音频信号的光纤传输+实验报告
音频信号光纤传输实验报告

实验报告:音频信号光纤传输(本报告仅供参考,每个同学应根据指导老师讲解和实际实验过程自行撰写)实验目的:1、 学习音频信号光纤传输系统的基本结构和各部件的选配原则。
2、 熟悉光纤传输系统中电光/光电转换器件的基本性能。
3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。
实验仪器TKGT-1型音频信号光纤传输实验仪 信号发生器 双踪示波器实验原理光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。
1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。
目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。
目前商用光纤制作工艺多为渐变折射率芯层光纤。
从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。
普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。
目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。
一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。
光纤的工作基础是光的全反射。
由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。
附:光的全反射原理根据光的反射和折射定律,即11θθ=' 2211sin n sin n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。
由于在临界状态下,22πθ=,代入上式,则⎪⎪⎭⎫⎝⎛=12c n n arcsin θ ,称为全反射临界角。
音频信号的光纤传输实验报告.doc

本实验使用的是四川大学物理系研制的YOF—A型音频信号光纤传输技术实验仪,包括:
1.光纤
2.双踪示波器
功率计、音频信号发送器和音频信号接收器
3.音频信号发生器四.实验Βιβλιοθήκη 容本实验包括了以下几部分内容:
1. 光信号发送器特性的研究
(1)LED—传输光纤组件电光特性的测定
(2) LED 偏置电流与无截止畸变最大调制幅度关系的测定
⑵光纤通信
所谓光纤通信,就是用激光做载波,光纤为传输媒质的信号传输。下图所示为直接光强调制光纤传输系统的结构原理方块图。它主要包括光信号发送器,传输光纤,光信号接收器三部分组成。
但是,要确保接收到的信号与我们发送的信号一样,要求传输过程中的各种变换都必须是线性变换。因此,只有在各部分共有的线性工作频率范围内的信号才能通过传输系统而不失真。对于语音信号,频谱在300—3400范围内,由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。
其中:I为光电检测器的平均输出电流; P为光电检测器的平均输入功率。
光信号接收器原理图
光信号的接收主要是利用硅光电二极管(SPD)把传输光纤出射端输出的光信号的光功率转变为与之成正比的光电流I0,然后经I / V转换电路再把光电流转换成电压V0输出。
V0和I0之间有以下关系:
以IC3为主要元件构成的是一个集成音频功放电路,只要调节外接的电位器Wnf,就可改变功放电路的电压增益,功放电路中电容Cnf的大小决定着该电路的下限截止频率。
2.实验设计思想:
音频信号的光纤传输系统主要包括:光信号发送器;传输光纤以及光信号接收器。三个部分。光信号发送器由半导体发光二极管(Light Emitted Diode 简称LED),以及由它的调制、驱动电路组成;光信号接收器包括了发光二极管的电流/电压(I/V)转换电路和功放电路。
2音频信号光纤传输实验报告

实验报告:音频信号光纤传输(本报告仅供参考,每个同学应根据指导老师讲解和实际实验过程自行撰写)实验目的:1、 学习音频信号光纤传输系统的基本结构和各部件的选配原则。
2、 熟悉光纤传输系统中电光/光电转换器件的基本性能。
3、训练如何在音频信号光纤传输系统中获得较好的信号传输质量。
实验仪器TKGT-1型音频信号光纤传输实验仪 信号发生器 双踪示波器实验原理光纤,又名光导纤维,是20世纪70年代为光通信而发展起来的一种新型材料,具有损耗低、频带宽、耐高温、绝缘性好、抗电磁干扰、光学特性好等优点。
1970年,美国康宁公司率先研制出了世界上第一根传输衰减损耗小于20dB/km 的石英光纤。
目前,普通单模光纤的传输损耗在工作波长为1550纳米窗口损耗小于0.2dB/km ,在1310纳米窗口小于0.3 dB/km 。
目前商用光纤制作工艺多为渐变折射率芯层光纤。
从传输模式来说,光纤分为单模和多模两种;从结构上来说,分为普通光纤和特殊光纤,普通光纤包括单模和多模光纤,特殊光纤包括保偏光纤、单偏振光纤和塑料光纤等。
普通光纤的外径为125微米,单模光纤芯径为5-10微米,多模光纤芯径为50、62.5、80、100微米,加护套总直径约为1毫米。
目前通信干线用光纤一般为单模光纤,光纤工作波长为1550纳米。
一般光纤的结构是由导光的纤芯和周围包覆的涂层组成。
光纤的工作基础是光的全反射。
由于纤芯的折射率大于涂层的折射率,当光从纤芯射向涂层,且入射角大于临界角,则射入的光在界面上产生全反射,成“之”字形前进,传播到圆柱形光纤的另一端而发射出去,这就是光纤的传光原理。
附:光的全反射原理根据光的反射和折射定律,即11θθ=' 2211s i n n s i n n θθ= 若n1>n2,横线上为2,下为1介质,即光由光密介质射入光疏介质,且入射角大于临界角,即c θθ>时,就发生光的全反射现象。
由于在临界状态下,22πθ=,代入上式,则⎪⎪⎭⎫⎝⎛=12c n n arcsin θ ,称为全反射临界角。
光纤音频信号传输技术实验报告

光纤音频信号传输技术实验报告光纤音频信号传输技术实验报告引言:光纤技术作为一种高速、大容量的信息传输方式,已经在通信领域得到广泛应用。
然而,在音频信号传输方面,光纤技术的应用相对较少。
本实验旨在探究光纤音频信号传输技术的可行性,并对其性能进行评估。
一、实验原理光纤音频信号传输技术是利用光纤的高速传输特性,将音频信号转换为光信号进行传输。
具体实现过程包括:音频信号输入端通过调制电路将音频信号转换为光调制信号,然后通过光纤传输,再经过解调电路将光信号转换为音频信号输出到接收端。
二、实验设备和材料1. 音频信号发生器2. 光调制器3. 光解调器4. 光纤传输线5. 音频信号接收器6. 示波器7. 光源和光探测器三、实验步骤1. 将音频信号发生器与光调制器连接,调节发生器输出音频信号。
2. 将光调制器与光解调器连接,通过光纤传输线连接两者。
3. 将光解调器与音频信号接收器连接。
4. 调节光源和光探测器,使其适应光纤传输。
5. 打开音频信号发生器和音频信号接收器,并调节参数使音频信号传输正常。
6. 使用示波器对传输后的音频信号进行波形分析。
四、实验结果与分析经过实验,我们成功地实现了光纤音频信号的传输。
通过示波器观察到的波形显示,传输后的音频信号与输入信号基本一致,没有明显的失真和衰减。
这证明了光纤音频信号传输技术的可行性。
在实验过程中,我们还注意到了一些问题。
首先,光纤传输线的质量对音频信号的传输质量有很大影响。
如果光纤传输线质量较差,信号衰减较大,可能导致音频信号的失真。
因此,在实际应用中,应选择质量良好的光纤传输线。
其次,光调制器和光解调器的性能也会影响音频信号的传输质量。
如果这两个设备的响应速度较慢,可能会导致音频信号的延迟。
因此,在选择光调制器和光解调器时,应注意其响应速度和性能指标。
最后,光源和光探测器的选用也是影响音频信号传输质量的关键因素。
光源的亮度和光探测器的灵敏度会直接影响信号的传输距离和传输质量。
音频信号光纤传输技术实验报告

光纤广泛应用于各种工业控制、分布式数据采集等场合,特别适合电力系统自动化、交通控制等部门。
在光纤端面上,当光线入射角小于一定值?a时,折射光线在纤芯和包层界面上的入射角Ф才会大于临界角Фm,光线才能在光纤内多次全反射而传递到另一端。在光纤端面上,入射角θ′>θa的那些光线,折射后在界面上的入射角小于临界角Фm,光线将射出界面,如图40-2中光线2。这个入射角θa称为光学纤维的孔径角,它的数值由光学纤维的数值孔径决定。光纤的数值孔径N定义为
如图2所示,在立体角2θmax范围内入射到光纤端面的光线1在光纤内部界面产生全反射而得以传输,在2θmax范围外入射到光纤端面的光线2则在光纤内部界面不产生全反射而是透射到包层而马上被衰减掉。多模光纤具有较大的数值孔径,单模光纤的数值孔径相对较小,所以一般单模光纤需用LED半导体激光器作为其光源。
(2)光纤的损耗:
多模折射率阶跃型光纤由于各模传输的群速度不同而产生模间色散,传输的带宽受到限制。多模折射率渐变型光纤由于其折射率特殊分布使各模传输的群速度一样而增加信号传输的带宽。单模光纤是只传输单种光模式的光纤,单模光纤可传输信号带宽最高,目前长距离光通讯大都采用单模光纤。
光纤是玻璃细丝,性脆、易断,为提高其抗拉强度,保护表面和使用方便,在包层表面又涂履一层硅酮树脂一类的材料,称涂履层。
通过本实验的学习,在了解光导纤维的基本结构和光在其中传播规律的基础上,要建立起光导纤维的数值孔径、光纤色散、光纤损耗、集光本领等基本概念。
光纤音频信号传输实验报告

光纤音频信号传输实验报告光纤音频信号传输实验报告引言:在现代科技的快速发展下,音频信号传输技术也得到了极大的提升。
光纤作为一种高速、稳定的传输媒介,被广泛应用于音频信号传输领域。
本实验旨在通过搭建光纤音频传输系统,探究其传输效果和特点,并对比传统的电缆传输方式,以期能更好地了解光纤音频传输的优势与局限。
实验步骤:1. 实验器材准备:光纤收发器、音频源、音频放大器、音箱、电缆等。
2. 连接光纤收发器:将音频源与光纤收发器的输入端相连,将光纤收发器的输出端与音频放大器相连。
3. 连接音箱:将音频放大器与音箱相连。
4. 调试系统:打开音频源和音箱,调节音频源的音量和音箱的音量,确保音频信号正常传输。
实验结果:通过实验观察和数据分析,我们得出以下结论:1. 传输质量:光纤音频传输系统具有优异的传输质量,音频信号传输的稳定性和清晰度明显高于传统的电缆传输方式。
光纤传输不受外界电磁干扰的影响,能够减少信号失真和噪音干扰。
2. 传输距离:光纤音频传输系统的传输距离较远,可以达到几百米甚至更远的距离,而电缆传输方式的传输距离相对较短。
3. 安全性:光纤传输不产生电磁辐射和火花,具有较高的安全性,适用于一些对电磁辐射敏感的场所,如医院、实验室等。
4. 抗干扰能力:光纤传输系统具有良好的抗干扰能力,能够有效避免由于电缆传输中的电磁干扰而导致的信号失真和噪音问题。
讨论与分析:光纤音频传输系统相较于传统的电缆传输方式具有明显的优势,但也存在一些局限性。
首先,光纤传输系统的成本较高,需要专门的设备和技术支持。
其次,光纤传输系统对环境的要求较高,如温度、湿度等因素都会对传输质量产生影响。
此外,光纤传输系统在安装和维护上也相对复杂一些。
结论:通过本次实验,我们深入了解了光纤音频传输系统的特点和优势。
光纤传输具有传输质量高、传输距离远、抗干扰能力强等特点,适用于对音频传输质量要求较高的场所。
然而,光纤传输系统也存在一些限制,如成本高、环境要求高等。
音频信号光纤通信物理实验报告(有数据)

4、光信号接收端
光信号的接收主要是利用硅光电二极管(SPD)把传输光纤出射端输出的光信号的光功率转变为与之成正比的光电流I0,然后经I / V转换电路再把光电流转换成电压V0输出。
2、本实验中光传输系统哪几个环节引起光信号的衰减?
答:光发射机、光接续点、光放大器、光分路器以及光接收机,也就是说在光传输的各个节点处都有可能引起光衰。
请在两周内完成,交教师批阅
附件:(实验曲线请附在本页)
3.然后观察两曲线。完成课后题。
实验数据记录(注意:单位、有效数字、列表)
1.光信号发送端-LED的电光转换特性的测定
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
0
2.9
4.7
7.1
9.8
12.7
15.5
18.3
21.1
45.0
50.0
55.0
60.0
65.0
70.0
75.0
784
768
请认真填写
数据处理、误差分析和实验结论
1、LED-传输光纤组件电光特性的测定:依LED偏置电流与光功率实验曲线,线性响应的偏置电流区间为(27.5,46.4)mA,取此区间中值I=39.0mA为最佳偏置电流。
2、光纤传输系统频响的测定:由光纤系统幅频特性曲线得到,
低频截止频率f=26.2Hz
80.0
85.0
音频信号光纤通信物理实验报告(有数据)

物理实验报告
物理实验室制
请认真填写
系统的频响特性:当在某一频率下输出信号的强度是最大输出强度的0.707时,该频率称为截止频率。
频率在低频截止频率与高频截止频率之间的信号在系统中能得到较好的传输。
低频截止频率与高频截止频率之间频段称为光纤传输系统频响的带宽。
4、光信号接收端
光信号的接收主要是利用硅光电二极管 (SPD)把传输光纤出射端输出的光信号的光功率转变为与之成正比的光电流I0 ,然后经I / V 转换电路再把光电流转换成电压V0输出。
请认真填写
请在两周内完成,交教师批阅
附件:(实验曲线请附在本页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
音频信号光纤传输实验摘要:实验通过对LED-传输光纤组件的电光特性的测量,得出了在合适的偏置电流下,其具有线性。
验证了硅光电二极管可以把传输光纤出射端输出的信号转变成与之成正比的光电流。
AbstracfThe experimental transmission through the LED-fiber components of theelectro-optical properties Measuring obtained at the right bias current, with its linear. Verification of the silicon photodiode fiber can transmit a radio-signal output into with the current proportional to the light.一.前言:1.实验的历史地位:光纤自20世纪60年代问世以来,其在远距离信息传输方面的应用得到了突飞猛进的发展,以光纤作为信息传输介质的“光纤通信”技术,是世界新技术革命的重要标志,也是未来信息社会各种信息网的主要传输工具。
随着光纤通信技术的发展,一个以微电子技术,激光技术,计算机技术呵现代通信技术为基础的超高速宽带信息网将使远程教育.远程医疗.电子商务.智能居住小区越来越普及.光纤通信以其诸多优点将成为现代通信的主流,未来信息社会的一项基础技术和主要手段.2.实验目的了解音频信号光纤传输系统的结构熟悉半导体电光/光电器件的基本性能及主要特性的测试方法了解音频信号光纤传输系统的调试技能3.待解决的几个主要问题:声音是一种低频信号,你可能有这样的经历,当你说话的声音较低时,只有你旁边的人可以听见你的声音,要让声音传的远些你必须大声喊。
这说明了低频信号的传播受周围环境的影响很大,传播的范围有限。
为了解决上述的问题,在通信技术中一般是使用一个高频信号作为载波利用被传输的信号(如音频信号)对载波进行调制。
当信号到达传输地点时需要对信号进行解调,也就是将高频载波滤掉,最终得到被传输的音频信号。
随着通信容量的增加和信息传递速度的加快,上述传播过程的缺陷也暴露了出来,主要为以下几点:1信号间的干扰;2 对接手端和发射端阻抗匹配要求较高;3 传播速度受到一定的限制。
专家们一致认为解决上述问题的关键是利用光作为信号的载体,也就是所说的光纤通信。
本实验的目的就是去了解光纤传输系统的结构,以及半导体电光/光电器件的基本性能及主要特性的测试方法。
二. 实验介绍1.实验原理⑴通信基本原理通信,简单点说就是信息的传输。
比如打电话,就是将我们的声音传输到很远的地方,这就是一种通信。
下面就是通信系统组成示意图。
⑵光纤通信所谓光纤通信,就是用激光做载波,光纤为传输媒质的信号传输。
下图所示为直接光强调制光纤传输系统的结构原理方块图。
它主要包括光信号发送器,传输光纤,光信号接收器三部分组成。
但是,要确保接收到的信号与我们发送的信号一样,要求传输过程中的各种变换都必须是线性变换。
因此,只有在各部分共有的线性工作频率范围内的信号才能通过传输系统而不失真。
对于语音信号,频谱在300—3400 范围内,由于光导纤维对光信号具有很宽的频带,故在音频范围内,整个系统的频带宽度主要决定于发送端调制放大电路和接收端功放电路的幅频特性。
发光二极管(LED)的电光特性LED的P-I特性曲线光纤通信系统中使用的LED的光功率是经称为尾纤的光导纤维输出,出纤光功率与LED驱动电流的关系称为电光特性。
为了避免和减少非线性失真,使用时应先给LED一个适当的偏置电流I,其值等于这一特性曲线线性部分中点对应的电流值,而调制信号的峰峰值应位于电光特性的直线范围内。
⑶光信号的发送光信号发送器的原理图被传音频信号由以IC 1为主要元件构成的音频放大电路放大后经电容器 藕合到BG 1基极,对LED 的工作电流进行调制,从而使LED 发送出光强随音频信号变化的光信号,并经光导纤维把这一信号传至接收端。
对于高频信号,电容可看作短路;对于低频信号,电容可看作开路,且电容越大,允许通过的最低频率就越低。
只要 选得足够小(只允许高频信号通过), 选得足够大(较低频率的信号也可通过,但仍有截止频率),则在要求带宽的中频范围内, 的阻抗很大,它所在支路可视为开路,而 的阻抗很小,它可视为短路。
2R ccV在此情况下,根据运放电路的特性计算出:放大电路的闭环增益为C3的大小决定了高频端的截止频率f2,而C2的值决定着低频端的截止频率f1。
故该电路中的R1,R2,R3,C2和C3是决定音频放大电路增益和带宽的几个重要参数。
4.光信号的接收光电检测器件SPD:响应度:描述光电检测器光电转换能力的一种物理量。
定义为:其中:I为光电检测器的平均输出电流; P为光电检测器的平均输入功率。
光信号接收器原理图光信号的接收主要是利用硅光电二极管 (SPD)把传输光纤出射端输出的光信号的光功率转变为与之成正比的光电流I0 ,然后经I / V 转换电路再把光电流转换成电压V0输出。
V0和I0之间有以下关系:以IC3 为主要元件构成的是一个集成音频功放电路,只要调节外接的电位器Wnf,就可改变功放电路的电压增益,功放电路中电容Cnf的大小决定着该电路的下限截止频率。
2.实验设计思想:音频信号的光纤传输系统主要包括:光信号发送器;传输光纤以及光信号接收器。
三个部分。
光信号发送器由半导体发光二极管(Light Emitted Diode 简称LED),以及由它的调制、驱动电路组成;光信号接收器包括了发光二极管的电流/电压(I/V)转换电路和功放电路。
组成该系统时,光源LED的发光中心波长必须在传输光纤呈现低损耗的、或附近,光电检测器件的峰值响应波长也应与此接近。
本实验采用发光中心波长为0.85 的半导体发光二极管作光源,峰值响应波长为 0.8—0.9.85 的硅光电二极管(Silica Photo Diode 简称 SPD)作光电检测元件。
在传播过程中,为了避免或减小波形失真,要求载波的频率宽度能覆盖被传信号的频率范围。
由于光导纤维对光信号具有很宽的频带,完全可以将频谱在300—3400 范围的音频信号覆盖。
整个系统的频带宽度(即可传信号的频率宽度)主要决定于发送端调制放大电路和接收端功放电路的幅频特性。
光信号发送器:光信号发送器由信号放大电路,和LED的驱动电路组成。
放大后的信号进入右侧的信号发送系统。
LED的正常工作需要有一定的正向偏压,一般是在1.2-1.4V之间,光功率与LED驱动电流的关系称为电光特性。
由NPN三极管构成的LED的驱动电路,就是给LED提供正常工作所需的正向偏压。
本实验仪LED最大允许工作电流为50mA,把偏置电流选为LED最大允许工作电流的一半,可使LED获得无截止畸变幅度最大的调制,有利于信号的远距离传送。
光信号接收器:光信号接收器由光电转换器和集成音频功放电路组成。
光电转换器是由峰值响应波长与发送端LED的发光中心波长很接近的硅光电二极管(SPD)和运算放大器组成。
硅光电二极管的任务是把传输光纤出射端输出光信号的光功率转变为与之成正比的光电流I0,然后经运算放大器组成的I / V 转换电路把光电流转换成电压V0输出,然后经功放电路放大后还原成音频信号播放。
三.实验仪器本实验使用的是四川大学物理系研制的YOF—A型音频信号光纤传输技术实验仪,包括:1.光纤2.双踪示波器功率计、音频信号发送器和音频信号接收器3.音频信号发生器四.实验内容本实验包括了以下几部分内容:1.光信号发送器特性的研究(1)LED—传输光纤组件电光特性的测定(2) LED 偏置电流与无截止畸变最大调制幅度关系的测定(3)光信号发送器调制放大电路幅频特性的测定2. 光信号接收器特性的研究(1) 硅光电二极管特性及响应度的测定(2) 光信号的检测(3) 光电信号的放大3.原始数据表格I偏(mA) 0 4 8 12 16 20光功率P(uW) 0 1.3 3.8 7.5 12.0 17.1 ⑵硅光电二极管特性及响应度的测试 R f=23.8(kΩ)I偏(mA) 0 4 8 12 16 20 V o(mV) 7.2 9.5 21.8 49.3 88.2 135.1定的偏执电流附近摆动,尽管波形畸变不明显,但说明输出已失真,此时应减小信号的调制幅I偏(mA) 0 4 8 12 16 20电压峰值(mA)12.5 56 110 170 250 280 (峰-峰值)偏iF(kHz) 0.1 0.5 1 1.5 2 2.5 3 3.5 Vi(mV) 10 10 10 10 10 10 10 10 Vo(mV) 300 300 300 300 290 290 290 287 F(kHz) 4 4.5 5 7 9 12 16 20 Vi(mV) 10 10 10 9 8 7.5 6 5.8 Vo(mV) 280 275 265 235 210 180 140 110F(kHz) 0.1 0.85 1 1.5 2 2.5 3 3.5 发送器V o(mV) 300 300 300 290 290 280 280 265 接收器V o(mV) 65 65 68 70 70 70 68 68 F(kHz) 4 4.5 5 7 9 12 16 20 发送器V o(mV) 250 250 240 210 190 150 120 100 接收器V o(mV) 65 65 60 55 50 40 30 20 五.数据处理:⑴LED电光特性曲线文字描述: 由图像可以看出在4mA到19mA之间P-I成线性关系R=ΔI/ΔP=(0.915966-0.39916)/( 3.8-1.3)= 0.206722⑶LED偏置电流与无截止畸变最大调制幅度的关系曲线V max-I偏⑷放大倍数随频率变化的关系曲线:可以看出在大于运放的截止频率和饱和频率之间,运放放大倍数最大,随着频率的增加运放的放大功能减弱。
⑸发送器V o(mV), 接收器V o(mV)曲线由图像可以看出来,电势随着频率的增大而变小。
5.实验中常见问题的分析(1)发送器W1和W2在实验前(开机之前)和实验后都要逆时针旋转到最小,防止开机就有较大的电流损坏LED;(2)LED上的直流偏置电流要小于20mA,否则会烧坏LED;(3)调节音频信号发生器输出的正弦信号的幅度,使其峰—峰值小于等于20mV(实验过程中保持Vi≤20mV[峰—峰值]);(4)实验过程中如果出现截止或饱和削波失真,说明调制信号幅度过大,要适当减小调制信号幅度,保证不失真;(5)当调制幅度过强时,毫安表指示会在原来设定的偏置电流的附近左右摆动,要减小调制信号幅度。