两级阻容耦合级间电压串联负反馈放大电路设计
负反馈放大电路实验报告

一、实验目的加深理解放大电路中引入负反馈的方法和负反馈对放大器各项性能指标的影响。
二、实验设备与器件1、+12V 直流电源2、函数信号发生器3、双踪示波器4、万用表5、晶体三极管3DG6×2(β=50~100)或9011×2 电阻器、电容器若干。
三、实验原理负反馈放大器有四种组态,即电压串联、电压并联、电流串联、电流并联。
本实验以电压串联负反馈为例,分析负反馈对放大器各项性能指标的影响。
1、图3-1为带有负反馈的两级阻容耦合放大电路,在电路中通过f R 把输出电压O U 引回到输入端,加在晶体管T1的发射极上,在发射极电阻1F R 上形成反馈电压f U 。
根据反馈的判断法可知,它属于电压串联负反馈。
带有电压串联负反馈的两级阻容耦合放大器主要性能指标如下①闭环电压放大倍数:u u uuf F A 1A A +=其中I O u U U A /=——基本放大器(无反馈)的电压放大倍数,即开环电压放大倍数。
u u F A +1——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。
②反馈系数:F1f F1u R R R F +=③输入电阻:i u u if R F A R )1(+=,i R ——基本放大器的输入电阻④输出电阻:uuO Oof F A 1R R +=,of R :基本放大器的输出电阻 uo A :基本放大器∞=L R 时的电压放大倍数 ①在画基本放大器的输入回路时,因为是电压负反馈,所以可将负反馈放大器的输出端交流短路,即令0=O U ,此时f R 相当于并联在1F R 上。
②在画基本放大器的输出回路时,由于输入端是串联负反馈,因此需将反馈放大器的输入端(T1管的射极)开路,此时)1F f R R +(相当于并接在输出端。
可近似认为f R 并接在输出端。
根据上述规律,就可得到所要求的如图3-2所示的基本放大器。
四、实验步骤1、测量静态工作点数模实验箱按图3-3连接实验电路,模拟电子技术实验箱按图3-4连接实验电 路,首先取 适量,频率为1KHz 左右,调节电位器使放大器的输出不出现失真,然后使 (即断开信号源的输出连接线),用万用表直流电压档分别测量第一级、第二级的静态工作点,记入表3-1。
两级阻容耦合级间电压串联负反馈放大电路设计

课程设计题目:两级阻容耦合级间电压串联负反馈放大电路设计学生姓名:学号:院系:专业班级:指导教师姓名及职称:起止时间:课程设计评分:两级阻容耦合级间电压串联负反馈放大电路设计1.两级阻容耦合级间电压串联负反馈放大电路概述:把几个单级放大电路连接起来,使信号逐级得到放大,在输出获得必要的电压幅值或足够的功率。
由几个单级放大电路连接起来的电路称为多级放大电路。
在多级放大电路中,每两个单级放大电路之间的连接方式叫耦合;如耦合电路是采用电阻、电容进行耦合,则叫做“阻容耦合”。
阻容耦合交流放大电路是低频放大电路中应用得最多、最为常见的电路。
其特点是各级静态工作点互不影响,不适合传送缓慢变化信号。
而在两级阻容耦合放大器电路的基础上,加接一个反馈电阻,使得负反馈电路中的反馈量取自输出电压,若反馈信号为电压量,与输入电压求差而获得净输入电压,则引入电压串联负反馈。
2.两级阻容耦合级间电压串联负反馈放大电路设计2.1两级阻容耦合级间电压串联负反馈放大电路原理图图1两级阻容耦合级间电压串联负反馈放大电路原理图2.2静态工作点设置分析两级阻容耦合放大电路的总电压放大倍数为21u u u A A A =其中,第一级放大电路的电压放大倍数为11121)1(E be i CSu R r R R A +++-=ββ可作为第一级放大电路的外接负载,第二级放大电路的输入电阻为])1(//[//R 222W 627E be i R r R R R β+++=)(设V U BEQ 7.0=,所以第一级放大电路中,KR R r R R R R r R R A V R R R I U U AI R U U I U R R R R U be W i beLu C c CEQ C BEB EQ cc W BQ 8.1302)1(32.10)543(m 14v4.2212c =≈+=-==++-==≈-==++≈β所以晶体管V 1和V 2的输入电阻分别为11126)1(300EQ be I r β++≈ 22226)1(300EQ be Ir β++=10uF图2 仿真电路图在Ui=0的情况,接上电源,调节电位器R13和R12,使得Ic1=1.0mA ,Ic2=1.5mA图3 Ic1电流值 图4 Ic2电流值然后用万用表测量各级的电位图5 1C 极电位 1B 极电位 1E 电位图6 2C 极电位 2B 极电位 2E 极电位2.3 测量基本放大器的性能指标和动态分析(1)不连接反馈网络,输入kHz f 1=、mV U i 5=的正弦信号,并且接入负载Ω=k R L .5,测量输出电压Uo ,计算u A 、i R 、o R图7输入kHz f 1=、mV U i 5=的正弦信号仿真电路数据如图8图8输入与输出电压的有效值如图9所示图9 输入电压Ui 输出电压Uo Us所以放大的倍数533003.0≈==i o u U A 输入电阻=-=s is ii R u u u R 9.27Ωk 输出电阻Ω==k R R o 3.38 (2)接入R c =12k 电阻和C=10uf 电容的负反馈后,输入kHz f 1=、mV U i 5=的正弦信号,并且接入负载Ω=k R L .5,测量输出电压Uo ,计算u AR110k¦¸R220k¦¸R31.8k¦¸R4100¦¸R51k¦¸R610k¦¸R715k¦¸R83.3k¦¸R91.2k¦¸R1112k¦¸V112 V 0XMM1XMM3XSC1ABExt Trig++__+_XFG1R105.1k¦¸J2AKey = A 12Q12N3904Q22N3904R1250k¦¸Key=A 83%1R13100k¦¸Key=A 94%7R1451¦¸C610uF C7100uFC810uFC910uF C10100uF9C110uFXMM2XMM41113R151k¦¸XMM6205XMM715XMM88XMM910XMM1018XMM111917XMM124XMM531422图10 接入负反馈的仿真电路图输入与输出的有效值如图11所示图11 输入电压Ui 输出电压Uo所以放大的倍数933.3≈==i o u U A 同过仿真数据得出,当接入反馈网络后,电压的放大倍数减小,但放大倍数的稳定性得到提高,波形失真程度小。
两级阻容耦合负反馈放大电路Multisim仿真分析

两级阻容耦合负反馈放大电路Multisim仿真分析一、实验目的:1.学习利用Multisim电子线路仿真软件构建自己的虚拟实验室。
2.学习多级共射极放大电路及其静态工作点、放大倍数的调节方法。
3.掌握多级放大电路的放大倍数、输入电阻、输出电阻、频率特性的测量方法。
4.加深对负反馈放大电路放大特性的理解。
5.研究负反馈对放大电路各项性能指标的影响。
二、实验原理:反馈形式:电压串联负反馈三、实验内容:1.直流工作点分析择节点5、6、7、8、9、13作为输出节点,对开环和闭环电路仿真得到相同的输出结果2.负反馈对放大电路性能的影响主要有五个方面1.降低放大倍数2.提高放大倍数的稳定性3.改善波形失真4.展宽通频带5.对放大电路的输入电阻和输出电阻的影响2.1放大电路稳定性分析在电路输入端5、输出端10同时接入交流电压表,按B键选择有无引入负反馈,按A 键选择有无负载电阻R9接入。
表1 输出电压与电压放大倍数的测量结果U o、A u的测量J1U i (mV) U o (mV) A u= U o /U i无反馈(J2断开)断开97.207 2030 20.883 闭合105.452 1524 14.452负反馈(J2闭合)断开30.563 446.583 14.612闭合37.128 414.451 11.163从而稳定了电压放大倍数。
此外,基本放大电路在空载和负载状态下,得到的输出电压相差很大,而接入负反馈后,负载接入与否对输出电压影响很小。
2.2非线性失真分析按B键断开开关S2使电路处在开环状态,双击示波器观察输出波形。
如图所示,调节信号源电压的幅值(频率不变),使输出波形出现非线性失真,在输出端利用失真度测试仪测得其失真系数为18.484%。
开关S2闭合引入负反馈,可见输出波形幅度减小,失真度测试仪显示失真系数为0.158%,因此引入负反馈后非线性失真得到明显改善。
(a)开环输出电压非线性失真 (b)电压串联负反馈失真减小2.3 幅频特性分析打开S2开关,选择simulate→analyses→AC Analysis,在弹出的对话框的“Prequency Parameters”选项卡中将“开始频率”和“终止频率”分别设置为1Hz和1GHz,在“Output”选项卡中选择输出节点10进行仿真,得到无反馈的频率特性。
EDA设计实验二 负反馈放大器设计与仿真

实验二负反馈放大器设计与仿真1.实验目的(1)熟悉两级放大电路设计方法。
(2)掌握在放大电路中引入负反馈的方法。
(3)掌握放大器性能指标的测量方法。
(4)加深理解负反馈对电路性能的影响(5)进一步熟悉利用Multisim仿真软件辅助电路设计的过程。
2.实验要求1)设计一个阻容耦合两极电压放大电路,要求信号源频率10kHz(峰值1mv),负载电阻1kΩ,电压增益大于100。
2)给电路引入电压串联负反馈:①测试负反馈接入前后电路的放大倍数,输入输出电阻和频率特性。
②改变输入信号幅度,观察负反馈对电路非线性失真的影响。
3.实验内容反馈接入前的实验原理图:1.放大倍数:Au=0.075V/0.707mV=106.0822.输入电阻:Ri=0.707mV/94.48nA=7.483kΩ3.输出电阻:Ro=0.707V/143.311nA=4.934kΩ4.频率特性:fL=357.094Hz,fH=529.108kHz输出开始出现失真时的输入信号幅度:19.807mV反馈接入后的实验电路:开关闭合之后:1.放大倍数:Af=7.005mV/0.707mV=9.9082.输入电阻:Ri=0.707mV/0.198uA=3.57kΩ3.输出电阻:Ro=0.707mV/0.096mA=7.364Ω4.频率特性:fL=67.134Hz,fH=6.212MHz输出开始出现失真时的输入信号幅度≈197mV4.理论值分析由于三极管2N2222A的β=220,所以反馈接入前第一级rbe1=rb+βVT/Ic=6.7kΩ第二级rbe2=rb+βVT/Ic=6.5kΩ第二级输入电阻Ri’=R8||(R7+40%R13)||rbe2=3.65kΩ放大倍数Au=βR4||Ri’*R9||R12/([rbe1+(1+β)R1]rbe2)=107.034输入电阻Ri=R3||(R2+30%R5)||[rbe1+(1+β)R1]=7.484kΩ输出电阻Ro=R9=5.1kΩ反馈接入后:F=0.101放大倍数Af=Au/(1+AuF)=9.056输入电阻Rif=R3||(R2+30%R5)||(1+AuF)Ri=3.621kΩ输出电阻Rof=Ro/(1+AoF)=7.425Ω所以可以得出结论Af≈1/F5.实验结果分析由仿真结果以及理论计算值可以看出,接入负反馈后,放大倍数明显下降,输入电阻变化不明显,输出电阻明显下降,原因是接入电压并联负反馈之后,输出电压基本稳定而输出电流由于负反馈的增加而变大,导致输出电阻变小。
负反馈放大电路实验设计

题目:负反馈放大电路实验设计高宏涛兰州城市学院培黎工程技术学院物理072班,电子信息科学与技术专业,甘肃兰州730070 摘要:此课题的设计是根据技术要求来确定放大电路的结构,级数,电路元器件的参数机型号,然后通过I<<1MA的小电流和输入电阻Ro>>20K的大电阻,所以我实验调试调试来实现的,并且由技术输出电流om采用的是电压串联负反馈,我设计的放大电路主要是为了提高增益的稳定性,减小电路引起的非线性失真,放大倍数的稳定性提高,通频带展宽,内部噪声减小。
负反馈放大电路在实际应用中极为广泛,电路形式繁多,根据反馈电路与输出电路,输入电路的连接方式不同,稳定的对象和稳定的程度也有所不同,需要进行具体分析。
一般来说要稳定直流量,应引入直流负反馈;要改善交流特性,应引入交流负反馈;在负载变化时,若想使输出电压稳定,应引入电压负反馈;若想使输出电流稳定,应引入电流负反馈。
而放大器中的反馈就是将输出信号取出一部分或全部送回到放大电路的输入回路,与原输入信号相加或相减后再作用到放大电路的输入端。
反馈信号的传输是反向传输。
所以,放大电路无反馈也称开环,放大电路有反馈也称闭环。
特别是放大电路引入负反馈可大大改善放大倍数的稳定性。
关键词:基本放大电路;负反馈;输入阻抗;输出阻抗;1、引言反馈也称为“回授”,广泛应用于各个领域。
例如,在行政管理中,通过对执行部门工作效果(输出)的调研,以便修订政策(输入);在商业活动中,通过对商品销售(输出)的调研进货渠道及进货数量(输入);在控制系统中,通过对执行机构偏移量(输出量)的监测来修正系统的输入量;等等。
上述例子表明,反馈的目的是通过对输入的影响来改善系统的运行状况及控制效果。
负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、展宽通频带等,所以在实用放大器中几乎都引入负反馈。
两级RC阻容耦合放大电路一、基本原理框图如下当K1、K2断开时,前

两级RC阻容耦合放大电路一、基本原理框图如下当K1、K2断开时,前级放大为一典型电阻分压式单管放大器,当把K1、K2闭合时前级和后级接通,组成带有电压串联负反馈的两级放大器。
二、硬件电路设计电路如下图所示,,它是由两个分压式偏置稳定电路经阻容耦合连在一起当K1闭合时,则把前级放大电路的输出信号加到后级放大电路的输入端继续放大。
由于前级放大电路与后级放大电路类似,现只分析前级放大电路,图中三极管T1具有电流放大作用,是放大电路的核心,电阻R P1、R B1、R B2、的分压来稳定基极电位,集电极电阻R C1的作用主要是将集电极电流的变化转成电压的变化,以实现电压的放大功能,另一方面电源U CC可以通过R C1加到三极管上,使三极管获得正常的偏置电压,所以R C1也起直流负载的作用,耦合电容C1、C2又称做隔直电容,他们分别接在放大电路的输入端和输出端,一方面起交流耦合作用,另一方面隔离直流的作用,发射极电阻(R E1+R E2)用来反映电流I EQ变化的信号,反馈到输入端,自动调节I EQ的大小实现工作点的稳定,当K1、K2闭合时则引入级间负反馈,,以实现提高放大倍数的稳定性和减小非线性失真和抑制干扰和噪声的影响。
三、 电路主要参数1)闭环电压放大倍数FA A AVVV Vf+=1其中A V =UU iO为无级间反馈时的电压放大倍数,即开环电压放大倍数。
1+F A V V ——反馈深度,它的大小决定了负反馈对放大器性能改善的程度。
2)级间反馈系数 UUFOf V=3)输入电阻R F A Ri V V if)1(+=R i——无级间反馈时放大器的输入电阻4)输出电阻 FA R RVVO Of+=1RO——无级间反馈时的输出电阻调试与检测1、初步检测检查电路板上的元件,有无明显的焦痕破坏的情况,电路中连线有无虚焊,短路及直流电源是否正常等。
2.导线故障级顺序测量各级的输入输出电压和波形,对以上放大电路输入正弦波,若B 1点输入正弦波信号正常,但C 点波形不正常则第一级是可疑级,在C 点将电容C 2断开后,再测C 点波形,若仍不正常,则故障在第一级;若断开后正常了,则故障在第二级。
两级阻容耦合负反馈放大电路实验报告

两级阻容耦合负反馈放大电路实验报告以两级阻容耦合负反馈放大电路实验报告为标题引言:本实验通过搭建两级阻容耦合负反馈放大电路,研究其放大特性及负反馈对电路性能的影响。
通过实验数据的测量和分析,进一步理解负反馈放大电路的原理和应用。
一、实验目的本实验的主要目的是探究两级阻容耦合负反馈放大电路的特性,并验证负反馈对电路增益和频率响应的影响。
二、实验器材1. 信号发生器2. 两级阻容耦合放大电路实验箱3. 示波器4. 直流稳压电源5. 万用表6. 电阻、电容等元器件三、实验步骤与数据记录1. 按照电路图搭建两级阻容耦合放大电路,并接通电源。
2. 调节信号发生器输出频率为1000Hz,幅值为200mVrms。
3. 使用示波器测量输入信号Vin和输出信号Vout的幅值。
4. 记录不同频率下的输入输出数据。
5. 改变电路参数,如电阻、电容的数值,重复步骤2-4,得到更多数据。
四、实验数据分析1. 绘制输入输出电压的频率响应曲线。
2. 计算增益的幅值和相位随频率变化的情况。
3. 分析负反馈对电路增益和频率响应的影响。
五、实验结果与讨论通过实验数据分析,我们得到了两级阻容耦合放大电路的频率响应曲线。
曲线显示出在低频时,电路具有较大的增益,随着频率的增加,增益逐渐下降。
这是由于电容的作用导致高频信号的衰减。
同时,我们观察到在整个频率范围内,电路的相位随频率的变化而变化。
负反馈对电路的影响主要体现在增益的稳定性和频率响应的改善上。
通过引入负反馈,可以减小电路的增益变化范围,使得电路在不同频率下都能保持较稳定的增益。
此外,负反馈还可以改善电路的频率响应特性,使得电路在更宽的频率范围内具有较平坦的响应。
六、实验结论通过本实验,我们深入了解了两级阻容耦合负反馈放大电路的特性。
实验结果表明,负反馈对电路的增益和频率响应具有显著的影响。
负反馈可以稳定电路的增益,并改善其频率响应特性,使得电路在更广泛的应用中具有更好的性能。
七、实验总结本实验通过实际搭建电路并测量数据,深入理解了两级阻容耦合负反馈放大电路的原理和特性。
两级负反馈放大电路

两级负反馈放⼤大器张乃荣 - 2016年4⽉月27⽇日实验仿真平台:OS X操作系统软件⽀支持:icircuit version 1.8介绍⼀一、实验⽬目的1、加深理解放⼤大电路中引⼊入负反馈的⽅方法。
2、深⼊入研究负反馈对放⼤大器性能的影响。
3、掌握负反馈放⼤大器性能的测试⽅方法。
⼆二、实验原理两级阻容耦合负反馈放⼤大电路如图2.1。
为了减少电路损耗,第⼀一级的静态⼯工作点应选择的低⼀一些,这样I C1电流的适当减⼩小,就可以减少电路损耗。
第⼆二级的静态⼯工作点选择的⾼高⼀一些,放⼤大电路的的⾮非线性失真将得到改善。
为了改善放⼤大器性能,电路中引⼊入了两级交流电压串联负反馈(R F)。
这样,电路即可以稳定输出电压又可以提⾼高输⼊入电阻。
三、实验内容及步骤1、按图2.1连接电路。
注意接线应尽可能短。
图2.1 两级负反馈放⼤大电路2、接线完毕仔细检查,确定⽆无误后接通电源。
3、测量两级放⼤大器的静态电流测量加反馈后V1、V2静态⼯工作电流I C1、I C2,并将测量结果添⼊入⾃自制的表格中。
4、⽤用数字万⽤用表的交流电压200mv的档,从函数发⽣生器中测量出频率1KHZ、幅值为1mv 左右的交流信号,将它作为两级放⼤大器的输⼊入信号V i。
5、测量两级负反馈放⼤大器开环输出电压和放⼤大倍数加⼊入输⼊入信号V i为1KHZ、幅值1mv左右的交流电压,按表2.1要求测量两级负反馈放⼤大器开环输出电压和放⼤大倍数。
6、测量两级负反馈放⼤大器闭环输出电压和放⼤大倍数加⼊入输⼊入信号V i为1KHZ、幅值1mv左右的交流电压,按表2.1要求测量两级负反馈放⼤大器闭环输出电压和放⼤大倍数。
实验过程1:实验搭建电路2:实验内容1.静态⼯工作点的测量与调整按照电路图连接好电路后,测量两个三极管的静态参数,应满⾜足UBEQ1=UBEQ2=0.6~∼0.8V,调节RW1和RW2使两个三极管的UCEQ1=UCEQ2=(1/4~∼1/2)VCC,将放⼤大器静态时测量的数据填⼊入下表。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
韶关学院课程设计说明书(论文)课程设计题目:两级阻容耦合级间电压串联负反馈放大电路设计课程:高频电子线路课程设计学生姓名:罗丽花学号:040院系:物理与机电工程学院专业班级:09电子信息科学与技术(2)班指导教师姓名及职称:周永明教授洪远泉实验师起止时间: 2011年 2 月—— 2011年 6月课程设计评分:(教务处制)两级阻容耦合级间电压串联负反馈放大电路设计1.概述放大电路的前级输出端通过电容接到后级输入端,成为阻容耦合方式。
由于电容对滞留的阻抗为无穷大,因而阻容耦合放大电路各极之间的直流通路各不相痛,各级的静态工作点相互独立,求解或实际调试Q点时可以按单级处理,所以电路的分析,实际和调试简单易行,而且,只要输入信号频率较高,耦合电容容量较大,前级的输出信号就可以几乎没有衰减地传递到后级的输入端,因此,在分立元件电路中阻容耦合方式的到非常广泛的应用。
其优点是由于电容的隔直作用,各级放大器的静态工作点相互独立,独立估算;电路的分析、设计和调试方便;电容对交流信号几乎不衰减;缺点是低频特性变差;大电容不易集成。
同时,负反馈在电子线路中有着非常广泛的应用,采用负反馈是以降低放大倍数为代价的,目的是为了改善放大电路的工作性能,如稳定放大倍数、改变输入和输出电阻、减少非线性失真、扩展通频带等,所以在实用放大器中几乎都引入负反馈。
2.两级阻容耦合及负反馈放大电路系统设计原理分析阻容耦合放大器是多级放大器中最常见的一种,其电路如图1所示。
图1阻容耦合整体原理图图1是一个曲型的两级阻容耦合放大电路,有两个共射放大电路组成。
由于耦合电容1C 、2C 、C 5的隔直流作用,各级之间的直流工作状态是完全独立的,因此可分别单独调整。
但是,对于交流信号,各级之间有着密切的联系,前级的输出电压就是后级的输入信号,因此两级放大器的总电压放大倍数等于各级放大倍数的乘积u2u1u A A A ⋅=,同时后级的输入阻抗也就是前级的负载。
为了减少电路损耗,第一级的静态工作点应选择的低一些,这样I C1电流的适当减小,就可以减少电路损耗。
第二级的静态工作点选择的高一些,放大电路的的非线性失真将得到改善。
为了改善放大器性能,电路中引入了两级交流电压串联负反馈(R f )。
这样,电路即可以稳定输出电压又可以提高输入电阻。
两级放大器静态分析多级放大电路各级的静态值也是利用其直流通路来求解。
对于直接耦合放大电路而言,应写出直流通路中各个回路的方程,然后求解。
而对于阻容耦合放大电路,因其各级之间的直流通路各不相通,各级的静态工作点相互独立,求解静态值时可按单级处理因耦合有隔直作用,故各级静态工作点相互独立,只要按照单管基本放大器的分析方法,逐级计算即可。
静态工作点表达式: 第一级:第二级:两级放大电路的动态分析2.3.1中频电压放大倍数的计算.多级放大电路的电压放大倍数等于各级放大倍数的乘积。
电压放大倍数u2u1u A A A ⋅=单级共射基本放大器的电压增益为:A u=Re)1()//(ββ++rbe Rl Rc特别提示: 后级的输入电阻是前级的负载, 前级的输出电阻是后级的信号源内阻.2.3.2 输入电阻的计算放大电路一定要有前级(信号源)为其提供信号,那么就要从信号源取电流。
输入电阻是衡量放大电路从其前级获取电流大小的参数。
输入电阻越大,从其前级取得的电流越小,对前级的影响越小。
放大器的输入电阻i R 是向放大器输入端看进去的等效电阻,定义为输入电压i u 和输入电流i i 之比,如图2所示,即:iii i u R =。
⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=cCQ CC CEQ BQ CQ bBEQBB BQ R I V U I I R U V I β⎪⎪⎪⎩⎪⎪⎪⎨⎧-==-=c CQ CC CEQ BQ CQ bBEQBB BQ R I V U I I R U V I β图2 输入电压2.3.3输出电阻Ro放大器输出电阻o R 是将输入电压源短路时,从输出端向放大器看进去的等效电阻.放大电路对其负载而言,相当于信号源,我们可以将它等效为戴维南等效电路,这个戴维南等效电路的内阻就是输出电阻。
图3 输出电阻2.3.4 两级放大的电路的频率响应此法用于精度要求不高从简从快得情况。
首先测出中频电压增益u A ,然后增大或降低频率,将增益下降到中频增益的倍(按分贝算即下降3db ),测出此时所对应的上下限频率,iii I U R =1-'=-'==i i ii i i i i U U R R U U U I U RH f 与L f 之差就称为放大电路的通频带。
即:L H 7.0f f f -=∆幅频特性。
阻容耦合放大器中因有电抗元件存在,放大倍数随信号频率而变,高、低频段的放大倍数均会降低。
已知两级放大器总的电压放大倍数是各级放大倍数的乘积,则其对数幅频特性之和,即20l g ︱Au ︱=20l g ︱A U1︱+ 20l g ︱A u2︱相频特性。
放大电路相位移之和。
21ϕϕϕ+=若两级放大器中各级的下限截止频率分别为f L1,f L2,上线截止频率分别为f H1, f H1,则两级放大器与单级放大器的频率响应存在如下近似关系:f L =2122l f L f +21111.1122H f H f fH += 负反馈对放大器性能的影响2.4.1 在两级阻容耦合放大器电路的基础上,加接一个反馈电阻Rf ,如图3所示,构成电压串联负反馈电路。
图3 电压串联负反馈电路负反馈电路的基本形式;(a )电压串联负反馈;(b )电压并联负反馈;(c )电流串联负反馈;(d )电流并联负反馈。
在分析放大器中的反馈时,主要应抓住三个基本要素:第一、反馈信号的极性。
如果反馈信号是与输入信号反相的就是负反馈,反之则是正反馈。
第二、反馈信号与输出信号的关系。
如果反馈信号正比于输出电压,就是电压反馈;若反馈信号正比于输出电流,就是电流反馈。
第三、反馈信号与输入信号的关系。
从反馈电路的输入端看,反馈信号(电压或电流)与输入信号并联接入称为并联反馈;串联接入成为串联反馈。
负反馈能有效地改善放大器的性能,主要体现在输入电阻、输出电阻、频带宽度、非线性失真、稳定性等方面。
但是放大器性能的改善是以降低其增益为代价的,因而在应用负反馈电路时,必须考虑电路性能改善的同时会引起电路增益的减小。
2.4.1负反馈放大电路增益的一般表达式:深度负反馈的实质当Ao 很大时,1+AoF >>1: 当1+AoF <1: Af>A 引入正反馈 当1+AoF <1: Af>A 引入正反馈F U =1Re 1Re +Rf负反馈式放大电路放大的倍数降低,当 Ao 很大时,负反馈放大器的闭环放大倍数与晶体管无关,只与反馈网络有关。
即负反馈可以稳定放大倍数。
2.4.2负反馈改变放大器的输入电阻i R 及输出电阻o R 。
负反馈对放大器输入阻抗和输出阻抗的影响比较复杂。
不同反馈形式,对阻抗的影响不同,一般来说,并联负反馈能降低输入阻抗,而串联负反馈则能提高输入阻抗;电压负反馈使输出阻抗降低,电流负反馈使输出阻抗升高。
o od o f d f o i o F A F X X X X X X X X X A 111+=+=+==&&&&&&&&F A A o o +=1FA F 1=输入电阻:串联负反馈相当于在输入回路中串联了一个电阻,故输入电阻增加。
输出电阻:并联负反馈相当于在输入回路中并联了一条支路,故输入电阻减小。
2.4.3负反馈使频带展宽引入负反馈使电路的通频带宽度增加(图4所示):图42.4.4 减小非线性失真(图5所示)图5iifRAFR)1(+=)1(AFRR iif+=HmHffFAf)1(&&+=FAffmLLf&&+=13.电路仿真测量电压放大倍数3.1.1未引入负反馈的放大倍数(图6所示)图6 未引入负反馈的放大电路3.1.2引入负反馈后的放大倍数(图7所示)图7 引入负反馈后的放大电路可见电压串联负反馈的引入,使得电压放大倍数明显减少,两者相差约倍。
测量输入电阻3.2.1未引入负反馈的输入电阻(图8所示)图8无负反馈的输入电阻测量电路3.2.2引入负反馈后的输入电阻(图9所示)图9有负反馈的输入电阻测量电路可见,电压串联负反馈的引入,使得输入电阻增大。
输出电阻测量3.3.1未引入负反馈的输出电阻测量(图10所示)图10无负反馈的输出电阻测量电路3.3.2引入负反馈后的输出电阻测量(图11所示)图11负反馈后的输出电阻电路可见,电压串联负反馈的引入,使得输出电阻增小。
4.总结通过Multisim 7的仿真分析,直观形象地反映了放大电路引入负反馈后,虽然降低了放大倍数,但放大电路的其他性能得到了改善。
教学实践证明,在电子技术的理论课教学中应用计算机软件进行仿真分析,加深了对电路原理、信号流通过程、元器件参数及电路性能的了解,使抽象的理论形象化,使复杂的电路分析变得生动形象、真实可信,让学生在课堂上就能感受到实验才能具有的测试效果,克服了传统理论教学的不足,对提高教学质量、激发学习热情、增强学习的主动性积极性、培养电路设计能力和创新能力具有重要作用。
5.参考文献:1.邓友娥电子电工技术实验济南大学出版社2.杨霓清高频电子线路实验及综合设计机械工业出版社3.童师白模拟电子技术基础高等教育出版社4.杨志忠电子技术课程设计机械工业出版社5.曾兴雯高频电路原理与分析西安电子科技大学出版社6.沈元隆电路分析基础人民邮电出版社。