离散模型

合集下载

数学建模专题汇总-离散模型

数学建模专题汇总-离散模型

离散模型§ 1 离散回归模型一、离散变量如果我们用0,1,2,3,4,⋯说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。

但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。

在专利申请数的问题中,离散变量0,1,2,3 和4 等数字具有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。

本专题讨论有序尺度变量和名义尺度变量的被解释变量。

、离散因变量在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0 表示。

1 yesx0 no如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。

如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。

因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。

因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。

三、线性概率模型现在约定备择对象的0 和1 两项选择模型中,下标i 表示各不同的经济主体,取值0或l的因变量 y i表示经济主体的具体选择结果,而影响经济主体进行选择的自变量 x i 。

如果选择响应YES 的概率为 p(y i 1/ x i ) ,则经济主体选择响应NO 的概率为 1 p(y i 1/ x i),则E(y i /x i) 1 p(y i 1/x i) 0 p(y i 0/x i)= p(y i 1/x i)。

根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型p(y i 1/ x i) E(y i / x i) x iβ0 1 x i1 L k x ik u i描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。

离散模型的原理和应用

离散模型的原理和应用

离散模型的原理和应用原理离散模型是指在数学和计算机科学中,将连续对象或现象进行离散化处理的模型和方法。

它涉及到对连续数据进行离散化表示和处理的技术,广泛应用于各个领域。

离散模型的原理主要涉及以下几个方面:离散化表示离散化表示是将连续数据转化为离散数据的过程。

在离散化表示中,连续数据被划分为若干个不相交的区间,每个区间用一个离散值来表示。

离散化表示可以通过等宽法、等频法、聚类法等多种方法来完成。

状态空间离散模型中的状态空间是指系统在不同时刻可能处于的不同状态的集合。

状态空间可以用有限状态机、马尔科夫链等形式来表示。

状态空间的大小和粒度直接影响了离散模型的复杂度和效果。

离散模型的转移规则离散模型中的转移规则描述了系统在不同状态之间的转移概率或条件。

转移规则可以通过概率矩阵、转移图等方式来表示。

转移规则的设计和优化对于离散模型的准确性和效率都有很大影响。

离散模型的推理和学习算法离散模型的推理和学习算法用于对离散模型进行推理和学习。

推理算法可以用于根据给定的观测数据来推断系统的状态,学习算法则可以用于从数据中学习转移规则和状态空间。

常用的离散模型推理和学习算法包括贝叶斯网络、隐马尔可夫模型等。

应用离散模型在各个领域中都有广泛应用。

以下是几个典型的应用领域:自然语言处理在自然语言处理领域,离散模型被用于词义消歧、句法分析、机器翻译等任务。

通过将单词或句子的表示离散化,可以方便地进行语义匹配和推理。

图像处理在图像处理领域,离散模型被用于图像分割、目标检测、图像生成等任务。

通过将像素或图像的表示离散化,可以方便地进行图像的分析和处理。

机器学习在机器学习领域,离散模型被用于分类、聚类、回归等任务。

通过将输入特征和输出标签的表示离散化,可以方便地进行模型的训练和预测。

强化学习在强化学习领域,离散模型被用于描述智能体和环境之间的交互。

通过将状态、动作和奖励的表示离散化,可以方便地进行智能体的决策和优化。

社交网络分析在社交网络分析领域,离散模型被用于描述人与人之间的联系和行为。

第五章 离散模型

第五章 离散模型
由假设,

p11 0.8, p12 0.2, p21 0.7, p22 0.3,
再由于投保人处于健康状态,即 0 1 1, 0 2 0. 由此得到
n
0
1
2
3
4


n 1 1 0.8 0.78 0.778 0.7778 7 / 9. n 2 0 0.2 0.22 0.222 0.2222 2 / 9

x, y x y 1, 2.
y
2 1
o
1
2
3
x
在上图中, 实点即表示为容许状态的集合. 乘船的方案称为决策,仍然用向量
x, y 来表示,
即 x名商人和 y 名随从同坐一条船. 在这些决策中, 有
是符合条件的,称为容许决策。容许决策的全体组成集 合构成容许决策的集合,记为 D. 在这个问题中,容许决策的集合为
若投保人在开始时处于疾病状态,即0 1 0, 0 2 1. 则有
n
0
1
2
3
4


n 1 0 0.7 0.77 0.777 0.7777 7 / 9. n 2 1 0.3 0.23 0.223 0.2223 2 / 9
从两张表中可以看到,无论投保人在初始时处于什么 状态,当时间趋于无穷大时,该时刻的状态趋于稳定, 且与初始值无关。即
9
10 11 12
2, 2 0, 2 0,3 0,1 0, 2 0,0
2,0 0,1 0, 2 0,1 0, 2
分析
从上表中可以看到,该方案是可行的。
二、马氏链及其应用
1.一个简单的例子 我们知道,人寿保险公司最为关心的是投保人的健康

第8章_离散模型(投影版)

第8章_离散模型(投影版)
层因素O的权重
A的秩为1,A的惟一非零特征根为n
由成对比较阵求 A的任一列向量都是对应于特征根n的特征向量
A的归一化特征向量可作为权向量
权向量的特征根 法
对于不一致(但在允许范围内)的成对比较阵A,建议用对应于最大特征 根λ的特征向量作为权向量w ,即A w = A λ 层次分析模型
数学建模
一致性检验 对A确定不一致的允许范围 n阶一致阵A的惟一非零特征根为n
aij · ajk=(wi / wj) · (wj / wk)= wi / wk= aik
所以当aij离一致性的要求不远时, 表示诸因素 n阶一致阵A有下列性质 C1 ,…,Cn对上 A的特征根和特征向量也与一致阵的相差不大。
如果一个正互反阵A满足aij · ajk = aik , i,j,k = 1,2,…,n 因为矩阵A的特征根和特征向量连续地依赖于矩阵的元素aij, 则A称为一致性矩阵,简称一致阵。
随机一致性指标RI的数值 4 0.90 5 6 7 n RI 1 0 2 0 3 0.58 8 9 10 11
计算A'的一致性指标 CI 1,2阶的正互反 是因为
表中n = 1,2时RI = 0,
随机一致性指标RI之比称为一致性比率CR。 CI A的不一致程度在容许范围之内,可用其 CR 0.1 RI 特征向量作为权向量:通过一致性检验 层次分析模型
1.12 1.24 1.32 1.41 1.45 1.49 1.51 0.1的选取是带有 一定主观信度的 对于n≥3的成对比较阵A,将它的一致性指标 CI与同阶(指n相同)的
数学建模
第八章 离散模型
―选择旅游地”中准则层对目标的权向量及一致性检验
3 1 1/ 2 4 3 2 1 7 5 5 A 1 / 4 1 / 7 1 1 / 2 1 / 3 1 / 3 1 / 5 2 1 1 当检验不通过时, 1 1 / 3 1 / 5 3 1 要重新进行成对比较, 或对已有的A进行修正。

数学建模简明教程课件:离散模型

数学建模简明教程课件:离散模型
①最高层:这一层次中只有一个元素,一般它是分析问题 的预定目标或理想结果,因此也称为目标层.
5
②中间层:这一层次中包含了为实现目标所涉及的中间环 节,它可以由若干个层次组成,包括所需考虑的准则、子准则 ,因此也称为准则层.
③最低层:这一层次包括了为实现目标可供选择的各种措 施、决策方案等,因此也称为措施层或方案层.
16
⑤若A的最大特征值λmax对应的特征向量为W=(w1,…,
wn)T,则
aij
wi wj
, i, j 1,2,, n ,即
w1 w1
w1
w1 w2
wn
w2 w2
w2
A w1 w2
wn
wn wn
wn
w1 w2
wn
17
定理6.3 n阶正互反矩阵A为一致矩阵当且仅当其最大特
征根λmax=n,且当正互反矩阵A非一致时,必有λmax>n. 根据定理6.3,我们可以由λmax是否等于n来检验判断矩阵A
当CR<0.10时,认为层次总排序结果具有较满意的一致性
并接受该分析结果.
26
6.1.2 层次分析法的应用
在应用层次分析法研究问题时,遇到的主要困难有两个: (1)如何根据实际情况抽象出较为贴切的层次结构; (2)如何将某些定性的量作比较,接近实际以定量化处理. 层次分析法对人们的思维过程进行了加工整理,提出了一 套系统分析问题的方法,为科学管理和决策提供了较有说服力 的依据.但层次分析法也有其局限性,主要表现在: (1)它在很大程度上依赖于人们的经验,主观因素的影响很 大,它至多只能排除思维过程中的严重非一致性,却无法排除 决策者个人可能存在的严重片面性.
3
6.1.1 层次分析法的基本原理与步骤

离散模型例题及解析

离散模型例题及解析

当涉及离散模型时,下面是一个例题及其解析,涉及图论中的最短路径问题:例题:假设有一个城市网络,由以下的道路和距离组成:A城市与B城市之间的距离为5B城市与C城市之间的距离为3C城市与D城市之间的距离为4A城市与D城市之间的距离为8现在要找到A城市到D城市的最短路径。

使用Dijkstra算法来计算。

解析:Dijkstra算法是一种常用的图论算法,用于解决最短路径问题。

下面是使用Dijkstra算法解决该例题的步骤:创建一个集合S来存储已经找到最短路径的城市,初始时S为空。

创建一个距离列表dist[]来存储从A城市到其他城市的距离,初始时将dist[A]设置为0,其他城市的距离设置为无穷大。

选择dist[]中距离最小的城市,将其加入集合S,并更新与该城市相邻的城市的距离。

在这个例子中,初始时A城市的距离最小。

更新与A城市相邻的城市的距离。

由于A城市与B城市的距离为5,将dist[B]更新为5。

继续选择dist[]中距离最小的城市,将其加入集合S,并更新与该城市相邻的城市的距离。

在这个例子中,B城市的距离最小。

更新与B城市相邻的城市的距离。

由于B城市与C城市的距离为3,将dist[C]更新为8(5+3)。

继续选择dist[]中距离最小的城市,将其加入集合S,并更新与该城市相邻的城市的距离。

在这个例子中,C城市的距离最小。

更新与C城市相邻的城市的距离。

由于C城市与D城市的距离为4,将dist[D]更新为12(8+4)。

最后,A城市到D城市的最短路径为A->B->C->D,总距离为12。

通过Dijkstra算法,我们找到了A城市到D城市的最短路径,并计算出了总距离为12。

这个算法通过不断更新距离列表dist[]来逐步找到最短路径。

在实际应用中,Dijkstra算法可以用于解决各种最短路径问题,例如路由优化、地图导航等。

离散模型的原理与应用

离散模型的原理与应用

离散模型的原理与应用1. 什么是离散模型离散模型是一种数学模型,它描述了具有离散性质的系统或过程。

在离散模型中,系统或过程的状态、变量和行为都是离散的,而不是连续的。

离散模型广泛应用于计算机科学、数学、物理学等领域,它可以对系统或过程进行建模、分析和优化。

离散模型具有以下特点: - 离散变量:离散模型中的变量是离散的,可以取有限个或可数个值。

- 离散时间:离散模型中的时间是离散的,系统状态在不同的时间点发生变化。

- 离散行为:离散模型中的行为是离散的,系统在不同的状态下做出离散的决策。

离散模型可以描述许多实际问题,例如: - 离散事件系统:离散模型可以描述离散事件系统,如排队系统、生产线等。

- 离散优化问题:离散模型可以应用于离散优化问题,如旅行商问题、背包问题等。

- 离散概率模型:离散模型可以用于描述离散概率模型,如马尔科夫链、朴素贝叶斯等。

2. 离散模型的基本原理离散模型的基本原理是通过建立数学模型来描述系统或过程的离散特性,并通过分析模型来确定系统的行为和性能。

离散模型的建立包括以下几个步骤: 1. 确定系统的离散变量:根据实际问题确定系统的离散变量,例如系统的状态、决策等。

2. 建立状态转移模型:根据系统的离散变量建立状态转移模型,描述系统在不同状态下的转移规则。

3. 确定系统的决策规则:根据系统的目标确定系统的决策规则,通过分析模型确定最优的决策策略。

4. 评估系统的性能指标:通过分析模型来评估系统的性能指标,例如系统的平均响应时间、吞吐量等。

离散模型的分析可以采用数学方法,例如概率论、图论等。

通过对模型进行精确的分析,可以得到系统的性能指标和最优决策策略。

3. 离散模型的应用案例3.1 排队论模型排队论是离散模型的一个重要应用领域,它研究系统中的排队现象,并通过建立排队模型来描述系统的性能。

排队论模型包括以下几个要素: - 到达率:描述单位时间内到达系统的请求的平均数量。

数学模型之离散模型

数学模型之离散模型

离散模型的应用领域
计算机科学
离散模型在计算机科学中广泛 应用于算法设计、数据结构、
网络流量分析等领域。
统计学
离散模型在统计学中用于描述 和分析离散数据,如人口普查 、市场调查等。
经济学
离散模型在经济学中用于描述 和分析离散的经济现象,如市 场交易、人口流动等。
生物学
离散模型在生物学中用于描述 和分析生物种群的增长、疾病
强化学习与离散模型
强化学习通过与环境的交互来学习最优策略。离散模型可以用于描述环境状态和行为,为 强化学习提供有效的建模工具。
离散模型在人工智能中的应用
1 2
决策支持系统
离散模型在决策支持系统中发挥着重要作用,通 过建立预测和优化模型,为决策者提供科学依据 和解决方案。
推荐系统
离散模型常用于构建推荐系统,通过分析用户行 为和偏好,为用户提供个性化的推荐服务。
03
分布式计算与并行化
为了处理大规模数据集,离散模型需要结合分布式计算和并行化技术,
以提高计算效率和可扩展性。
机器学习与离散模型的结合
集成学习与离散模型
集成学习通过结合多个基础模型来提高预测精度。离散模型可以作为集成学习的一部分, 与其他模型进行组合,以实现更准确的预测。
深度学习与离散模型
深度学习具有强大的特征学习和抽象能力。将深度学习技术与离散模型相结合,可以进一 步优化模型的性能,并提高对复杂数据的处且依赖于过去误差项的平方。
GARCH模型
定义
广义自回归条件异方差模型(Generalized AutoRegressive Conditional Heteroskedasticity Model)的简称,是ARCH模型的扩展。
特点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Aw w
3. 层次单排序及其一致性检验
对应于判断矩阵最大特征根λmax的特征向量,经 归一化(使向量中各元素之和等于1)后记为W。 W的元素为同一层次因素对于上一层次因素某因素 相对重要性的排序权值,这一过程称为层次单排序。 能否确认层次单排序,需要进行一致性检验,所谓 一致性检验是指对A确定不一致的允许范围。
第七部分
离散模型
离散模型
一、层次分析模型 二、循环比赛的名次
三、社会经济系统的冲量过程
四、效益的合理分配
y
离散模型
• 离散模型:差分方程、整数规划、
图论、对策论、网络流、… …
• 分析社会经济系统的有力工具
• 只用到代数、集合及图论(少许)
的知识
一、层次分析模型
层次分析法(AHP)是美国运筹学家匹茨堡大学教 授萨蒂(T.L.Saaty)于上世纪70年代初,为美国国防 部研究“根据各个工业部门对国家福利的贡献大小而 进行电力分配”课题时,应用网络系统理论和多目标 综合评价方法,提出的一种层次权重决策分析方法。 这种方法的特点是在对复杂的决策问题的本质、影 响因素及其内在关系等进行深入分析的基础上,利用 较少的定量信息使决策的思维过程数学化,从而为多 目标、多准则或无结构特性的复杂决策问题提供简便 的决策方法。是对难于完全定量的复杂系统作出决策 的模型和方法。
目标层
工作选择
贡 准则层 献






工 作 环 境
生 活 环 境
方案层
可供选择的单位P1’ P2

Pn
例2. 选择旅游地 如何在3个目的地中按照景色、 费用、居住条件等因素选择.
目标层 O(选择旅游地)
准则层
C1 景色
C2 费用
C3 居住
C4 饮食
C5 旅途
方案层
P1 桂林
P2 黄山
P3 北戴河
层次分析法的思维过程的归纳
将决策问题分为3个或多个层次: 最高层:目标层。表示解决问题的目的,即层次分析 要达到的总目标。通常只有一个总目标。 中间层:准则层、指标层、…。表示采取某种措施、 政策、方案等实现预定总目标所涉及的中间环节; 一般又分为准则层、指标层、策略层、约束层等。 最低层:方案层。表示将选用的解决问题的各种措施、 政策、方案等。通常有几个方案可选。 每层有若干元素,层间元素的关系用相连直线表示。 层次分析法所要解决的问题是关于最低层对最高层的相 对权重问题,按此相对权重可以对最低层中的各种方案、 措施进行排序,从而在不同的方案中作出选择或形成选择 方案的原则。
层次分析法建模
(一)层次分析法概述
(二)层次分析法的基本原理
(三)层次分析用
(五)应用层次分析法的注意事项
(六)层次分析法应用实例
(一)层次分析法概述
人们在对社会、经济以及管理领域的问题进行系统 分析时,面临的经常是一个由相互关联、相互制约 的众多因素构成的复杂系统。层次分析法则为研究 这类复杂的系统,提供了一种新的、简洁的、实用 的决策方法。 层次分析法(AHP法) 是一种解决多目标的复杂问题 的定性与定量相结合的决策分析方法。该方法将定 量分析与定性分析结合起来,用决策者的经验判断 各衡量目标能否实现的标准之间的相对重要程度, 并合理地给出每个决策方案的每个标准的权数,利 用权数求出各方案的优劣次序,比较有效地应用于 那些难以用定量方法解决的课题。
(二)层次分析法的基本原理 层次分析法根据问题的性质和要达到的 总目标,将问题分解为不同的组成因素, 并按照因素间的相互关联影响以及隶属关 系将因素按不同层次聚集组合,形成一个 多层次的分析结构模型,从而最终使问题 归结为最低层(供决策的方案、措施等)相 对于最高层(总目标)的相对重要权值的确 定或相对优劣次序的排定。
A~成对比较阵 A是正互反阵 稍加分析就发 现上述成对比 较矩阵有问题
成对比较的不一致情况
1 A 2
一致比较
1/ 2 1
4 7
不一致
a21 2 (C2 : C1 )
a13 4 (C1 : C3 )
a23 8 (C2 : C3 )
允许不一致,但要确定不一致的允许范围
2. 构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的 结果,则常常不容易被别人接受,因而Santy等人提出: 一致矩阵法,即: 1. 不把所有因素放在一起比较,而是两两相互比较。 2. 对此时采用相对尺度,以尽可能减少性质不同的诸因 素相互比较的困难,以提高准确度。 判断矩阵是表示本层所有因素针对上一层某一个因素的 相对重要性的比较。判断矩阵的元素aij用Santy的1—9标 度方法给出。 心理学家认为成对比较的因素不宜超过9个,即每层 不要超过9个因素。
对于相邻的两层,称高层为目标层,低层为因素层。
下面举例说明。
例1 大学毕业生就业选择问题 获得大学毕业学位的毕业生,在“双向选择”时, 用人单位与毕业生都有各自的选择标准和要求。就毕 业生来说选择单位的标准和要求是多方面的,例如: ①能发挥自己才干作出较好贡献(即工作岗位适合 发挥自己的专长); ②工作收入较好(待遇好); ③生活环境好(大城市、气候等工作条件等); ④单位名声好(声誉等); ⑤工作环境好(人际关系和谐等) ⑥发展晋升机会多(如新单位或前景好)等。
的不一致程度在容许范围之内,有满意的一致性,通过
一致性检验。可用其归一化特征向量作为权向量,否则
要重新构造成对比较矩阵A,对 aij 加以调整。 一致性检验:利用一致性指标和一致性比率<0.1
及随机一致性指标的数值表,对
A 进行检验的过程。
“选择旅游地”中 准则层对目标的权 向量及一致性检验 最大特征根=5.073
n
n 1
CI=0,有完全的一致性
CI接近于0,有满意的一致性 CI 越大,不一致越严重
为衡量CI 的大小,引入随机一致性指标 RI。方法为 随机构造500个成对比较矩阵 A 1 , A2 ,, A 500
则可得一致性指标
CI1, CI 2 ,, CI500
CI1 CI 2 CI 500 RI 500
(三)层次分析法的步骤和方法
运用层次分析法构造系统模型时,大 体可以分为以下四个步骤: 1. 建立层次结构模型 2. 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
1. 建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对 象按它们之间的相互关系分为最高层、中间层和最 低层,绘出层次结构图。 最高层:决策的目的、要解决的问题。 最低层:决策时的备选方案。 中间层:考虑的因素、决策的准则。
w1 考察完全一致的情况 w 1 W ( 1) w1 , w2 ,wn 可作为一个排序向量 w2 w A 成对比较 1 令aij wi / w j 满足 aij a jk aik , i, j, k 1,2,, n wn 的正互反阵A称一致阵。 w1
一致性比率CR=0.018/1.12=0.016<0.1
性检验
正互反阵最大特征根和特征向量的简化计算
• 精确计算的复杂和不必要 • 简化计算的思路——一致阵的任一列向量都是特征向量, 一致性尚好的正互反阵的列向量都应近似特征向量,可取 其某种意义下的平均。 和法——取列向量的算术平均
2 1 例 A 1 / 2 1 1 / 6 1 / 4
C2 C3 C4 C5
C3
C4 C5
1/ 2 4 3 3 1 2 1 7 5 5 A 1/ 4 1/ 7 1 1 / 2 1 / 3 1 / 3 1 / 5 2 1 1 3 1 1 1/ 3 1/ 5 要由A确定C1,… , Cn对O的权向量
因素i与j比较的判断aij,则因素j与i比较的判断aji=1/aij
目标层
C1 景色 C2 费用
O(选择旅游地) C3 居住 C4 饮食 C5 旅途
准则层 设要比较各准则C1,C2,… , Cn对目标O的重要性
Ci : C j aij
选 择 旅 游 地
C1 C1 C2
1 A (aij ) nn , aij 0, a ji aij
定理:n 阶一致阵的唯一非零特征根为n 定理:n 阶正互反阵A的最大特征根 n, 当且仅当 =n 时A为一致阵
由于λ 连续的依赖于aij ,则λ 比n 大的越多,A 的不 一致性越严重。用最大特征值对应的特征向量作为 被比较因素对上层某因素影响程度的权向量,其不 一致程度越大,引起的判断误差越大。因而可以用 λ-n 数值的大小来衡量 A 的不一致程度。 定义一致性指标: CI
判断矩阵元素aij的标度方法
标度 1 3 含义 表示两个因素相比,具有同样重要性 表示两个因素相比,一个因素比另一个因素稍微重要
5 7
9 2, 4, 6, 8 倒数
表示两个因素相比,一个因素比另一个因素明显重要 表示两个因素相比,一个因素比另一个因素强烈重要
表示两个因素相比,一个因素比另一个因素极端重要 上述两相邻判断的中值
6 列向量 0.6 0.615 0.545 4 归一化 0.3 0.308 0.364 归 一 1 0.1 0.077 0.091 化
求 行 和
0.587 0.324 w 0.089
1.769 Aw w 1 1.769 0.974 0.268 ( ) 3.009 Aw 0.974 3 0.587 0.324 0.089 0.268
决策是指在面临多种方案时需要依据一定的标准选 择某一种方案。日常生活中有许多决策问题。举例 1. 在海尔、新飞、容声和雪花四个牌号的电冰 箱中选购一种。要考虑品牌的信誉、冰箱的功能、 价格和耗电量。 2. 在泰山、杭州和承德三处选择一个旅游点。 要考虑景点的景色、居住的环境、饮食的特色、交 通便利和旅游的费用。 3. 在基础研究、应用研究和数学教育中选择一 个领域申报科研课题。要考虑成果的贡献(实用价 值、科学意义),可行性(难度、周期和经费)和 人才培养。
相关文档
最新文档