经济数学--微积分期末测试及答案(A)

合集下载

(完整word版)微积分期末试卷A及答案

(完整word版)微积分期末试卷A及答案

共 4 页,第 1 页 学生答题注意:勿超黑线两端;注意字迹工整。

共 4页,第 2 页) ()f x 在x a =处可导; (B )()f x 在x a =处不连续; (C)。

lim ()x af x →不存在 ; (D ) ()f x 在x a =处没有定义。

、设lnsin y x =,则dy =( )(A) 1cos x ; (B ) 1cos dx x;(C) cot x dx -; (D) cot x dx 。

6. 若()f x 的一个原函数为2x ,则()f x dx '=⎰( ) (A)12x C + (B ) 2x C + (C) x C + (D ) 2C +7、 1dx =⎰( )(A ) 2; (B ) 2π-; (C ) 0; (D )。

8、对-p 级数∑∞=11n p n ,下列说法正确的是( )(A ) 收敛; (B ) 发散;(C ) 1≥p 时,级数收敛; (D) 级数的收敛与p 的取值范围有关。

9、二元函数在(,)xy f x y ye =点0(1,1)p 可微,则(,)xy f x y ye =在0p 的全微 )00)()limx x f x x→-- .cos x ,求它的微分共 4 页,第 5 页 学生答题注意:勿超黑线两端;注意字迹工整。

共 4页,第 6 页5、(10分)求微分方程()x xe y dx xdy +=在初始条件1|0x y ==下的特解;6、(12分)判断级数211ln(1)n n ∞=+∑的敛散性。

《微积分》课程期末考试试卷参考答案及评分标准(A 卷,考试)一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题目后的括号内.每题3分,共30分)1、(C );2、(D );3、(B);4、(A );5、(D);6、(B);7、(A );8、(D );9、(A); 10、(D)。

二、填空(每题4分,共20分)1、 bx n e a b )ln (;2、 同阶无穷小;3、3- ;4、0;5、2。

微积分(上)期末考试试题A卷(附答案)

微积分(上)期末考试试题A卷(附答案)

一、 选择题 (选出每小题的正确选项,每小题2分,共计10分)1.10lim 2xx -→=_________。

(A ) -∞ (B ) +∞ (C ) 0 (D ) 不存在 2.当0x →时,()x xf x x+=的极限为 _________。

(A ) 0 (B ) 1 (C )2 (D ) 不存在 3. 下列极限存在,则成立的是_________。

0()()()lim ()x f a x f a A f a x-∆→+∆-'=∆0()(0)()lim(0)x f tx f B tf x→-'=0000()()()lim2()t f x t f x t C f x t→+--'=0()()()lim()x f x f a D f a a x→-'=-4. 设f (x )有二阶连续导数,且()0()(0)0,lim1,0()_______x f x f f f x x→'''==则是的。

(A ) 极小值 (B )极大值( C )拐点 (D ) 不是极值点也不是拐点 5.若()(),f x g x ''=则下列各式 成立。

()()()0A f x x φ-=()()()B f x x C φ-=()()()C d f x d x φ=⎰⎰()()()d dD f x dx x dx dx dx φ=⎰⎰二、 填空题(每小题3分,共18分)1. 设0(2)()0(0)0,lim1sin x f x f x x f x→===-在处可导,且,那么曲线()y f x =在原点处的切线方程是__________。

2.函数()f x =[0,3]上满足罗尔定理,则定理中的ξ=。

3.设1(),()ln f x f x dx x'=⎰的一个原函数是那么 。

4.设(),xf x xe -=那么2阶导函数 ()___f x x ''=在点取得极_____值。

微积分下册期末试卷及答案

微积分下册期末试卷及答案

评 分
评 阅 人
14、用拉格朗日乘数法求 在满足条件 下的极值.
评 分
评 阅 人
15、计算.
评 分
评 阅 人
16、计算二重积分
,其中
是由
轴及圆周
所围成的在第一象限内的区域.
评 分
评 阅 人
17、解微分方程.
评 分
评 阅 人
18、判别级数的敛散性.
评 分
评 阅 人
19、将函数展开成的幂级数.
评 分
也收敛。
证:,
…(3分)
而由已知收敛,故由比较原则,也收敛。 …(5分)
2、设,其中为可导函数, 证明.
证明:因为,
…(2分)
…(4分)
所以.
…(5分)


一、填空题(每小题3分,共15分) 分
卷 人
1、设
,且当
时,
,则
.
2、计算广义积分
.
3、设,则
. 4、微分方程具有
形式的特解.
5、级数的和为
.
的反函数为
。且时,。于是
12、求二重极限 .
解:原式
(3分)
(6分)
13、由确定,求.
解:设
,则
, ,
, (3分)
(6分) 14、用拉格朗日乘数法求 在条件下的极值. 解:
令 ,得 , , 为极小值点. (3分)
故 在 下的极小值点为
,极小值为
(6分)
15、计算. 解:
(6分)
16、计算二重积分 ,其中 是由 轴及圆周 所围成的在第一象限内的区域. 解: = =

评 分
评 阅 人
21、设级数

微积分期末考试试题及答案

微积分期末考试试题及答案

微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。

《微积分》课程期末考试试卷(A)及参考答案

《微积分》课程期末考试试卷(A)及参考答案

3、若函数
f (x, y)
x y ,则
x y
f
(
1 x
,
y)



A、 x y
x y
B、 1 xy
1 xy
C、 1 xy
1 xy
4、设 D 由 y x, y 2x, y 1围成,则 dxdy ( )
D
A、 1
2
B、 1
4
C、1
5、( )是一阶微分方程

3x 2
3y2
(6
分)。
2、
z y

xy
ln
x (3
分);
2z y 2

xy
ln 2
x
(6
分)。
3、
f
1 x
(
x,
y)

1
x x2
y2
(5
分);
f
1 x
(3,4)

2 (6
5
分)。
4、
z x

y

1 y
,
z y

x

x y2
(4
分);
dz

(y

1 )dx y

(x

x y2
六、求方程 yy' x 的通解。(6 分)

七、判别级数 n1
2n n3n
的敛散性。(6
分)
《微积分》课程期末考试试卷(A)参考答案
一、 填空题(每题 3 分,共 36 分)。
1、
x3 y3
2x
xy y
3xy
2、 1

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案

《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。

经济数学--微积分期末测试及答案(A)

经济数学--微积分期末测试及答案(A)

经济数学--微积分期末测试第一学期期末考试试题 ( A )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分) 1.函数()f x =A); ()(1,1)(1,)()(1,)()(1,)()(1,1)A B C D -+∞-+∞+∞-2.下列函数中,与3y x =关于直线y x =对称的函数是(A);33()()()()A y B x C y x D x y ===-=-3.函数214y x=-的渐近线有(A); 3(A )条(B )2条(C )1条(D )0条4.若函数()f x 在(,)-∞+∞有定义,下列函数中必是奇函数的是(B);32()()()()()()()()()A y f x B y x f x C y f x f x D y f x =--==+-=5.0x →时,下列函数中,与x 不是等价无穷小量的函数是(B)()sin ()sin ()tan ()ln(1)A xB x xC xD x ++6.若()f x =,则点2x =是函数()f x 的(B);()A 左连续点 ()B 右连续点 ()C 驻点 ()D 极值点7.当0x →时,下列函数极限不存在的是(C );1sin 11()()sin()()tan 1xxA B x C D x xxe +8.极限0limln x →=(C );()1()0()1()A B C D -不存在9.设函数()f x 在区间(1,2)内有二阶导数,且()()0xf x f x '''+>,若在(1,2)内()0f x '<,则函数()f x '在区间(1,2)内 (C )()A 单调不增 ()B 单调不减 ()C 单调增加 ()D 单调减少10.下列函数中在[-3,3]上满足罗尔定理条件的是(D );2221()()()(3)()2A x B C x D x x +-11.若函数()f x 在点0x 处可导,则极限000(3)()lim2x xf x x f x x x→+∆--∆∆=(D );00001()4()()3()()()()2()2A f xB f xC f xD f x ''''12.下列极限中,极限值为e 的是(D);11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13.若ln xy x =,则dy =(D); 222ln 11ln ln 11ln ()()()()x xx xA B C dx D dx x x xx----14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D 15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D).2222()[2()()]()2()()()()()()A xf x x f x dx B xf x x f x C x f x dx D x f x ''++二.计算题(每小题7分,共56分)1. arccos y x x =,求y '解:122(arccos )[(1)]arccos arccos y x x x x x '''=--=+=2. 求2(cos sin 32)xx x x e dx -+++⎰6分7分解:原式=3sin cos 2xx x x e x c +++++(其中c 是任意常数)3. 求曲线51001y x x y -+= 在0x =对应的点处的切线方程.解:0x =时,代入方程得 1y =;方程两边对x 求导得4100599151000y x y x y y ''-++=,将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 求极限011lim()1x x x e →-- 解:原式=000111lim()lim lim (1)12xxx x x x x x x x x x e x e e x e e xe e e xe →→→---===--+++5. 设函数221()1ax x f x x bx -≥⎧=⎨-<⎩ 在1x =处可导,求常数a 和b 解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x a x -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==6. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2xx y y y x xx -'''''====±++令得7分5分 2分5分7分3分6分7分3分6分 7分0000列表讨论如下:7.求dx⎰1131222231221122112[(21)(21)(21)(21)][(21)(21)] 4431(21)(21)2dx dxx d x x d x x x c x x c-==+=+++++++++ ++++⎰⎰⎰⎰⎰解:=21=68.已知2xxe是(2)f x的一个原函数,求()2xxf e dx-⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x x x xxux x xx xx x x xx xf x xe e xe e xx xf u e u f ex x x xf e dx e e dx e dx dex x xe e d e e cxe c x e c----------'==+=+∴=+∴=+∴=+=+=-+ =-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:三.应用题(本题10分)某厂生产一种化工产品,每年生产x吨的总成本为2()4100000C x x=+百元,该产品的需求函数为2100050.001x x p+=+(其中x是需求量,单位:吨;p是价格,单位:百元);(1)该产品产量为多少时工厂的利润最大?最大利润是多少?(2)该产品获得最大利润时的边际成本和边际收入各是多少?解:(1)2100050.001p x x=+-2分7分4分6分7分6分32()()0.0011000100000L x x p c x x x x =-=-++-令 2()0.003210000L x x x '=-++=得驻点1000x =(1000)40L ''=-< 且驻点唯一又32(1000)(0.0011000100000)9000001000L x x x x =-++-== (百元)故产量为1000吨时工厂利润最大,且最大利润为9000万元;(2) 因产品获得最大利润时,边际成本和边际收入相等,又(1000)8000C '= (百元/吨)故获得最大利润时,该产品的边际成本和边际收入均为8000(百元/吨).四.证明题(本题4分)设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)证明:0a =时,(0)0f = ()()()()f a b f b f a f b ∴+==+时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-<故有 ()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c ≤≤≤+≤)2分4分3分8分10分6分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经济数学--微积分期末测试及答案(A)经济数学--微积分期末测试第一学期期末考试试题 ( A )一.选择题(每小题只有一个正确答案,请把正确答案前的字母填入括号,每题2分,共30分)1.函数1()x f x +=A);()(1,1)(1,)()(1,)()(1,)()(1,1)A B C D -+∞-+∞+∞-U2.下列函数中,与3y x =关于直线y x =对称的函数是(A);3333()()()()A y x B x yC y xD x y ===-=-3.函数214y x =-的渐近线有(A);3(A )条(B )2条(C )1条(D )0条4.若函数()f x 在(,)-∞+∞有定义,下列函数中必是奇函数的是(B);32()()()()()()()()()A y f xB y x f xC y f x f xD y f x =--==+-=5.0x →时,下列函数中,与x 不是等价无穷小量的试题号 一 二三四 总分 考 分 阅卷人11001()lim (1)()lim (1)()lim(1)()lim (1)xxxxx x x x A x B x C D x x+→∞→∞→→++++13.若ln x y x=,则dy =(D);222ln 11ln ln 11ln ()()()()x xx xA B C dx D dx xx xx----14.函数2()f x x =,在区间[0,1]内,满足拉格朗日中值定理的条件,其中ξ=(D);1121()()()()4332A B C D15.若函数()f x 在(,)-∞+∞内连续,则2()x f x dx '⎡⎤=⎣⎦⎰(D).2222()[2()()]()2()()()()()()A xf x x f x dxB xf x x f xC x f x dxD x f x ''++二.计算题(每小题7分,共56分)1. 2arccos 1y x x x =-y '解:12222(arccos )[(1)]arccos arccos 121y x x x x xxx'''=--==--2. 求2(cos sin 32)x x x x e dx -+++⎰解:原式=3sin cos 2x x x xe x c+++++(其中c 是任意常数) 3.求曲线51001y x x y -+= 在0x =对应的点处的切线方程.解:0x =时,代入方程得1y =;方程两边对x 求导6775得 4100599151000y x y x y y ''-++=, 将01x y ==与代入,得011x y y =='=, 故所求的切线方程为1y x -=,即1y x =+4. 求极限011lim()1xx x e →-- 解:原式=000111lim()lim lim (1)12x x x x x x x x x x x x e x e e x e e xe e e xe →→→---===--+++5.设函数221()1ax x f x x bx -≥⎧=⎨-<⎩在1x =处可导,求常数a和b解:由已知()f x 在1x =连续,且21111lim ()lim()1lim ()lim(2)2x x x x f x x b b f x ax a --++→→→→=-=-=-=- 可得3b a =- ①又因()f x 在1x =处可导,且221111232(1)lim lim lim 1211(2)2()lim 1x x x x x b a x a a f x x x ax a f x ax -+++-→→→+→--+-+-+'===+=----+'==-又得2a = 代入① 得1b =故21a b ==25736736700006. 求函数2ln(14)y x =+的上凸区间、下凸区间与拐点.解:222288(14)1,,0,14(14)2xx y y y x x x -'''''====±++令得列表讨论如下:x 1(,)2-∞- 12- 11(,)22-121(,)2+∞y ''_ 0+ -0 _ y I 拐点1(,ln 2)2- U 拐点1(,ln 2)2I7. 求21dx x +⎰11312222312211(2122212121112[(21)(21)(21)(21)][(21)(21)]4431(21)(21)2dx dx x dxx x x x d x x d x x x c x x c -==+++++=+++++++++++++⎰⎰⎰⎰⎰解:=21=68.已知2xxe 是(2)f x 的一个原函数,求()2x x f e dx -⎰22222222222222(2)()2(12)()(1)()(1)22()(1)(1)2(1)22222[(1)()]2[(1)]2222(2)(4)2x x x x xux x xx xx x x xx xf x xe e xe e x x xf u e u f e x x x x f e dx e e dx e dx de x x xe e d e e cx e c x e c----------'==+=+∴=+∴=+∴=+=+=-+=-++-=-+++=-++=-++⎰⎰⎰⎰⎰解:27466三.应用题(本题10分)某厂生产一种化工产品,每年生产x 吨的总成本为2()4100000C x x=+百元,该产品的需求函数为2100050.001x x p+=+(其中x 是需求量,单位:吨;p 是价格,单位:百元);(1) 该产品产量为多少时工厂的利润最大?最大利润是多少?(2)该产品获得最大利润时的边际成本和边际收入各是多少? 解:(1) 2100050.001p x x =+-32()()0.0011000100000L x x p c x x x x =-=-++-g令2()0.003210000L x x x '=-++=得驻点1000x =(1000)40L ''=-<且驻点唯一又32(1000)(0.0011000100000)9000001000L xx x x =-++-== (百元) 故产量为1000吨时工厂利润最大,且最大利润为9000万元;(2) 因产品获得最大利润时,边际成本和边际收入相等,又(1000)8000C '= (百元/吨)故获得最大利润时,该产品的边际成本和边际收入均为8000(百元/吨).38106四.证明题(本题4分)设函数()f x 在区间[0,]c 上连续,其导数()f x '在(0,)c 内存在且单调减少,又(0)0f =,证明不等式:()()()f a b f a f b +≤+ (其中,a b 是常数且满足:0a b a b c≤≤≤+≤)证明:0a =Q 时,(0)0f = ()()()()f a b f b f a f b ∴+==+ 0a > 时,在区间[0,]a 和[,]b a b +上,()f x 满足拉格朗日定理条件,1122()(0)()()((0,)()()()()()((,)f a f f a f a a af b a f b f b a f b f b a b b a b aξξξξ-'∴==∈+-+-'==∈++-有有又()f x 在[0,]c 上单调减少,而12ξξ<21()()f f ξξ''∴<即()()()f b a f b f a a a+-< 故有()()()f a b f a f b +≤+(其中,a b 是常数且满足:0a b a b c≤≤≤+≤)24。

相关文档
最新文档