认识平面图形练习题
第7章《平面图形的认识(二)》解答题专项练习(二) 七年级数学苏科版下册

七年级数学苏科版下册第7章《平面图形的认识(二)》解答题专项提升练习(二)1.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠E=∠F,CE∥DF,求证:∠A =∠1.2.已知,点Q、A、D均在直线l1上,点B、C均在直线l2上,且l1∥l2,点E是BA延长上一点.(1)如图1,CD∥AB,CE与AD相交于点F,AC与BF相交于点O,∠1=∠2,求证∠3=∠4;(2)在(1)的条件下,若BF平分∠ABC,试直接写出∠CFB与∠ACF的数量关系为;(3)如图2,点N是∠QAB角平分线上一点,点M在射线BC上,若∠NMC与∠ABC满足2∠NMC﹣∠ABC=180°的数量关系,请判断直线MN与直线AN的位置关系,并说明理由.3.如图所示,直线AB ∥CD ,直线EF 分别交AB 、CD 于E 、F 两点,∠BEF 、∠DFE 的平分线相交于点K .(1)求∠EKF 的度数;(2)如图(2)所示,作∠BEK 、∠DFK 的平分线相交于点K 1,问∠K 1与∠K 的度数是否存在某种特定的等量关系?写出结论并证明.(3)在图(2)中作∠BEK 1、∠DFK 1的平分线相交于点K 2,作∠BEK 2、∠DFK 2的平分线相交于点K 3,依此类推,……,请直接写出∠K 4的度数.4.如图,已知三角形ABC 中,AD 平分∠BAC ,∠1=∠2.求证:(1)AD ∥GE ;(2)∠3=∠G .5.如图,已知AB ∥CD ,E 是直线AB 上的一点,CE 平分∠ACD ,射线CF ⊥CE ,∠1=32°,(1)求∠ACE 的度数;(2)若∠2=58°,求证:CF ∥AG .6.已知:直线GH分别与直线AB,CD交于点E,F.EM平分∠BEF,FN平分∠CFE,并且EM ∥FN.(1)如图1,求证:AB∥CD;(2)如图2,∠AEF=2∠CFN,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135°.7.如图1,直线MN与直线AB、CD分别交于点E、F,∠MEB与∠DFN互补.(1)若∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(2)如图2,在(1)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,请说明理由.8.如图,AD⊥BE,BC⊥BE,∠A=∠C,点C,D,E在同一条直线上.求证:AB∥CD.9.综合与探究问题情境在综合实践课上,老师组织七年级(2)班的同学开展了探究两角之间数量关系的数学活动,如图,已知射线AM∥BN,连接AB,点P是射线AM上的一个动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.探索发现“快乐小组”经过探索后发现:(1)当∠A=60°时,∠CBD=∠A.请说明理由.(2)不断改变∠A的度数,∠CBD与∠A却始终存在某种数量关系,用含∠A的式子表示∠CBD为.操作探究(3)“智慧小组”利用量角器量出∠APB和∠ADB的度数后,探究二者之间的数量关系.他们惊奇地发现,当点P在射线AM上运动时,无论点P在AM上的什么位置,∠APB与∠ADB 之间的数量关系都保持不变,请写出它们的关系,并说明理由.(4)点P继续在射线AM上运动,当运动到使∠ACB=∠ABD时,请直接写出2∠ABC+∠A的结果.10.如图,在△ABC中,点D、F在BC边上,点E在AB边上,点G在AC边上,EF与GD的延长线交于点H,∠CDG=∠B,∠1+∠FEA=180°.求证:(1)EH∥AD;(2)∠BAD=∠H.11.喜欢思考的小泽同学,设计了一种折叠纸条的游戏.如图1,纸条的一组对边PN∥QM(纸条的长度视为可延伸),在PN,QM上分别找一点A,B,使得∠ABM=α.如图2,将纸条作第一次折叠,使BM'与BA在同一条直线上,折痕记为BR.1解决下面的问题:(1)聪明的小白想计算当α=90°时,∠BR 1N '的度数,于是他将图2转化为下面的几何问题,请帮他补全问题并求解:如图3,PN ∥QM ,A ,B 分别在PN ,QM 上,且∠ABM =90°,由折叠:BR 1平分 ,BM '∥R 1N ',求∠BR 1N '的度数.(2)聪颖的小桐提出了一个问题:按图2折叠后,不展开纸条,再沿AR 1折叠纸条(如图4),是否有可能使AM ''⊥BR 1?如果能,请直接写出此时α的度数;如果不能,请说明理由.(3)笑笑看完此题后提出了一个问题:当0°<α≤90°时,将图2记为第一次折叠;将纸条展开,作第二次折叠,使BM '与BR 1在同一条直线上,折痕记为BR 2(如图5);将纸条展开,作第三次折叠,使BM '与BR 2在同一条直线上,折痕记为BR 3;…以此类推. ①第二次折叠时,∠BR 2N '= (用α的式子表示);②第n 次折叠时,∠BR n N '= (用α和n 的式子表示).12.如图,已知点D,E分别为AB,BC上的点,连接DE,∠BAC=70°,∠ADE=110°.(1)求证:∠C=∠BED;(2)画图:连接AE,过点D画DF∥AE,交BC于点F,若∠EAC=28°,∠C=62°,求∠DFC的度数.13.完成推理填空.填写推理理由:如图:EF∥AD,∠1=∠2,∠BAC=70°,把求∠AGD的过程填写完整.∵EF∥AD,∴∠2=,()又∵∠1=∠2,∴∠1=∠3,∴AB∥,()∴∠BAC+ =180°,()又∵∠BAC=70°,∴∠AGD=110°.14.如图,已知AB∥CD,BE平分∠ABC,CE平分∠BCD.请判断△BEC的形状,并说明理由.15.如图,已知,AB∥CD,CE平分∠ACD交AB于点E.(1)若∠FCD=50°,求∠1的度数;(2)若有∠FAB的平分线AP交CE于点P,请你画出图形,并判断∠CAP与∠ACP是否为互余关系,说明理由.参考答案1.证明:∵CE∥DF,∴∠F=∠2,∵∠E=∠F,∴∠E=∠2,∴AE∥BF,∴∠A=∠1.2.解:(1)证明:∵∠1=∠2,∴∠1+∠ACF=∠2+∠ACF即:∠BCE=∠ACD,∵AB‖CD,∴∠ACD=∠4,∴∠BCE=∠4,∵l1∥l2∴∠3=∠BCE∴∠3=∠4;(2)如图,设∠ABF=∠5,∠ACF=∠6,∠CFB=∠7,∵BF平分∠ABC,∴∠ABC=2∠5,∠CBF=∠5,∵l1∥l2,∴∠AFB=∠CBF=∠5,∴∠AFC+∠BCF=180°,即∠1+∠6+∠5+∠7=180°①,∵AB‖CD,l1∥l2,∴∠ABC+∠BCD=180°,∠BCD+∠CDF=180°,∴∠CDF=2∠5,∴∠1+∠6+∠2+2∠5=180°,∵∠1=∠2,∴2∠1+∠6+2∠5=180°,∴∠1+∠6+∠5=90°②,∴①﹣②得:∠6+∠7=90°,∴∠CFB与∠ACF的数量关系为∠CFB+∠ACF=90°.故答案为:∠CFB+∠ACF=90°.(3)直线MN与直线AN的位置关系为:MN⊥AN.理由如下:过点N作NR∥l1,∵l1∥l2,NR∥l2,∴∠ABC=∠QAB,∠QAN=∠ANR,∠RNM=∠NMB,∵NA平分∠QAB,∴∠QAB=2∠QAN,不妨设∠QAN=x°,∠NAM=∠NMB=y°,∴∠ABC=∠QAB=2x°,∴y+∠NMC=180°①,∵2∠NMC﹣∠ABC=180°,∴2∠NMC﹣2x=180°,∠NMC﹣x=90°②,①﹣②得:x+y=90°,∴∠ANM=90°,3.解:(1)如图(1),过K 作KG ∥AB ,交EF 于G ,∵AB ∥CD ,∴KG ∥CD ,∴∠BEK =∠EKG ,∠GKF =∠KFD ,∵EK 、FK 分别为∠BEF 与∠EFD 的平分线,∴∠BEK =∠FEK ,∠EFK =∠DFK ,∵AB ∥CD ,∴∠BEK +∠FEK +∠EFK +∠DFK =180°,即2(∠BEK +∠DFK )=180°,∴∠BEK +∠DFK =90°,则∠EKF =∠EKG +∠GKF =90°;(2)∠K =2∠K 1,理由为:∵∠BEK 、∠DFK 的平分线相交于点K 1,∴∠BEK 1=∠KEK 1,∠KFK 1=∠DFK 1,∵∠BEK +∠FEK +∠EFK +∠DFK =180°,即2(∠BEK +∠KFD )=180°,∴∠BEK +∠KFD =90°,即∠BEK 1+∠DFK 1=45°,同理得∠K 1=∠BEK 1+∠DFK 1=45°,则∠K =2∠K 1;(3)如图(3),根据(2)中的规律可得:∠K 2=∠K 1=22.5°,∠K 3=∠K 2=11.25°,∠K 4=∠34.解:(1)∵AD平分∠BAC,∴∠BAD=∠2,∵∠1=∠2,∠1=∠3,∴∠BAD=∠3,∴AD∥GE;(2)∵AD∥GE,∴∠2=∠G,∵∠1=∠2=∠3,∴∠3=∠G.5.解:(1)∵AB∥CD,∴∠1=∠DCE=32°,∵CE平分∠ACD,∴∠ACE=∠DCE=32°;(2)∵CF⊥CE,∴∠FCE=90°,∴∠FCH=90°﹣32°=58°,∵∠2=58°,∴∠FCH=∠2,∴CF∥AG.6.(1)证明:∵EM∥FN,∴∠EFN=∠FEM.∵EM平分∠BEF,FN平分∠CFE,∴∠CFE=2∠EFN,∠BEF=2∠FEM.∴∠CFE=∠BEF.∴AB∥CD.(2)∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.理由如下:∵AB∥CD,∴∠AEF+∠CFE=180°,∵FN平分∠CFE,∴∠CFE=2∠CFN,∵∠AEF=2∠CFN,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=45°,∴∠DFN=∠HFN=180°﹣45°=135°,同理:∠AEM=∠GEM=135°.∴∠AEM,∠GEM,∠DFN,∠HFN度数都为135°.7.解:(1)证明:∵∠MEB+∠BEF=180°,∠MEB与∠DFN互补∴∠BEF=∠DFN∴AB∥CD∴∠BEF+∠DFE=180°又∵∠BEF与∠EFD的角平分线交于点P∴∠FEP+∠EFP=(∠BEF+∠DFE)=90°∴∠EPF=90°即EG⊥PF∵GH⊥EG∴PF∥GH.(2)∠HPQ的大小不会发生变化,利用如下:∵∠PHK=∠HPK∴∠PKG=2∠HPK∵GH⊥EG∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK∴∠EPK=180°﹣∠KPG=90°+2∠HPK∵PQ平分∠EPK∴∠QPK=∠EPK=45°+∠HPK∴∠HPQ=∠QPK﹣∠HPK=45°∴∠HPQ的大小不会发生变化,其值为45°.8.证明:∵AD⊥BE,BC⊥BE,∴AD∥BC,∴∠ADE=∠C,∵∠A=∠C,∴∠ADE=∠A,∴AB∥CD.9.解:(1)∵AM∥BN,∴∠A+∠ABN=180°,又∵∠A=60°,∴∠ABN=180°﹣∠A=120°.∵BC,BD分别平分∠ABP和∠PBN,∴∠CBP=∠ABP,∠DBP=∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠PBN=∠ABN=60°,∴∠CBD=∠A.(2)∵BC,BD分别平分∠ABP和∠PBN,∴∠CBP=∠ABP,∠DBP=∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠PBN=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴∠ABN=180°﹣∠A,∴∠CBD=.(3)∠APB=2∠ADB理由如下:∵BD分别平分∠PBN,∴∠PBN=2∠NBD,∵AM∥BN,∴∠PBN=∠APB,∠NBD=∠ADB,∴∠APB=2∠ADB.(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC,BD分别平分∠ABP和∠PBN,∴2∠ABC=∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴2∠ABC+∠A=(∠A+∠ABN)=×180°=90°.10.证明:(1)∵∠CDG=∠B,∴DG∥AB,∴∠1=∠BAD,∵∠1+∠FEA=180°,∴∠BAD+∠FEA=180°,∴EH∥AD;(2)由(1)得:∠1=∠BAD,EH∥AD,∴∠1=∠H,∴∠BAD=∠H.11.解:(1)根据折叠的性质可得,∠MBR1=∠M′BR1,即,BR1平分∠ABM,故答案为:∠ABM,∵∠ABM=90°,∴∠MBR1=∠M′BR1=∠ABM=45°,在四边形M′BR1N′中,∠M′=∠N′=∠M=∠N=90°,∴∠BR1N′=360°﹣90°﹣90°﹣45°=135°;(2)α=60°;由折叠可得,∠PAB=α=60°,∠ABR1=30°,∠R1AM″=60°,∴∠BAM″=180°﹣60°﹣60°=60°,∴∠ABR1+∠BAM″=30°+60°=90°,∴AM''⊥BR1;(3)①由折叠可得∠R1BR2=×α=,在四边形M′BR2N′中,∠M′=∠N′=∠M=∠N=90°,∴∠BR2N′=360°﹣90°﹣90°﹣=180°﹣;故答案为:180°﹣;②折叠n次可得∠R n BR n+1=××…××α=,在四边形中有内角和可得,∠BR n N'=360°﹣90°﹣90°﹣=180°﹣,故答案为:180°﹣.12.解:(1)证明:∵∠BAC=70°,∠ADE=110°.∴∠BAC+∠ADE=180°.∴DE∥AC,∴∠C=∠BED;(2)如图所示,∵DF∥AE,∴∠AEC=∠DFC,△AEC中,∠EAC=28°,∠C=62°,∴∠DFC=∠AEC=180°﹣62°﹣28°=90°.13.解:∵EF∥AD(已知),∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠DGA;两直线平行,同旁内角互补.14.解:△BEC是直角三角形.理由:∵AB∥CD(已知),∴∠ABC+∠DCB=180°(两直线平行,同旁内角互补).∵BE平分∠ABC,CE平分∠BCD(已知),∴∠CBE=∠ABC,∠BCE=∠BCD(角平分线的性质).∴∠CBE+∠ECB=(∠ABC+∠DCB)=90°.∵∠CBE+∠ECB+∠BEC=180°(三角形内角和180°),∴∠BEC=90°(等式性质),∴△BEC是直角三角形.15.解:(1)∵∠FCD=50°,∴∠ACD=180°﹣50°=130°,∵CE平分∠ACD,∴∠ECD=∠ECA=∠ACD=65°,∵AB∥CD,∴∠1=∠ECD=65°.(2)如图,∠CAP与∠ACP互余,理由:∵AP平分∠FAB,CE平分∠ACD,∴∠CAP=∠EAP=∠BAC,∠ACP=∠DCE=∠ACD,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAP+∠ACP=(∠BAC+∠ACD)=90°.。
初中数学《平面图形的认识》常考题练习题及参考答案与解析(word版)

《平面图形的认识》常考题练习题及参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2018春•吉安期中)如图,1∠与2∠不是同旁内角的是( )A .B .C .D .2.(2018春•城关区校级月考)如图所示,同位角共有( )A .6对B .8对C .10对D .12对3.(2018•呼和浩特一模)如图,已知直线a 、b 被直线c 所截,那么1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠4.(2019春•东至县期末)如图所示,共有 3 个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A .向右平移 1 格,向下 3 格B .向右平移 1 格,向下 4 格C .向右平移 2 格,向下 4 格D .向右平移 2 格,向下 3 格5.(2018春•新罗区校级期中)将图中所示的图案平移后得到的图案是( )A .B .C .D .6.(2016春•南长区期中)在下列现象中,属于平移的是( )A .小亮荡秋千运动B .电梯由一楼升到八楼C .导弹击中目标后爆炸D .卫星绕地球运动7.(2019•香坊区模拟)如图图形中,把ABC ∆平移后能得到DEF ∆的是( )A .B .C .D .8.(2018•天津二模)如图,将周长为8的ABC ∆沿BC 方向平移1个单位得到DEF ∆,则四边形ABFD 的周长是( )A .8B .10C .12D .169.(2017•莱西市一模)如图,面积为26cm 的ABC ∆纸片沿BC 方向平移至DEF ∆的位置,平移的距离是BC 长的2倍,则ABC ∆纸片扫过的面积为( )A .218cmB .221cmC .227cmD .230cm10.(2015春•石家庄期末)如图,将ABC ∆沿射线BC 方向移动,使点B 移动到点C ,得到DCE ∆,连接AE ,若ABC ∆的面积为2,则ACE ∆的面积为( )A .2B .4C .8D .1611.(2015•宛城区模拟)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF ∆的位置,10AB =,4DO =,平移距离为6,则阴影部分面积为( )A .48B .96C .84D .4212.(2014春•台州月考)如图,把正方形ABCD的对角线AC分成n段,以每段为对角线作正方形,设这n个小正方形的周长和为P,正方形ABCD的周长为L,则P与L的关系是()A.P L<C.P L=D.P与L无关>B.P L13.(2019春•番禺区期中)下列图形不是由平移而得到的是()A.B.C.D.14.(2015秋•盐都区期末)如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.15.(2018秋•沁阳市期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形16.(2017秋•肇源县期末)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.1917.(2017秋•东莞市校级月考)如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是()A.2012边形B.2013边形C.2014边形D.2015边形18.(2014•大兴区一模)正五边形各内角的度数为()A.72︒B.108︒C.120︒D.144︒19.(2014•独山县模拟)如图,一个60︒的角的三角形纸片,剪去这个60︒角后,得到一个四边形,则12∠+∠的度数为()A.120︒B.180︒C.240︒D.300︒20.(2015春•攀枝花期末)下列说法中,正确的个数是( )①三角形的三条高都在三角形内,且都相交于一点②任意三角形的外角和都是360︒③三角形的一个外角大于任何一个内角④在ABC ∆中,当12A C ∠=∠,13B C ∠=∠时,这个三角形是直角三角形. A .1 B .2个 C .3个 D .4个21.(2019春•河南期末)小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状不可以是( )A .正三角形B .正四边形C .正五边形D .正六边形22.(2019春•北海期末)如图,下列条件中,能判定//DE AC 的是( )A .EDC EFC ∠=∠B .AFE ACD ∠=∠C .34∠=∠D .12∠=∠23.(2017秋•雨花区校级期末)如图,能判定//AD BC 的条件是( )A .32∠=∠B .12∠=∠C .BD ∠=∠ D .1B ∠=∠24.(2016春•微山县期末)如图,木工师傅在一块木板上画两条平行线,方法是:用角尺画木板边缘的两条垂线,这样画的理由有下列4种说法:其中正确的是( )①同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行; ④平面内垂直于同一直线的两条直线平行.A .①②③B .①②④C .①③④D .①③25.(2019•安次区一模)将一把直尺与一块三角板如图所示放置,若140∠=︒,则2∠的度数为( )A .50︒B .110︒C .130︒D .150︒26.(2017•自贡)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠= )A .45︒B .50︒C .55︒D .60︒27.(2017•安陆市模拟)如图,//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有45︒角的直角三角尺按如图所示的方式摆放,若75EMB ∠=︒,则PNM ∠等于( )A .15︒B .25︒C .30︒D .45︒28.(2019•荆州一模)如图,已知直线AB 、CD 被直线AC 所截,//AB CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设BAE α∠=,DCE β∠=.下列各式:①αβ+,②αβ-,③βα-,④360αβ︒--,AEC ∠的度数可能是( )A .①②③B .①②④C .①③④D .①②③④29.(2019春•武昌区校级月考)下列说法:(1)两直线平行,同旁内角互补;(2)同位角相等,两直线平行;(3)内错角相等,两直线平行;(4)垂直于同一条直线的两条直线平行,其中平行线的性质是( )A .(1)B .(2)(3)C .(4)D .(1)(4)30.(2016春•新泰市期中)下列说法中,不正确的是( )A .同位角相等,两直线平行B .两直线平行,内错角相等C .两直线被第三条直线所截,同旁内角互补D .同旁内角互补,两直线平行31.(2016•重庆校级一模)如图,1B ∠=∠,220∠=︒,则(D ∠= )A .20︒B .22︒C .30︒D .45︒ 32.(2019秋•江津区期末)下列长度的三根木棒能组成三角形的是( )A .3,4,8B .4,4,8C .5,6,10D .6,7,1433.(2017秋•兰陵县期末)下列长度的三条线段能组成三角形的是( )A .1、2、3B .3、3、7C .20、15、8D .5、15、8 34.(2019秋•北仑区期末)如果三角形的两边长分别是4和9,那么第三边长可能是( ) A .1 B .5 C .8D .14 35.(2018秋•左贡县期末)把三角形的面积分为相等的两部分的是( ) A .三角形的角平分线 B .三角形的中线C .三角形的高D .以上都不对 36.(2017春•单县期末)在ABC ∆中,画出边AC 上的高,下面4幅图中画法正确的是( )A .B .C .D .37.(2015秋•莒南县期末)下列说法错误的是( )A .三角形的角平分线能把三角形分成面积相等的两部分B .三角形的三条中线,角平分线都相交于一点C .直角三角形三条高交于三角形的一个顶点D .钝角三角形的三条高所在直线的交点在三角形的外部38.(2019秋•咸丰县期末)如图所示,12∠=∠,34∠=∠,则下列结论正确的有( ) ①AD 平分BAF ∠;②AF 平分BAC ∠;③AE 平分DAF ∠;④AF 平分DAC ∠;⑤AE 平分BAC ∠.A .4个B .3个C .2个D .1个39.(2012秋•长丰县校级期中)如图,ABC ∆中,70BAC ∠=︒,40B ∠=︒,AD 是ABC ∆的角平分线,则ADC ∠度数是( )A .70︒B .75︒C .80︒D .85︒40.(2017春•渭滨区校级期中)一个三角形的三个内角中,锐角的个数最少为( )A .0B .1C .2D .3二、填空题(共30小题)41.(2018春•武冈市期末)如图,如果140∠=︒,2100∠=︒,3∠的同旁内角等于 .42.(2018春•静安区期中)如图,写出图中A ∠所有的内错角: .43.(2016春•五莲县期中)如图,有下列判断:①A ∠与1∠是同位角;②A ∠与B ∠是同旁内角;③4∠与1∠是内错角;④1∠与3∠是同位角.其中正确的是 (填序号).44.(2019春•浦东新区期中)如图,//AD BC ,AC 、BD 交于点E ,三角形ABE 的面积等于2,三角形CBE 的面积等于3,那么三角形DBC 的面积等于 .45.(2016春•威宁县期末)小明把自己的左手手印和右手手印按在同一张白纸上,左手手印 (填“能”或“不能”)通过平移与右手手印完全重合.46.(2015春•自贡期末)如图,在长20米,宽10米的长方形草地内修建了宽2米的道路,则草地的面积为 .47.(2019春•郯城县期中)如图,直径为2cm 的圆1O 平移3cm 到圆2O ,则图中阴影部分的面积为2cm .48.(2018•雁塔区校级模拟)如图,在三角形ABC中,AD BCAD=,将三角形ABC⊥,6BC=,3沿射线BC的方向平移2个单位后,得到三角形A B C''的面积为.''',连接A C',则三角形A B C49.(2018•柯桥区模拟)如图,170∠-∠=︒.∠=︒,直线a平移后得到直线b,则2350.(2017春•滑县校级月考)如图所示,两个完全相同的直角梯形重叠在一起,将其中一个直角梯形沿一腰平移,阴影部分的面积为.51.(2015春•文安县期末)如图,ABC=,则AC cm''',若3∆沿射线AC方向平移2cm得到△A B CA C'=cm.52.(2014春•无锡期末)如图,把边长为3cm的正方形ABCD先向右平移1cm,再向上平移1cm,得到正方形EFGH,则阴影部分的面积为.53.(2017秋•随县期末)若从一个多边形的一个顶点出发,最多可以引10条对角线,则它是 边形.54.(2014•东莞模拟)从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,若把这个多边形分割成6个三角形,则n 的值是 .55.(2019秋•霸州市期末)小明发现交通指示牌中“停车让行标志”可以看成是正八边形,如图所示,则1∠= ︒.56.(2019秋•历下区期末)如图,若12220∠+∠=︒,则A ∠= 度.57.(2018秋•市南区期末)如图,//AB CD ,点P 为CD 上一点,EBA ∠、EPC ∠的角平分线于点F ,已知40F ∠=︒,则E ∠= 度.58.(2019秋•淅川县期末)如图,按虚线剪去长方形纸片的相邻两个角,并使1120∠=︒,AB BC ⊥,那么2∠的度数为 .59.(2019秋•峄城区期末)如图,直线////a b c ,直角三角板的直角顶点落在直线b 上.若135∠=︒,则2∠等于 .60.(2016•梅江区校级模拟)如图,已知12∠=∠,30B ∠=︒,则3∠= .61.(2015•丹东)如图,1240∠=∠=︒,MN 平分EMB ∠,则3∠= ︒.62.(2016春•虎丘区校级期末)已知ABC ∆中,B ∠是A ∠的2倍,C ∠比A ∠大20︒,则A ∠= .63.(2019秋•大冶市期末)一副分别含有30︒和45︒的两个直角三角板,拼成如图图形,其中90C ∠=︒,45B ∠=︒,30E ∠=︒.则BFD ∠的度数是 .64.(2014秋•汉阳区期中)如图,已知120BOF ∠=︒,则A B C D E F ∠+∠+∠+∠+∠+∠= .65.(2014春•宿城区校级月考)在ABC ∆中,高BD 和CE 所在直线相交于O 点,若ABC ∆不是直角三角形,且60A ∠=︒,则BOC ∠= .66.(2016秋•南阳期末)一个三角形的两边长为3和6,若第三边取奇数,则此三角形的周长为 .67.(2019秋•长白县期末)已知a 、b 、c 为ABC ∆的三边,化简:||||||a b c a b c a b c +----+-+= .68.(2017秋•秀洲区校级月考)如图,在ABC ∆中,2013AB =,2010AC =,AD 为中线,则ABD ∆与ACD ∆的周长之差= .69.(2015秋•绍兴校级期中)在直角三角形、钝角三角形和锐角三角形这三种三角形中,有两条高在三角形外部的是 三角形.70.(2015秋•磴口县校级期中)在ABC ∆中,80A ∠=︒,I 是B ∠,C ∠的角平分线的交点, 则BIC ∠= ︒. 三、解答题(共31小题)71.(2014春•灌云县校级期末)如图,1∠和2∠是哪两条直线被哪一条直线所截形成的?它们是什么角?1∠和3∠是哪两条直线被哪一条直线所截形成的?它们是什么角?72.(2015•六盘水)如图,已知,12//l l ,1C 在1l 上,并且12C A l ⊥,A 为垂足,2C ,3C 是1l 上任意两点,点B 在2l 上.设1ABC ∆的面积为1S ,2ABC ∆的面积为2S ,3ABC ∆的面积为3S ,小颖认为123S S S ==,请帮小颖说明理由.73.(2019春•宛城区期末)如图,在Rt ABC ∆中,90ACB ∠=︒,33A ∠=︒,将ABC ∆沿AB 方向向右平移得到DEF ∆. (1)试求出E ∠的度数;(2)若9AE cm =,2DB cm =.请求出CF 的长度.74.(2017秋•灵石县期末)如图,已知直线//AB CD ,100A C ∠=∠=︒,E ,F 在CD 上,且满足DBF ABD ∠=∠,BE 平分CBF ∠.(1)求证://AD BC ; (2)求DBE ∠的度数;(3)若平行移动AD ,在平行移动AD 的过程中,是否存在某种情况,使BEC ADB ∠=∠?若存在,求出其度数;若不存在,请说明理由.75.(2017春•江都区月考)如图,每个小正方形的边长为1个单位,每个小方格的顶点叫格点.(1)画出ABCA B C;∆向右平移4个单位后得到的△111(2)图中AC与A C的关系是:;11(3)画出ABC∆中AB边上的中线CD;(4)ACD∆的面积为.76.(2017春•曲阜市期中)如图,平移方格纸中的图形,使点A平移到点A'处,画出平移后的图形.77.(2019春•平昌县期末)一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.78.(2019春•杜尔伯特县期末)如图,在六边形ABCDEF中,//∠=︒,AAB DE,且120AF CD,//∠的度数.∠和D∠=︒,求C80B79.(2019春•龙门县期末)如图,在四边形ABCD中,//AD BC,连接BD,点E在BC边上,点F 在DC边上,且12∠=∠.(1)求证://EF BD;(2)若DB平分ABC∠的度数.∠=︒,求2∠,130A80.(2019秋•鄂城区期中)如图所示:求A D B E C F ∠+∠+∠+∠+∠+∠的度数.81.(2015春•怀集县期末)已知:如图,AB BC ⊥,BC CD ⊥且12∠=∠,求证://BE CF .82.(2019秋•金牛区期末)如图,直线MN 分别交AB 和CD 于点E 、F ,点Q 在PM 上,EPM FQM ∠=∠,且AEP CFQ ∠=∠,求证://AB CD .83.(2014春•澄江县校级期中)如图,130∠=︒,60B ∠=︒,AB AC ⊥. 试说明//AD BC .84.(2018秋•惠来县期末)如图所示,已知12180∠+∠=︒,3B ∠=∠,试判断AED ∠与C ∠的大小关系,并对结论进行说理.85.(2014春•裕民县校级月考)如图所示,已知//DC AB ,190A ∠+∠=︒,求证:AD DB ⊥.86.(2019春•白城期中)如图,BD AC ⊥于D ,EF AC ⊥于F ,//DM BC ,12∠=∠.求证:AMD AGF ∠=∠.87.(2017秋•遂宁期末)已知:如图12∠=∠,C D ∠=∠,请证明:A F ∠=∠.88.(2019秋•罗湖区校级期末)如图,直线MN 分别与直线AC 、DG 交于点B 、F ,且12∠=∠.ABF ∠的角平分线BE 交直线DG 于点E ,BFG ∠的角平分线FC 交直线AC 于点C .(1)求证://BE CF ;(2)若35C ∠=︒,求BED ∠的度数.89.(2019秋•市北区期末)如图,180ADE BCF ∠+∠=︒,BE 平分ABC ∠,2ABC E ∠=∠. (1)AD 与BC 平行吗?请说明理由; (2)AB 与EF 的位置关系如何?为什么? (3)若AF 平分BAD ∠,试说明:90E F ∠+∠=︒.90.(2019秋•阳江期中)如图,125ABD ∠=︒,50A ∠=︒,求ACE ∠的度数.91.(2019秋•徐闻县期中)如图,求x的值.92.(2018秋•甘井子区期末)已知:如图,D是AB上一点,E是AC上的一点,BE、CD相交于点F,62ABE∠=︒,20∠=︒.求:ACDA∠=︒,35(1)BDC∠的度数;(2)BFD∠的度数.93.(2019秋•瀍河区月考)如图,ABC∆中,点D在AC上,点P在BD上,求证:AB AC BP CP+>+.94.(2019秋•瑶海区期末)如图,已知ABC∆.(1)若4AB=,5AC=,则BC边的取值范围是;(2)点D为BC延长线上一点,过点D作//∠=︒,EDE AC,交BA的延长线于点E,若55∠的度数.∠=︒,求B125ACD95.(2016秋•垦利县期末)如图,已知:AD是ABCBAC∠=︒,∆的高,60∆的角平分线,CE是ABC∠的度数.∠=︒,求ADBBCE4096.(2016秋•宁海县期中)如图,在ABC ∆中30B ∠=︒,110ACB ∠=︒,AD 是BC 边上高线,AE 平分BAC ∠,求DAE ∠的度数.97.(2019春•上蔡县期末)如图,ABC ∆中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,50CAB ∠=︒,60C ∠=︒,求DAE ∠和BOA ∠的度数.98.(2019春•南海区期末)已知:如图,在ABC ∆中,80BAC ∠=︒,AD BC ⊥于D ,AE 平分DAC ∠,60B ∠=︒;求AEC ∠的度数.99.(2016秋•南开区期中)如图,ABC ∆的三条内角平分线相交于点O ,过点O 作OE BC ⊥于E 点,求证:BOD COE ∠=∠.100.(2015秋•西区期中)如图(1)所示,称“对顶三角形”,其中,A B C D ∠+∠=∠+∠,利用这个结论,完成下列填空.①如图(2),A B C D E∠+∠+∠+∠+∠=.②如图(3),A B C D E∠+∠+∠+∠+∠=.③如图(4),123456∠+∠+∠+∠+∠+∠=.④如图(5),1234567∠+∠+∠+∠+∠+∠+∠=.参考答案与解析一、选择题(共40小题,每小题只有一个正确选项)1.(2018春•吉安期中)如图,1∠与2∠不是同旁内角的是()A.B.C.D.【知识考点】同位角、内错角、同旁内角【思路分析】根据同旁内角的概念:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.可得答案.【解答过程】解:选项A、C、B中,1∠在两直线的之间,并且在第三条直线(截线)的同∠与2旁,是同旁内角;选项D中,1∠的两条边都不在同一条直线上,不是同旁内角.∠与2故选:D.【总结归纳】此题主要考查了同旁内角,关键是掌握同旁内角的边构成“U”形.2.(2018春•城关区校级月考)如图所示,同位角共有()A.6对B.8对C.10对D.12对【知识考点】同位角、内错角、同旁内角【思路分析】在基本图形“三线八角”中有四对同位角,再看增加射线GM 、HN 后,增加了多少对同位角,求总和.【解答过程】解:如图,由AB 、CD 、EF 组成的“三线八角”中同位角有四对, 射线GM 和直线CD 被直线EF 所截,形成2对同位角; 射线GM 和直线HN 被直线EF 所截,形成2对同位角; 射线HN 和直线AB 被直线EF 所截,形成2对同位角. 则总共10对. 故选:C .【总结归纳】本题主要考查同位角的概念.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.3.(2018•呼和浩特一模)如图,已知直线a 、b 被直线c 所截,那么1∠的同位角是( )A .2∠B .3∠C .4∠D .5∠【知识考点】同位角、内错角、同旁内角 【思路分析】根据同位角的定义,可得答案.【解答过程】解:已知直线a 、b 被直线c 所截,那么1∠的同位角是2∠, 故选:A .【总结归纳】本题考查了同位角,利用同为角的定义是解题关键.4.(2019春•东至县期末)如图所示,共有 3 个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块( )A .向右平移 1 格,向下 3 格B .向右平移 1 格,向下 4 格C .向右平移 2 格,向下 4 格D .向右平移 2 格,向下 3 格【知识考点】生活中的平移现象【思路分析】找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可. 【解答过程】解:上面的图案的最右边需向右平移 2 格才能与下面图案的最右边在一条直线上,最下边需向下平移4 格才能与下面图案的最下面重合,故选C.【总结归纳】解决本题的关键是得到两个图案重合需移动的左右距离和上下距离.5.(2018春•新罗区校级期中)将图中所示的图案平移后得到的图案是()A.B.C.D.【知识考点】生活中的平移现象【思路分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【解答过程】解:通过图案平移得到必须与图案完全相同,角度也必须相同,观察图形可知C可以通过图案平移得到.故选:C.【总结归纳】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.6.(2016春•南长区期中)在下列现象中,属于平移的是()A.小亮荡秋千运动B.电梯由一楼升到八楼C.导弹击中目标后爆炸D.卫星绕地球运动【知识考点】生活中的平移现象【思路分析】根据平移的定义,旋转的定义对各选项分析判断即可得解.【解答过程】解:A、小亮荡秋千运动是旋转,故本选项错误;B、电梯由一楼升到八楼是平移,故本选项正确;C、导弹击中目标后爆炸不是平移,故本选项错误;D、卫星绕地球运动是旋转,故本选项错误.故选:B.【总结归纳】本题考查了生活中的平移现象,把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移.注意平移是图形整体沿某一直线方向移动.7.(2019•香坊区模拟)如图图形中,把ABC∆的是()∆平移后能得到DEFA.B.C.D.【知识考点】平移的性质【思路分析】根据图形平移的性质对各选项进行逐一分析即可.【解答过程】解:A、DEF∆由ABC∆平移而成,故本选项正确;B、DEF∆由ABC∆对称而成,故本选项错误;C 、DEF ∆由ABC ∆旋转而成,故本选项错误;D 、DEF ∆由ABC ∆对称而成,故本选项错误.故选:A .【总结归纳】本题考查的是平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.8.(2018•天津二模)如图,将周长为8的ABC ∆沿BC 方向平移1个单位得到DEF ∆,则四边形ABFD 的周长是( )A .8B .10C .12D .16【知识考点】平移的性质【思路分析】根据平移的基本性质,得出四边形ABFD 的周长 11AD AB BF DF AB BC AC =+++=++++即可得出答案.【解答过程】解:根据题意,将周长为8个单位的ABC ∆沿边BC 向右平移1个单位得到DEF ∆,1AD ∴=,1BF BC CF BC =+=+,DF AC =;又8AB BC AC ++=Q ,∴四边形ABFD 的周长1110AD AB BF DF AB BC AC =+++=++++=.故选:B .【总结归纳】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF AD =,DF AC =是解题的关键.9.(2017•莱西市一模)如图,面积为26cm 的ABC ∆纸片沿BC 方向平移至DEF ∆的位置,平移的距离是BC 长的2倍,则ABC ∆纸片扫过的面积为( )A .218cmB .221cmC .227cmD .230cm【知识考点】平移的性质【思路分析】根据平移的性质可以知道四边形ACED 的面积是三个ABC ∆的面积,依此计算即可. 【解答过程】解:Q 平移的距离是边BC 长的两倍, BC CE EF ∴==,∴四边形ACED 的面积是三个ABC ∆的面积;∴四边形ABED 的面积26(13)24cm =⨯+=,ABC ∴∆纸片扫过的面积26(23)30cm =⨯+=,故选:D .【总结归纳】考查了平移的性质,本题的关键是得出四边形ACED 的面积是三个ABC ∆的面积.然后根据已知条件计算.10.(2015春•石家庄期末)如图,将ABC ∆沿射线BC 方向移动,使点B 移动到点C ,得到DCE ∆,连接AE ,若ABC ∆的面积为2,则ACE ∆的面积为( )A .2B .4C .8D .16【知识考点】平移的性质【思路分析】首先根据平移的性质,可得BC CE =;然后根据两个三角形的高相等时,面积和底成正比,可得ACE ∆的面积等于ABC ∆的面积,据此解答即可.【解答过程】解:Q 将ABC ∆沿射线BC 方向移动,使点B 移动到点C ,得到DCE ∆, BC CE ∴=,ACE ∆Q 和ABC ∆底边和高都相等,ACE ∴∆的面积等于ABC ∆的面积,又ABC ∆Q 的面积为2, ACE ∴∆的面积为2.故选:A .【总结归纳】(1)此题主要考查了平移的性质和应用,要熟练掌握,解答此题的关键是要明确:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.(2)此题还考查了三角形的面积的求法,要熟练掌握,解答此题的关键是要明确:两个三角形的高相等时,面积和底成正比.11.(2015•宛城区模拟)如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到DEF ∆的位置,10AB =,4DO =,平移距离为6,则阴影部分面积为( )A .48B .96C .84D .42【知识考点】平移的性质【思路分析】根据平移的性质得出6BE =,10DE AB ==,则6OE =,则阴影部分面积ODFC ABEO S S ==四边形梯形,根据梯形的面积公式即可求解.【解答过程】解:由平移的性质知,6BE =,10DE AB ==,ABC DEF S S ∆∆=, 1046OE DE DO ∴=-=-=,()()1110664822DEF EOC ABC EOC ODFC ABEO S S S S S S AB OE BE ∆∆∆∆∴=-=-==+⋅=+⨯=四边形梯形. 故选:A .【总结归纳】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键.12.(2014春•台州月考)如图,把正方形ABCD 的对角线AC 分成n 段,以每段为对角线作正方形,设这n 个小正方形的周长和为P ,正方形ABCD 的周长为L ,则P 与L 的关系是( )A .P L >B .P L <C .P L =D .P 与L 无关【知识考点】平移的性质【思路分析】运用平移的方法,发现:所有的小正方形的周长的和等于大正方形的周长. 【解答过程】解:将小正方形的上边平移至AB 所在直线,根据平移的性质,所有小正方形的上边长度和为AB ,同理可得,所有小正方形左边长度和为AD , 所有小正方形右边长度和为BC , 所有小正方形下边长度和为CD , 所以,P L =. 故选:C .【总结归纳】此题主要考查了平移的性质和应用.13.(2019春•番禺区期中)下列图形不是由平移而得到的是( ) A .B .C .D .【知识考点】利用平移设计图案【思路分析】根据平移定义:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移可得A 、B 、C 都是平移得到的,选项D 中的对应点的连线不平行,两个图形需要经过旋转才能得到.【解答过程】解:A、图形是由平移而得到的,故此选项不合题意;B、图形是由平移而得到的,故此选项不合题意;C、图形是由平移而得到的,故此选项不合题意;D、图形是由旋转而得到的,故此选项符合题意;故选:D.【总结归纳】此题主要考查了图形的平移,关键是掌握平移的定义.14.(2015秋•盐都区期末)如图所示的图案分别是一些汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A.B.C.D.【知识考点】利用平移设计图案【思路分析】根据旋转变换,平移变换,轴对称变换对各选项分析判断后利用排除法求解.【解答过程】解:A、可以由一个“基本图案”旋转得到,不可以由一个“基本图案”平移得到,故本选项不符合题意;B、是轴对称图形,不是基本图案的组合图形,故本选项不符合题意;C、不可以由一个“基本图案”平移得到,故本选项不符合题意;D、可以由一个“基本图案”平移得到,故本选项符合题意;故选:D.【总结归纳】本题考查了生活中的平移现象,仔细观察各选项图形是解题的关键.15.(2018秋•沁阳市期末)将一个四边形截去一个角后,它不可能是()A.六边形B.五边形C.四边形D.三角形【知识考点】多边形【思路分析】根据一个四边形截一刀后得到的多边形的边数即可得出结果.【解答过程】解:一个四边形沿对角线截一刀后得到的多边形是三角形,一个四边形沿平行于边的直线截一刀后得到的多边形是四边形,一个四边形沿除上述两种情况的位置截一刀后得到的多边形是五边形,故选:A.【总结归纳】本题考查了多边形,能够得出一个四边形截一刀后得到的图形有三种情形,是解决本题的关键.16.(2017秋•肇源县期末)把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是()A.16 B.17 C.18 D.19【知识考点】多边形【思路分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(1)n+边形或(1)n-边形.【解答过程】解:当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选:A.【总结归纳】此题主要考查了多边形,剪去一个角的方法可能有三种:经过两个相邻顶点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.17.(2017秋•东莞市校级月考)如果从一个多边形的一个顶点出发作它的对角线,最多能将多边形分成2011个三角形,那么这个多边形是()A.2012边形B.2013边形C.2014边形D.2015边形【知识考点】多边形的对角线【思路分析】经过n边形的一个顶点的所有对角线把多边形分成(2)n-个三角形,根据此关系式求边数.【解答过程】解:设多边形有n条边,则22011n-=,解得:2013n=.所以这个多边形的边数是2013.故选:B.【总结归纳】本题考查了多边形的对角线,解决此类问题的关键是根据多边形过一个顶点的对角线与分成的三角形的个数的关系列方程求解.18.(2014•大兴区一模)正五边形各内角的度数为()A.72︒B.108︒C.120︒D.144︒【知识考点】多边形内角与外角【思路分析】方法一:先根据多边形的内角和公式(2)180g求出内角和,然后除以5即可;n-︒方法二:先根据正多边形的每一个外角等于外角和除以边数,再根据每一个内角与相邻的外角是邻补角列式计算即可得解.【解答过程】解:方法一:(52)180540g,-︒=︒︒÷=︒;5405108方法二:360572︒÷=︒,︒-︒=︒,18072108所以,正五边形每个内角的度数为108︒.故选:B.【总结归纳】本题考查了正多边形的内角与外角的关系,注意两种方法的使用,通常利用外角和与每一个外角的关系先求外角的度数更简单一些.19.(2014•独山县模拟)如图,一个60︒的角的三角形纸片,剪去这个60︒角后,得到一个四边形,则12∠+∠的度数为()。
(精心整理)基本平面图形——练习题

CDB EAOCA DBC N M BA 21EOD CBA图(6)D 'B 'AOCGDB第五章基本平面图形一、1. 1.46°= ° ′ ″. 28°7′12″= °.2. 如图,已知OE 平分∠AOB ,OD 平分∠BOC ,∠AOB 为直角, ∠EOD=70°,则∠BOC 的度数为 .3. 如图,直线上四点A 、B 、C 、D,看图填空:①AC=______+BC;②CD=AD —_______;③AC+BD —BC=_______.4、如图,由泰山到青岛的某一次列车,运行途中停靠的车站依次是:泰山—济南—淄博—潍坊—青岛,那么要为这次列车制作的火车票有______.5.用一个钉子把一根细木条钉在墙上,木条就可能绕着钉子 ,原因是 ;当用两个钉子把木条钉在墙上时,木条就被固定住,其依据是 . 6.如图,AB 的长为m ,BC 的长为n ,M 、N 分别是AB 、BC 的中点,则MN=7、如图(6),把一张长方形的纸按图那样折叠后,B 、D 两点落在B ′、D ′点处, 若得∠AOB ′=700, 则∠B ′OG 的度数为 。
8、如上右图,是一副三角板重叠而成的图形,则∠AOD+∠BOC=_____________. 9.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=57°,则∠2=10. 一个人从A 点出发向北偏东65°的方向走到B 点,再从B 点出发向南偏西15°方向走到C 点,那么∠ABC 的度数是 二、10、下列说法中,正确的是( )A .直线a 、b 经过点M B. 直线A 、B 相交于点C C. 直线A 、B 相交于点m D. 直线AB,CD 相交于点m11. 一轮船航行到B 处测得的小岛A 的方向为北偏东30°,那么从A 处观测此时B 处的方向为( )A.北偏东30°B.北偏东60°C.南偏西30°D.南偏西60°12、在时刻8:32时,时钟上的时针与分针之间的所成的夹角是()A.70°B.64°C.76°D.80°13.如图,圆的半径为4,阴影部分扇形的面积是()A. πB. 2πC. 3πD. 4π14. 同一平面内有四点,每过两点画一条直线,则直线的条数是()A.1条 B.4条 C.6条 D.1条或4条或6条15、已知A、B两点之间的距离是10 cm,C是线段AB上的任意一点,则AC中点与BC中点间的距离是()A.3 cmB.4 cmC.5 cmD.不能计算16、平面上有四点,经过其中的两点画直线最多可画出( ).A.三条B.四条C.五条D.六条17、如图,O为直线AB上一点,∠COB=26°30′,则∠1=( ).A.153°30′B.163°30′C.173°30′D.183°30′18、如图6,∠AOB为平角,且∠AOC=21∠BOC ,则∠BOC的度数是()19、如图7,军舰从港口沿OB方向航行,它的方向是()A.东偏南30°B.南偏东60°C.南偏西30°D.北偏东30°20、下列说法中正确的是( )A、8时45分,时针与分针的夹角是30°B、6时30分,时针与分针重合C、3时30分,时针与分针的夹角是90°D、3时整,时针与分针的夹角是90°21、如果线段AB=5cm,线段BC=4cm,那么A,C两点之间的距离是()A. 9cmB.1cmC.1cm或9cmD.以上答案都不对22、如图,下列表示角的方法,错误的是( )A.∠1与∠AOB表示同一个角;B.∠AOC也可用∠O来表示C.图中共有三个角:∠AOB、∠AOC、∠BOC;D.∠β表示的是∠BOC23、已知OA⊥OC,∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30B.150C.30或150D.以上都不对24、如图,四条表示方向的射线中,表示北偏东60°的是( )(1)ba(3)a(2)BBDCBA25.下列各角中,不能用一副三角板拼出的角度为()A. 60°B.75°C. 135°D. 140°26.关于中点的说法正确的是()A.若AB=BC,则点B是线段AC的中点B.若AB=21AC,则点B是线段AC的中点C. 若BC=21AC,则点B是线段AC的中点D. 若AB=BC =21AC,则点B是线段AC的中点27.在下列时刻,钟面上时针与分针成直角的情况()A.12时15分B.9时C.3时30分D.6时45分28.直线l上顺次三点A、B、C,M是AB中点,N是AC若AB=12cm,BC=8cm,则MN=()A.2 cmB.4 cmC.8 cmD.10 cm29.如图,下列说法错误的是()A. A点在O点的北偏东60°方向B. B点在O点的西偏北30°方向C.C点在O点的正南方向D. D点在O点的东南方向30.下面四个选项中,能用∠1,∠AOB,∠O三种方法表示同一个角的是()A B C D31. 一根绳子弯曲成如图(1)所示的形状,当剪刀像图(2)那样沿虚线a把绳子剪断时,绳子被剪为5段;当剪刀像图(3)那样沿虚线b(b∥a)把绳子再剪一次时,绳子被剪为9段.若剪刀在虚线a,b之间再剪(n-1)次(剪刀的方向与a平行),这样一共剪n次时(不含沿虚线a剪的一次)绳子的段数为()A.4n+1B.4n+2C.4n+3D.4n+533、如图,在公路l的两旁有两个工厂A、B,要在公路上搭建一个货场让A、B两厂使用,要使货场到A、B两厂的距离之和最小,问货场应建在什么位置?为什么?34.你能在图中找出一点P,使点P到点A、B、C、D四个点的距离之和最小吗?东四、35如图,A 、B 、C 、D 在同一条直线上,已知AC=BD=18cm ,且AB:AD=2:11,求AB,BC 的长度。
认识平面图形练习题

认识平面图形练习题平面图形是几何图形中的常见类型,通过练习题可以帮助我们更好地认识和理解这些图形。
在下面的练习题中,你将会看到各种平面图形,并进行相关问题的解答。
通过这些练习,你可以进一步巩固对平面图形的认识和理解。
练习题一:直角三角形1. 给定一个直角三角形ABC,已知∠C=90°,AC=5cm,BC=12cm,求AB的长度。
解答:根据勾股定理,我们可以得到AB的长度:AB = √(AC² +BC²) = √(5² + 12²) = √(25 + 144) = √169 = 13cm。
练习题二:矩形2. 已知一个矩形的长为8cm,宽为4cm,求该矩形的周长和面积。
解答:矩形的周长可以通过公式计算:周长 = 2(长 + 宽) = 2(8 + 4)= 2(12) = 24cm。
矩形的面积可以通过公式计算:面积 = 长 ×宽 = 8 × 4 = 32cm²。
练习题三:正方形3. 如果一个正方形的周长为20cm,求该正方形的边长和面积。
解答:正方形的周长等于4边长度的总和,所以边长为20cm ÷ 4 =5cm。
正方形的面积可以通过公式计算:面积 = 边长 ×边长 = 5 × 5 =25cm²。
练习题四:圆4. 已知一个圆的半径为6cm,求该圆的周长和面积(取π=3.14)。
解答:圆的周长可以通过公式计算:周长= 2πr = 2 × 3.14 × 6 = 37.68cm。
圆的面积可以通过公式计算:面积= πr² = 3.14 × 6² = 113.04cm²。
练习题五:平行四边形5. 在平行四边形ABCD中,已知AB = 6cm,BC = 8cm,求这个平行四边形的周长和面积。
解答:平行四边形的周长可以通过公式计算:周长 = 2(AB + BC) = 2(6 + 8) = 2(14) = 28cm。
难点详解青岛版七年级数学下册第13章平面图形的认识同步训练练习题(精选含解析)

七年级数学下册第13章平面图形的认识同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性2、下列各组线段中,能构成三角形的是()A.2、4、7 B.4、5、9 C.5、8、10 D.1、3、63、数学课上,同学们在作ABC中AC边上的高时,共画出下列四种图形,其中正确的是().A.B.C .D .4、在ABC 中,1AB =,4BC =,则AC 的长可能是( )A .2B .3C .4D .55、衢州钟灵塔的塔基是个正n 边形(n 是正整数).测得塔基所在的正n 边形的一个外角为60°,如图所示,n 的值是( )A .5B .6C .7D .86、已知O 中,最长的弦长为16cm ,则O 的半径是( )A .4cmB .8cmC .16cmD .32cm7、若一个正多边形的每个内角度数都为108°,则这个正多边形的边数是 ( )A .5B .6C .8D .108、若一个三角形的两条边的长为5和7,那么第三边的长可能是( )A .2B .10C .12D .139、以下长度的三条线段,能组成三角形的是( )A .2,3,5B .4,4,8C .3,4.8,7D .3,5,910、如图,AB CD ∥,45A ∠=︒,30C ∠=︒,则E ∠的度数是( )A .10°B .15°C .20°D .25°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个多边形的内角和为1080,则这个多边形是________边形.2、如图,是编号为1、2、3、4的400m 跑道,每条跑道由两条直的跑道和两端是半圆形的跑道组成,每条跑道宽1m ,内侧的1号跑道长度为400m ,则2号跑道比1号跑道长 _____m ;若在一次200m 比赛中(每个跑道都由一个半圆形跑道和部分直跑道组成),要使得每个运动员到达同一终点线,则4号跑道起跑点比2号跑道起跑点应前移 _____m (π取3.14).3、如图,AE 是△ABC 的中线,BF 是△ABE 的中线,若△ABC 的面积是20cm 2,则S △ABF =_____cm 2.4、一个五边形共有__________条对角线.5、已知a ,b ,c 是ABC 的三边长,满足()2720a b -+-=,c 为奇数,则c =______.三、解答题(5小题,每小题10分,共计50分)1、如图,在同一平面内有四个点A 、B 、C 、D ,请按要求完成下列问题.(注:此题作图不要求写出画法和结论)(1)分别连接AB、AD,作射线AC,作直线BD与射线AC相交于点O;(2)我们容易判断出线段AB+AD与BD的数量关系是,理由是.2、一个多边形,除一个内角外,其余各内角之和等于2012°,求这个内角的度数及多边形的边数.3、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520°的新多边形,求原多边形的边数.4、小刚从点A出发,前进10米后向右转60°,再前进10米后又向右转60°,按照这样的方式一直走下去,他能回到A点吗?当他第一次回到A点,他走了多少米?5、【教材重现】如图是数学教材第135页的部分截图.在多边形中,三角形是最基本的图形.如图4.4.5所示,每一个多边形都可以分割成若干个三角形.数一数每个多边形中三角形的个数,你能发现什么规律?在多边形中,连接不相邻的两个顶点,所得到的线段称为多边形的对角线.【问题思考】结合如图思考,从多边形的一个顶点出发,可以得到的对角线的数量,并填写表:【问题探究】n边形有n个顶点,每个顶点分别连接对角线后,每条对角线重复连接了一次,由此可推导出,n边形共有对角线(用含有n的代数式表示).【问题拓展】(1)已知平面上4个点,任意三点不在同一直线上,一共可以连接条线段.(2)已知平面上共有15个点,任意三点不在同一直线上,一共可以连接条线段.(3)已知平面上共有x个点,任意三点不在同一直线上,一共可以连接条线段(用含有x 的代数式表示,不必化简).-参考答案-一、单选题1、D【解析】【分析】根据三角形的稳定性解答即可.【详解】解:人字梯中间一般会设计一“拉杆”,是因为三角形具有稳定性,故选:D.【点睛】本题考查三角形的稳定性,熟知三角形具有稳定性是解答的关键.2、C【解析】【分析】根据三角形的三边关系定理逐项判断即可得.【详解】解:三角形的三边关系定理:任意两边之和大于第三边.+<,不能构成三角形,此项不符题意;A、247+=,不能构成三角形,此项不符题意;B、459+>,能构成三角形,此项符合题意;C、5810+<,不能构成三角形,此项不符题意;D、136故选:C.【点睛】本题考查了三角形的三边关系定理,熟练掌握三角形的三边关系定理是解题关键.3、A【解析】【分析】满足两个条件:①经过点B;②垂直AC,由此即可判断.【详解】解:根据垂线段的定义可知,A 选项中线段BE ,是点B 作线段AC 所在直线的垂线段,故选:A .【点睛】本题考查作图-复杂作图,垂线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解析】【分析】根据三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边,则第三边的长度应是大于两边的差,而小于两边的和,这样就可求出第三边长的范围.【详解】∵1AB =,4BC =,∴41-<AC <41+,即35AC << .观察选项,只有选项C 符合题意.故选:C .【点睛】本题考查三角形三边关系,能根据三角形的三边关系确定BC 的取值范围是解决此题的关键.5、B【解析】【分析】根据多边形外角和为360°即可得答案.【详解】∵正n边形的一个外角为60°,多边形外角和为360°,∴n=360÷60=6,故选:B.【点睛】本题考查多边形外角和,熟练掌握多边形的外角和为360°是解题关键.6、B【解析】【分析】根据直径是圆中最长的弦即可得到答案.【详解】解:∵O中,最长的弦长为16cm,即直径为16cm,∴O的半径是8cm,故选:B.【点睛】此题考查了圆的弦的定义及理解圆中最长的弦,正确理解直径是圆中最长的弦是解题的关键.7、A【解析】【分析】先求出多边形的每一个外角的度数,再利用多边形的外角和即可求出答案.【详解】解:∵多边形的每一个内角都等于108°,多边形的内角与外角互为邻补角,∴每个外角是:180°−108°=72°,∴多边形中外角的个数是360°÷72°=5,则多边形的边数是5.故选:A.【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟练掌握的内容.8、B【解析】【分析】根据在三角形中三边关系可求第三边长的范围,再选出答案.【详解】解:设第三边长为x,则由三角形三边关系定理得7-5<x<7+5,即2<x<12.只有选项B符合题意,故选:B.【点睛】本题考查了三角形三边关系,掌握三角形的三边关系是解题的关键.三角形的三边关系:三角形两边之和大于第三边,两边之差小于第三边.9、C【解析】【分析】由题意根据三角形的三条边必须满足:任意两边之和大于第三边,任意两边之差小于第三边进行分析即可.【详解】解:A、2+3=5,不能组成三角形,不符合题意;B 、4+4=8,不能组成三角形,不符合题意;C 、3+4.8>7,能组成三角形,符合题意;D 、3+5<9,不能组成三角形,不符合题意.故选:C .【点睛】本题主要考查对三角形三边关系的理解应用.注意掌握判断是否可以构成三角形,只要判断两个较小的数的和大于最大的数即可.10、B【解析】【分析】根据平行线的性质求出关于∠DOE ,然后根据外角的性质求解.【详解】解:∵AB ∥CD ,∠A =45°,∴∠A =∠DOE =45°,∵∠DOE =∠C +∠E ,又∵30C ∠=︒,∴∠E =∠DOE -∠C =15°.故选:B【点睛】本题比较简单,考查的是平行线的性质及三角形内角与外角的关系.掌握两直线平行,内错角相等;三角形的一个外角等于和它不相邻的两个内角的和是解题关键.二、填空题1、八##8【解析】【分析】n边形的内角和是(n-2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【详解】解:根据n边形的内角和公式,得(n-2)•180=1080,解得n=8.∴这个多边形的边数是8.故答案为:八.【点睛】本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.2、 6.28 6.28【解析】【分析】利用各跑道直线跑道相等,每条跑道宽1m,两个半圆相加得一个整圆列出式子对比即可.【详解】解:设直线部分长为l米1号:1222400`2r l m π⨯⨯+=2号:12(1)22(4002)2r l m ππ+⨯⨯+=+3号:12(2)22(4004)2r l m ππ+⨯⨯+=+4号:12(3)22(4006)2r l m ππ+⨯⨯+=+2号比1号长:(4002)4002 6.28m ππ+-==4号起点比2号起点前移:(4006)(4002)2 6.282m πππ+-+== 故答案为:6.28,6.28【点睛】本题考查了列代数式,圆的周长公式,整式的加减等知识点,熟练掌握是解题的关键.3、5【解析】【分析】利用三角形的中线把三角形分成面积相等的两个三角形进行解答.【详解】解:∵AE 是△ABC 的中线,BF 是△ABE 的中线,∴S △ABF =14S △ABC =14×20=5cm 2. 故答案为:5.【点睛】本题考查了三角形的面积,能够利用三角形的中线把三角形分成面积相等的两个三角形的性质求解是解题的关键.4、5【解析】【分析】由n 边形的对角线有:()32n n - 条,再把5n =代入计算即可得.【详解】解:n 边形共有()23n n -条对角线, ∴五边形共有()55352-=条对角线.故答案为:5【点睛】 本题考查的是多边形的对角线的条数,掌握n 边形的对角线的条数是解题的关键.5、7【解析】【分析】绝对值与平方的取值均≥0,可知70a -=,20b -=,可得a 、b 的值,根据三角形三边关系a b c a b c +>⎧⎨-<⎩求出c 的取值范围,进而得到c 的值.【详解】 解:()2720a b -+-= 70a ∴-=,20b -=72a b ∴==,由三角形三边关系a b c a b c +>⎧⎨-<⎩可得95c c >⎧⎨<⎩ 59c ∴<< c 为奇数7c ∴=故答案为:7.【点睛】本题考查了绝对值、平方的非负性,三角形的三边关系等知识点.解题的关键是确定所求边长的取值范围.三、解答题1、(1)见解析;(2)AB+AD>BD,在三角形中,两边之和大于第三边.【解析】【分析】(1)根据直线,射线,线段的作图方法作图即可;(2)根据三角形三边的关系:两边之和大于第三边进行求解即可.【详解】解:(1)如图所示,即为所求;(2)我们容易判断出线段AB+AD与BD的数量关系是:AB+AD>BD,理由是:在三角形中,两边之和大于第三边,故答案为:AB+AD>BD,在三角形中,两边之和大于第三边.【点睛】本题主要考查了三角形三边的关系,作直线,射线和线段,解题的关键在于能够熟练掌握相关知识进行求解.2、这个内角的度数是148°,边数为14【解析】【分析】根据多边形内角和定理:(2)180n -︒(3)n 且n 为整数),可得:多边形的内角和一定是180︒的倍数,而多边形的内角一定大于0︒,并且小于180︒,用2012除以180,根据商和余数的情况,求出这个多边形的边数与2的差是多少,即可求出这个多边形的边数,再用这个多边形的内角和减去2012︒,求出这个内角的度数是多少即可.【详解】解:20121801132÷=⋯,∴这个多边形的边数与2的差是12,∴这个多边形的边数是:12214+=,∴这个内角的度数是:180122012︒⨯-︒21602012=︒-︒148=︒答:这个内角的度数为148︒,多边形的边数为14.【点睛】本题主要考查了多边形的内角和,解题的关键是要明确多边形内角和定理:(2)180n -︒(3)n 且n 为整数).3、15【解析】【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案.【详解】设新多边形是n 边形,由多边形内角和公式得:180(2)2520n ︒⨯-=︒,解得:16n =,则原多边形的边数是:16115-=.∴原多边形的边数是15.【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式. 4、60米【解析】【分析】先确定小刚所走路径为正多边形,然后再利用外角和定理计算出多边形的边数,进而可得答案.【详解】解:∵前进10米后向右转60°,多边形的边相等,每个内角=180°-60°=120°,每个内角都相等,∴小刚所走路径为正多边形,设这个正多边形的边数为n ,则60n =360,解得n =6,故他第一次回到出发点A 时,共走了:10×6=60(m ).答:他能回到A 点,当他第一次回到A 点,他走了60米.【点睛】本题考查生活的正多边形,掌握正多边形的定义是解题关键.5、规律为:多边形的边数减去2,就是多边形中的三角形的个数; 2条,3条,9条,3n -条;(3)2n n -条;(1)6;(2)105;(3)()12x x - 【解析】【分析】通过观察多边形边数与其分割的三角形个数,即可发现规律利用规律,多边形的边数3-=一个顶点出发的对角线数,直接填写表格即可先求出所有顶点得到的对角线之和,最后除以2即可得到n边形的对角线条数(1)根据题意,四边形一个顶点可以得到一条,四个点共4条,再去除一半,加上四个点单独连接的4条线段,即可得到答案.(2)根据规律可以发现:十五边形的每个点可以得到12条,15点有180条,去掉一半,加上15个点组成的十五边形的的15条边,即可得到答案.(3)通过上述两小题,即可以找到对应的规律,利用规律进行求解即可.【详解】由图可以直接发现:多边形的边数与其分割的三角形个数相差2,故规律为:多边形的边数减去2,就是多边形中的三角形的个数.利用上图规律,便可以知道从五边形的一个顶点出发,得到2条对角线;六边形的一个顶点出发,得到3条对角线;十二边形的一个顶点出发,得到9条对角线;n边形的一个顶点出发,得到3n-条对角线.n边形的一个顶点可以得到3n-条对角线,故n个顶点共有(3)n n-,由于每条对角线重复连接了一次,故n边形共有(3)2n n-条对角线(1)解:有四个点可以组成四边形,每个点可以得到1条对角线,四个点共4条,每条对角线重复连接了一次,∴对角线条数为2,四边形的边数为4,∴一共可以连接2+4=6条线段.(2)解:有15个点可以组成十五边形,每个点可以得到12条对角线,四个点共180条,每条对角线重复连接了一次,∴对角线条数为90,四边形的边数为15,∴一共可以连接90+15=105条线段.(3)解:由前面题的规律可知:有x个点可以组成x边形,每个点可以得到3x-条对角线,四个点共(3)x x-条,每条对角线重复连接了一次,∴对角线条数为(3)2x x-,四边形的边数为x,∴一共可以连接()()3122x x x xx--+=条线段.【点睛】本题主要是考察了图形类的规律问题以及列代数式,根据题意,找到对角线与多边形的边数关系是解决本题的关键,另外,注意本题是问的点与点之间可连接的线段数,不要只算对角线的条数.。
(完整版)第七章平面图形的认识(二)知识点归纳+典型例题,推荐文档

第七章 平面图形的认识(二)一、知识梳理1、在同一平面上,两条直线的位置关系有 或者 .练习:平面内三条直线的交点个数可能有 ( )A. 1个或3个B.2个或3个C.1个或2个或3个D.0个或1个或2个或3个2、判定与性质:什么叫做平行线?在同一平面内, 的两直线叫平行线。
的两直线平行。
判 定性 质(1) ,两直线平行。
(2) ,两直线平行。
(3) ,两直线平行。
(1)两直线平行, 。
(2)两直线平行, 。
(3)两直线平行,互补。
如果两条直线互相平行,那么其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
(等积变形)(2)如图,长方形ABCD 的面积为16,四边形BCFE 为梯形,BC 与DE 交于点G,则阴)如图,对面积为,使得记其面积为S 1;第二次操作,分别延长A 1B 1,B 1C 1,C 1A 1至点A 2,B 2,C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1,顺次连接A 2,B 2,C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A 5B 5C 5,则其面积S 5= .(4)已知方格纸中的每个小方格是边长为1的正方形,A ,B 两点在小方格的顶点上,位置如图所示,在小方格的顶点上确定一点C ,连接AB ,AC ,BC ,使△ABC 的面积为3个平方单位.则这样的点C 共有 个.(1)如图,边长为3cm ,与5cm 的两个正方形并排放在一起,在大正方形中画一段以它的一个顶点为圆心,边长为半径的圆弧,则阴影部分的面积是______cm 2(π取3).F3、图形的平移 在平面内,将一个图形沿着________________移动____________,这样的____________叫做图形的平移。
4、平移的性质(1)平移不改变图形的_______、________,只改变图形的_________。
苏科版七年级上册第六章平面图形认识一选择题专项练习

苏科版七年级上册第六章平面图形认识一选择题专项练习一.选择题(共30小题)1.(2008•黔南州)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其2.有以下3个说法:①垂线相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直3.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;4.下列四个说法:①射线有一个端点,它能够度量长度;②连接两点之间的直线的长度叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其5.下列说法中,正确的个数有()①同一平面内,不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④一条直线有无数条平行线;6.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线7.下列说法错误的结论有()(1)相等的角是对顶角;(2)平面内两条直线的位置是相交,垂直,平行;(3)若∠A与B∠互补,则8.下列说法:(1)射线AB与射线BA是同一条射线;(2)两点之间,直线最短;(3)在,(﹣3)3,﹣22,0,﹣(﹣2)中,负数的个数有3个;(4)若AP=PB,则点P是线段AB的中点;(5)一条直线的平行线有且只有①不相交的两条直线是平行线;②两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直;③过一点可以而且只可以画一条直线与已知直线平行;10.下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点11.下列说法①相等的角是对顶角;②平面内两条直线的位置关系是垂直或平行;③若∠A与∠B互补,则∠A与∠B22.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,过一点有且只有一条直线与已知直线垂直.(3)在同一平面内,不重合的两条直线的位置关系只有相交,平行两种.(4)不相交的两条直线叫做平行线.23.下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有交点,那么这两条线段所在直线也没有交点;(3)邻补角的两条角平分线构成一个直角;(4)同一平面内,过一点有且只有一条直线与已知直线垂直;24.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;26.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线平行;⑤若AC=BC,则点C是线段AB的中点,其中错误的27.下列说法正确的有()(1)两条直线相交,有且只有一个交点;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;(3)过一点有且只有一条直线与已知直线平行;28.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;29.下列说法中,正确的个数是()①两条不相交的直线叫平行线;②经过一点有且只有一条直线与已知直线平行;③连接两点间的线段叫做两点间的距30.下列四种说法中:①过一点有且只有一条直线与已知直线垂直;②相等的两个角一定是对顶角;③过一点有且只苏科版七年级上册第六章平面图形认识一选择题专项练习参考答案与试题解析一.选择题(共30小题)1.(2008•黔南州)在同一平面内,下列说法:①过两点有且只有一条直线;②两条不相同的直线有且只有一个公共点;③经过直线外一点有且只有一条直线与已知直线垂直;④经过直线外一点有且只有一条直线与已知直线平行,其2.有以下3个说法:①垂线相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直3.下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;4.下列四个说法:①射线有一个端点,它能够度量长度;②连接两点之间的直线的长度叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与直线上各点连接的所有线段中,垂线段最短.其5.下列说法中,正确的个数有()①同一平面内,不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线与已知直线平行;④一条直线有无数条平行线;6.下列说法正确的有()个.①不相交的两条直线是平行线;②在同一平面内,两条不相交的线段是平行线;③过一点可以而且只可以画一条直线7.下列说法错误的结论有()(1)相等的角是对顶角;(2)平面内两条直线的位置是相交,垂直,平行;(3)若∠A与B∠互补,则,∴∠A+8.下列说法:(1)射线AB与射线BA是同一条射线;(2)两点之间,直线最短;(3)在,(﹣3)3,﹣22,0,﹣(﹣2)中,负数的个数有3个;(4)若AP=PB,则点P是线段AB的中点;(5)一条直线的平行线有且只有,在19.下列说法正确的有()个①不相交的两条直线是平行线;②两条直线相交所成的四个角中,如果有三个角相等,那么这两条直线互相垂直;③过一点可以而且只可以画一条直线与已知直线平行;10.下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点11.下列说法①相等的角是对顶角;②平面内两条直线的位置关系是垂直或平行;③若∠A与∠B互补,则∠A与∠B根据补角的定义求A+∠∠MFE=22.下列说法中错误的个数是()(1)过一点有且只有一条直线与已知直线平行.(2)在同一平面内,过一点有且只有一条直线与已知直线垂直.(3)在同一平面内,不重合的两条直线的位置关系只有相交,平行两种.(4)不相交的两条直线叫做平行线.23.下列说法:(1)两点之间的距离是两点间的线段;(2)如果两条线段没有交点,那么这两条线段所在直线也没有交点;(3)邻补角的两条角平分线构成一个直角;(4)同一平面内,过一点有且只有一条直线与已知直线垂直;24.下列说法正确的个数是()①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④三条直线两两相交,总有三个交点;26.下列说法:①两点之间的所有连线中,线段最短;②在数轴上与表示﹣1的点距离是3的点表示的数是2;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线平行;⑤若AC=BC,则点C是线段AB的中点,其中错误的27.下列说法正确的有()(1)两条直线相交,有且只有一个交点;(2)在同一平面内,过一点有且只有一条直线与已知直线垂直;(3)过一点有且只有一条直线与已知直线平行;28.下列说法:①过两点有且只有一条直线;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;29.下列说法中,正确的个数是()①两条不相交的直线叫平行线;②经过一点有且只有一条直线与已知直线平行;③连接两点间的线段叫做两点间的距30.下列四种说法中:①过一点有且只有一条直线与已知直线垂直;②相等的两个角一定是对顶角;③过一点有且只。
小学数学平面图形总复习知识点和练习题

小学数学总复习——平面图形一、线和角1、线⏹直线:直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线;⏹射线:射线只有一个端点;长度无限;⏹线段:线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短;⏹平行线:在同一平面内,不相交的两条直线叫做平行线;两条平行线之间的垂线长度都相等;⏹垂线:两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足;从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离;2、角1从一点引出两条射线,所组成的图形叫做角;这个点叫做角的顶点,这两条射线叫做角的边; 2角的分类⏹锐角:小于90°的角叫做锐角;⏹直角:等于90°的角叫做直角;⏹钝角:大于90°而小于180°的角叫做钝角;⏹平角:角的两边成一条直线,这时所组成的角叫做平角;平角180°;⏹周角:角的一边旋转一周,与另一边重合;周角是360°;二、平面图形1、长方形1特征:对边相等,4个角都是直角的四边形;有两条对称轴;2计算公式: c=2a+b s=ab2、正方形1特征:四条边都相等,四个角都是直角的四边形;有4条对称轴;2计算公式: c=4a s=a²3、三角形1特征:由三条线段围成的图形;内角和是180度;三角形具有稳定性;三角形有三条高;2计算公式: s=ah/23分类按角分:⏹锐角三角形:三个角都是锐角;⏹直角三角形:有一个角是直角;等腰三角形的两个锐角各为45度,它有一条对称轴;⏹钝角三角形:有一个角是钝角;按边分:⏹不等边三角形:三条边长度不相等;⏹等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴;⏹等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴;4、平行四边形1特征:两组对边分别平行的四边形;相对的边平行且相等;对角相等,相邻的两个角的度数之和为180度;平行四边形容易变形; 2计算公式:s=ah5、梯形1特征:只有一组对边平行的四边形;等腰梯形有一条对称轴;2 公式:s=a+bh/2=mh6、圆1 圆的认识1)平面上的一种曲线图形;2)圆中心的一点叫做圆心;一般用字母o表示;3)半径:连接圆心和圆上任意一点的线段叫做半径;一般用r表示;4)在同一个圆里,有无数条半径,每条半径的长度都相等;5)通过圆心并且两端都在圆上的线段叫做直径;一般用d表示;6)同一个圆里有无数条直径,所有的直径都相等;7)同一个圆里,直径等于两个半径的长度,即d=2r;8)圆的大小由半径决定; 圆有无数条对称轴;2圆的画法1)把圆规的两脚分开,定好两脚间的距离即半径;2)把有针尖的一只脚固定在一点即圆心上;3)把装有铅笔尖的一只脚旋转一周,就画出一个圆;3 圆的周长1)围成圆的曲线的长叫做圆的周长;2)把圆的周长和直径的比值叫做圆周率;用字母∏表示;4 圆的面积圆所占平面的大小叫做圆的面积;5计算公式d=2r r=d/2 c=∏d c=2∏r s=∏r²7、扇形1扇形的认识一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形;圆上AB两点之间的部分叫做弧,读作“弧AB”;顶点在圆心的角叫做圆心角;在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关;扇形有一条对称轴;2 计算公式s=n∏r²/360 c=∏d/3608、环形1 特征:由两个半径不相等的同心圆相减而成,有无数条对称轴;2 计算公式 s=∏R²-r²9、轴对称图形特征:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形;折痕所在的这条直线叫做对称轴;1)正方形有4条对称轴, 长方形有2条对称轴;2)等腰三角形有2条对称轴,等边三角形有3条对称轴;3)等腰梯形有一条对称轴,圆有无数条对称轴;4)菱形有4条对称轴,扇形有一条对称轴;练习一、填空题:1、一个长4厘米、宽3厘米的长方形按3:1放大,得到的图形的周长是厘米.2、一张正方形纸的边长是12厘米,在它的边长上剪去一个长4厘米、宽3厘米的长方形后,剩下的周长是厘米.3、把一个长方形的框架拉成一个平行四边形,这个平行四边形的周长与原长方形周长相比-- ,这个平行四边形的面积与原长方形面积相比-- ;4、一个边长10厘米的正方形,相邻的两边中,一边增加2厘米,另一边减少2厘米,那么它的周长是 ,面积是;5、长方形的周长÷2等于;6、一个长方形长x厘米,宽厘米,周长9厘米.求长方形的长是 ;7、一张长方形纸长10厘米、宽6厘米.剪下一个正方形后如右图,剩下图形的周长;8、一个长方形的周长为a 厘米,宽边比长短3厘米,则这个长方形的长边的长度是;9、用3个边长都是1分米的正方形拼成一个长方形,这个长方形的周长是分米;10、一个长方形花坛的长是5米,宽是3米.这个花坛的周长是米;11、在一个正方形内剪一个半径为3厘米的圆,则正方形的最小周长是;12、一个正方形的边长增加13后,得到的新正方形的周长是48厘米,则原来正方形的边长是厘米,周长是厘米;13、一个正方形的周长是厘米,边长是;14、一个正方形的边长增加2厘米,它的周长增加厘米;15、围棋盘最外层每边能摆放19个棋子,最外层一共可以摆放个棋子;16、一个正方形周长是80厘米,这个正方形的面积是;17、一个正方形的边长扩大2倍,它的周长扩大倍,面积扩大倍;18、两个正方形的边长的比是2:3,那么,这两个正方形的周长比是,面积比是19、如右图,有一个半径为1厘米的小圆环,沿着边长是厘米的正方形外侧作无滑动移动.当小圆环绕正方形滚动一周后,回到原来的位置时,小圆环自转的圈数是圈;20、一个等腰梯形的周长是36厘米,它的上底是9厘米,腰长是6厘米;这个等腰梯形的下底长厘米;21、一个直角梯形的周长为50厘米,两条腰分别为4厘米和5厘米,梯形的高是 ,面积为平方厘米;22、长方形的长与宽都是质数,它们的面积一定是数;23、一个长方形的长增加了20%,宽减少了20%.那么这个长方形的面积%;24、在长方形中画一个最大的三角形,这个三角形的面积是长方形的%;25、如果一个正方形的边长扩大为原来的倍,那么正方形的面积比原来正方形面积增加%;26、平行四边形的底、高分别增加10%,那么新平行四边形的面积比原平行四边形的面积增加%;27、如右图是一个平行四边形,已知两条边分别是6厘米和10厘米其中一条底上的高是8厘米,这个平行四边形的面积是平方厘米;28、一个平行四边形与一个三角形的底相等,它们的高的比是1:2,他们的面积的比是29、一个平行四边形的周长是30厘米,相邻两条边上的高分别是2厘米和3厘米,它的面积是平方厘米;30、一个直角三角形的三条边长度分别是10厘米、8厘米和6厘米,它的面积是;31、如右图中阴影部分面积相当于长方形面积 ;32、一个三角形的底和高都扩大3倍,它的面积扩大倍;33、在图中,梯形的上底是6cm,下底4cm,阴影部分的面积是10c㎡,空白部分的面积是c㎡;34、一个梯形的上底是5厘米,下底是9厘米,面积是56平方厘米,那么这个梯形的高是35、梯形的上下底不变,如果高缩小3倍,则面积 ;36、一张长5cm,宽3cm的长方形中,画一个最大的半圆,这个半圆的周长是cm;37、一个半圆的周长厘米,这个半圆的直径厘米;38、圆面积扩大16倍,则周长随着扩大;39、一个钟表的分针长10cm,经过45分钟,分针的尖端走过了,扫过的面积是40、小圆的半径是3cm,大圆的半径是4cm,大圆与小圆的周长比是,小圆与大圆的面积比是;41、圆的半径增加1厘米,它的周长增加了厘米;42、小圆的半径是4厘米,大圆的半径是5厘米,小圆的周长是大圆周长的43、画一个周长是厘米的圆,圆规两脚间的距离应取cm;44、环形跑道的环宽是1米,如果只跑一圈,外道选手的起跑点要比内道提前米;45、小圆半径是大圆半径的23,小圆面积是大圆面积的46、用一根米的绳子围成一个半圆形,这个半圆的面积是平方米;47、把一个圆沿半径分成若干等份,拼成一个近似的长方形,长方形的周长比圆的周长多10厘米,这个圆的面积是平方厘米;48、右图中阴影部分是大圆的116,是小圆的29,大圆与小圆的面积比是49、如右图,长方形ABCD的面积是12平方分米,那么圆的面积是平方分米;50、一个圆形花坛,半径是3米,外围铺一个1米宽的小路,那么小路面积大约是平方米;得数保留整数51、一个圆形花坛,半径是5米,如果半径增加2米,那么花坛的周长增加米,面积增加平方米;52、有一座房子,长12米,宽8米,在房子外的一个墙角用一根长14米的绳子拴一条狗,这条狗活动的最大可能范围的面积是平方米;53、如右图,在直径为4cm的圆中,有两条互相垂直的线段AB和CD,圆心O到这两条线段的距离都是,则圆中阴影部分的面积是;54、如图,甲和乙是两个正方形,阴影部分的面积是平方厘米;55、如图,正方形的边长为4厘米,一个半径为1厘米的圆沿着正方形的四边内侧滚动一周,则圆滚过的面积为 ;二、求图形面积;1、求阴影的面积;单位:cm2、边长是10厘米的正方形和直径是10厘米的半圆组成如图所示,其中P点是半圆的中点,点Q 是正方形一边的中点,则阴影部分的面积3、如图,三角形AOC是边长为3厘米的正三角形,求阴影部分的面积;4、如图中阴影部分的面积是200平方厘米,求两个圆之间的环形的面积;5、一辆自行车,轮胎外直径60厘米,如果每分钟转100周,要通过一座471米的大桥,约需几分钟6、如图,以AB为直径做半圆,三角形ABC是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB长40厘米;求BC的长度;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A
16
把下面的正方形剪成两个一样的图形, 怎么剪?用画虚线表示。
A
17
第四关 摆一摆
A
18
用几根小棒可以摆一个三角形?
3根
A
19
用几根小棒可以摆一个正方形?
4根
A
20
摆一个长方形至少用几根小棒?
6根
A
21
用4根小棒可以摆出什么图形?
A
22
第五关 数一数
A
23
缺了( 10 )块
A
(3) ( 2) (2) (3 )
24
数一数有几个三角形?
6个
A
25
数一数有几个三角形?
5个
A
26
数一数有几个平行四边形?
3个
A
27
数一数有几个正方形?
5个
A
28
成正方形
A:
B:
C:
D:
A
6
和一下(D)图形可以拼
成正方形
A:
B:
C:
D:
A
7
第二关 折一折
Aห้องสมุดไป่ตู้
8
2 用 1 3 4 6 折成一个
5
2的对面是数字( 5 ) 3的对面是数字( 6 ) 1的对面是数字( 4 )
A
9
4 用 2 1 3 5 折成一个
6
2的对面是数字( 3 ) 4的对面是数字( 6 ) 1的对面是数字( 5 )
A
10
第三关 剪一剪
A
11
把下面的长方形剪成两个一样的图形, 怎么剪?用画虚线表示。
A
12
把下面的长方形剪成两个一样的图形, 怎么剪?用画虚线表示。
A
13
把下面的长方形剪成两个一样的图形, 怎么剪?用画虚线表示。
A
14
把下面的正方形剪成两个一样的图形, 怎么剪?用画虚线表示。
A
15
把下面的正方形剪成两个一样的图形, 怎么剪?用画虚线表示。
认识平面图形 练习题
A
1
第一关 拼一拼
A
2
用两个
可以拼成(C )图形
A:正方形 C:平行四边形
B:长方形 D:三角形
A
3
用两个
不能拼成(A)图形
A:正方形 C:平行四边形
B:长方形 D:三角形
A
4
用两个
可以拼成(B )图形
A:正方形 C:平行四边形
B:长方形 D:三角形
A
5
和一下(B )图形可以拼