视塔的高分别是h1km,h2km,•那么它们的传播半径的比是_________.(二)、探索新知观察上面计算题1的最后结果,可以发现这些式子中的二次根式有如下两个特点:1.被开方数不含分母;2.被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.那么上题中的比是否是最简二次根式呢?如果不是,把它们化成最简二次根式.2==例1.化简:(1);(2)(3)== == ==例2.如图,在Rt△ABC中,∠C=90°,AC=2.5cm,BC=6cm,求AB的长.二、巩固练习教材练习三、学生小组交流解疑,教师点拨、拓展1、观察下列各式,通过分母有理数,把不是最简二次根式的化成最简二次根式:121=-,32=-从计算结果中找出规律,并利用这一规律计算++1)的值. ==2、归纳小结(1).重点:最简二次根式的运用.(2).难点关键:会判断这个二次根式是否是最简二次根式.四、课堂检测(一)、选择题1(y>0)化为最简二次根式是( ).A (y>0)B y>0)C y>0)D .以上都不对2.把(a-1中根号外的(a-1)移入根号内得( ).A ..3) A . B . C . D .二、填空题 1.(x ≥0)2.化简二次根式号后的结果是_________. 三、综合提高题若x 、y 为实数,且y x y -的值.16.3 二次根式的加减(1)课型: 新授课上课时间:2014.2.26 课时: 1学习内容:二次根式的加减学习目标:1、理解和掌握二次根式加减的方法.2、先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.重难点关键1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.学习过程一、自主学习(一)、复习引入计算.(1)2x+3x;(2)2x2-3x2+5x2;(3)x+2x+3y;(4)3a2-2a2+a3== == == ==以上题目,是我们所学的同类项合并.同类项合并就是字母不变,系数相加减.(二)、探索新知学生活动:计算下列各式.(1)(2)== ==(3(4)== ==由此可见,二次根式的被开方数相同也是可以合并的,如合并吗?也可以.所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.例1.计算(1(2==== ====例2.计算(1)( 2)+==== ===归纳:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.二、巩固练习教材练习三、学生小组交流解疑,教师点拨、拓展1、 例3.已知4x 2+y 2-4x-6y+10=0,求(23+y 2-(x )的值. 2、归纳小结本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.四、课堂检测(一)、选择题1 ). A .①和② B .②和③ C .①和④ D .③和④2.下列各式:①317+有( ).A .3个B .2个C .1个D .0个二、填空题1、是同类二次根式的有________.2.计算二次根式________.三、综合提高题1 2.236-0.01)2.先化简,再求值.(6x-(x=32,y=27.16.3 二次根式的加减(2)课型: 新授课 上课时间: 2014.2.27 课时: 1学习内容:利用二次根式化简的数学思想解应用题.学习目标:1、 运用二次根式、化简解应用题.2、 通过复习,将二次根式化成被开方数相同的最简二次根式,进行合并后解应用题.学习过程一、 自主学习(一)、复习引入上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,(二)、探索新知例1.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)分析:设x 秒后△PBQ 的面积为35平方厘米,那么PB=x ,BQ=2x ,•根据三角形面积公式就可以求出x 的值.解:设x 后△PBQ 的面积为35平方厘米.则有PB=x ,BQ=2x依题意,得: 求解得:35 35PBQ 的面积为35平方厘米.PQ= 35PBQ 的面积为35平方厘米,PQ 的距离为7例2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m )?分析:此框架是由AB 、BC 、BD 、AC 组成,所以要求钢架的钢材,•只需知道这四段的长度.解:由勾股定理,得AB=BC=所需钢材长度为: AB+BC+AC+BD==二、巩固练习教材练习三、学生小组交流解疑,教师点拨、拓展1、 例3.若最简根式343a b a b -+23226ab b b -+是同类二次根式,求a 、b 的值.(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同的根式; 解:首先把23226ab b b -+ BA CQ P由题意得方程组:解方程组得:2、本节课应掌握运用最简二次根式的合并原理解决实际问题.四、课堂检测(一)、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为().(•结果用最简二次根式) A...以上都不对2.小明想自己钉一个长与宽分别为30cm和20cm的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为()米.(结果同最简二次根式表示) A.C. D.(二)、填空题(结果用最简二次根式)1.有一长方形鱼塘,已知鱼塘长是宽的2倍,面积是1600m2,•鱼塘的宽是_______m.2____.(三)、综合提高题12n是同类二次根式,求m、n的值.2)2=2-2·112反之,)2∴)2求:(1(2(316.3 二次根式的加减(3)课型: 新授课 上课时间: 2014.2.28 课时: 1 学习内容:含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.学习目标:1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用.2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.学习过程一、 自主学习(一)复习引入1.计算 (1)(2x+y )·zx== (2)(2x 2y+3xy 2)÷xy===2.计算 (1)(2x+3y )(2x-3y ) (2)(2x+1)2+(2x-1)2=== ===(二)、探索新知如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立.例1.计算: (1(2)( === ===例2.计算 (1)( (2=== ===二、巩固练习课本练习三、学生小组交流解疑,教师点拨、拓展1、例3.已知,X==2解:原式22==2(1)x x +-+2(1)x x+-==(x+1) ==4x+2当X==2时 ∴原式=4X2+2=102、、归纳小结本节课应掌握二次根式的乘、除、乘方等运算.四、课堂检测(一)、选择题 1 ).A .203B .23C .23.2032 ).A .2 B .3 C .4 D .1(二)、填空题 1.(-12+2)2的计算结果(用最简根式表示)是________.2.(-()2的计算结果(用最简二次根式表示)是_______.3.若,则x 2+2x+1=________.4.已知a 2b-ab 2=_________.三、综合提高题12.当课外知识(1)、练习:下列各组二次根式中,是同类二次根式的是( ).A 与C(2)、互为有理化因式:•互为有理化因式是指两个二次根式的乘积是有理数,不含有二次根式:如也是互为有理化因式.练习:1________;2、_________.3、_______.二次根式复习课(1)课型: 新授课上课时间:2014.3.3 课时: 1学习目标:1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.学习重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.学习过程一、自主学习(一)复习1.二次根式有哪些基本性质?用式子表示出来,并说明各式成立的条件.(1)(2)(3)2.二次根式的乘法及除法的法则是什么?用式子表示出来.乘法法则: . 除法法则:反过来: .3.在二次根式的化简或计算中,还常用到以下两个二次根式的关系式:4.在含有二次根式的式子的化简及求值等问题中,常运用三个可逆的式子:二、复习练习课本知识二次根式复习课(2)课型: 新授课上课时间:2014.3.4 课时: 1学习目标:1.使学生进一步理解二次根式的意义及基本性质,并能熟练地化简含二次根式的式子;2.熟练地进行二次根式的加、减、乘、除混合运算.学习重点和难点重点:含二次根式的式子的混合运算.难点:综合运用二次根式的性质及运算法则化简和计算含二次根式的式子.学习过程一、例题点讲例1 x取什么值时,下列各式在实数范围内有意义:分析:(1)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(3)题是两个二次根式的和,x的取值必须使两个二次根式都有意义;(4)题的分子是二次根式,分母是含x的单项式,因此x的取值必须使二次根式有意义,同时使分母的值不等于零.解:(1)、(2)、(3)、(4)、解:例3分析:第一个二次根式的被开方数的分子与分母都可以分解因式.把它们分别分解因式后,再利用二次根式的基本性质把式子化简,化简中应注意利用题中的隐含条件3-a≥0和1-a>0.解:这些性质化简含二次根式的式子时,要注意上述条件,并要阐述清楚是怎样满足这些条件的.例4分析:如果把两个式子通分,或把每一个式子的分母有理化再进行计算,这两种方法的运算量都较大,根据式子的结构特点,分别把两个式子的分母看作一个整体,用换元法把式子变形,就可以使运算变为简捷.a+b=2(n+2),ab=(n+2)2-(n2-4)=4(n+2),三、课堂练习1.选择题:A.a≤2 B.a≥2C.a≠2 D.a<2A.x+2 B.-x-2C.-x+2 D.x-2A.2x B.2aC.-2x D.-2a2.填空题:4.计算:四、小结1.本节课复习的五个基本问题是“二次根式”这一章的主要基础知识,同学们要深刻理解并牢固掌握.2.在一次根式的化简、计算及求值的过程中,应注意利用题中的使二次根式有意义的条件(或题中的隐含条件),即被开方数为非负数,以确定被开方数中的字母或式子的取值范围.3.运用二次根式的四个基本性质进行二次根式的运算时,一定要注意论述每一个性质中字母的取值范围的条件.4.通过例题的讨论,要学会综合、灵活运用二次根式的意义、基本性质和法则以及有关多项式的因式分解,解答有关含二次根式的式子的化简、计算及求值等问题.五、作业1.x是什么值时,下列各式在实数范围内有意义?2.把下列各式化成最简二次根式:第十七章勾股定理课型: 新授课上课时间:课时: 1【学习目标】a)了解勾股定理的文化背景,体验勾股定理的探索过程。