航天器控制:航天器姿态主动稳定系统(2)
航天器姿态控制系统设计及优化

航天器姿态控制系统设计及优化随着航天事业的快速发展,航天器的姿态控制系统在飞行中逐渐显露出重要性。
在宇宙环境中,航天器面对着复杂的光学影响、电磁干扰等问题,而姿态控制系统的稳定性和精度对航天器的稳定性、安全性和科研效果都有至关重要的影响。
本文将从航天器姿态控制系统的设计及优化方面,为大家介绍一些有关的知识。
一、航天器姿态控制系统的设计(一)姿态控制系统的基本组成航天器姿态控制系统由控制模型、控制算法、控制器以及执行机构等多个组成部分组成。
控制模型是姿态控制系统的核心,它主要描述了航天器在力学意义下的动态变化,并通过物理方程描述各个状态量之间的相互作用。
控制算法通过控制器将控制模型中的期望输入信号转换为控制信号,从而引导执行机构实现姿态控制。
(二)航天器姿态控制系统的控制方法航天器姿态控制系统的控制方法主要分为开环控制和闭环控制两种。
开环控制是指根据经验公式或者预先设定的控制量,直接输入给执行机构进行姿态控制的方式。
这种控制方式比较简单,但是极易受到外部扰动、系统误差等因素的影响,不太适用于高精度、稳定性要求较高的航天器姿态控制。
闭环控制则是通过反馈控制来实现对航天器姿态的精确控制。
在闭环控制中,分为位置反馈控制和速度反馈控制两种方法。
其中,位置反馈控制是指通过对系统输出位置进行反馈,来完成精确定位调节的过程;速度反馈控制则是通过对系统输出的速度进行反馈,对控制系统的稳定性和响应速度进行控制。
(三)姿态控制系统的性能指标航天器姿态控制系统的性能指标主要包括控制精度、响应速度、稳定性、鲁棒性等。
其中,控制精度指系统的输出与期望输出之间的误差大小,这直接影响到系统的精度和稳定性。
响应速度是指系统对输入信号的响应速度,这直接影响到姿态控制的实时性和精度。
稳定性则是指系统稳定的能力,这主要取决于系统对干扰和噪声的抗干扰能力。
鲁棒性是指系统的适应能力和可靠性,这关乎到控制系统的可靠性和性能。
二、姿态控制系统的优化(一)系统建模姿态控制系统的优化首先需要进行系统建模,通过对控制模型进行准确描述,输出系统的状态方程和控制方程。
航天器制导与控制课后题答案(西电)

航天器制导与控制课后题答案(西电)1.3 航天器的基本系统组成及各部分作用?航天器基本系统一般分为有效载荷和保障系统两大类。
有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。
保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正常工作。
1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么?概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。
内容:轨道控制包括轨道确定和轨道控制两方面的内容。
轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。
姿态控制包括姿态确定和姿态控制两方面内容。
姿态确定是研究航天器相对于某个基准的确定姿态方法。
姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。
姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。
关系:轨道控制与姿态控制密切相关。
为实现轨道控制, 航天器姿态必须符合要求。
也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。
在某些具体情况或某些飞行过程中,可以把姿态控制和轨道控制分开来考虑。
某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。
1.5 阐述姿态稳定的各种方式, 比较其异同。
姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天器姿态运动的形式可大致分为两类。
自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。
自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。
三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在某一参考空间的方向。
航天器的姿态控制与稳定性分析

航天器的姿态控制与稳定性分析一、引言航天器的姿态控制与稳定性是航天工程中极其重要的问题之一。
在航天飞行过程中,航天器的姿态控制能够确保其在各个阶段的飞行中保持稳定,并完成预定任务。
姿态控制与稳定性分析则是对航天器姿态运动方程进行建模和分析的过程,通过数学方法和仿真模拟来预测并优化航天器的运动特性。
二、姿态控制与稳定性分析方法1. 建立数学模型姿态控制与稳定性分析的第一步是建立航天器姿态运动的数学模型。
这包括基本力学方程的建立,如牛顿第二定律、动量守恒定律、角动量守恒定律等。
通过这些基本方程,可以得到航天器的角加速度与力矩之间的关系,从而分析航天器的姿态控制问题。
2. 分析稳定性条件在建立数学模型的基础上,需要进行稳定性分析。
航天器的稳定性可以通过判断系统是否满足一定的稳定条件来进行评估。
常见的稳定性条件包括平衡稳定性、线性稳定性、非线性稳定性等。
通过分析稳定性条件,可以确定姿态控制系统的合理参数范围,确保航天器的稳定性。
3. 设计控制策略基于数学模型和稳定性分析的结果,姿态控制系统需要设计相应的控制策略。
控制策略可以采用传统的PID控制器,也可以采用现代控制理论中的状态空间方法、最优控制方法等。
控制策略的设计旨在通过调节航天器的姿态来实现稳定控制,并满足特定的任务需求。
三、影响航天器姿态控制与稳定性的因素1. 外界扰动在实际的航天任务中,航天器会受到各种外界扰动的影响,如大气阻力、重力梯度、磁场扰动等。
这些扰动会导致姿态控制误差的增大,对航天器的稳定性产生影响。
因此,需要在姿态控制系统设计中考虑这些外界扰动,并采取相应的措施来抵消或减小其影响。
2. 控制器响应速度控制器的响应速度是影响姿态控制与稳定性的另一个重要因素。
如果控制响应速度过慢,可能导致姿态控制系统对快速变化的姿态不能及时响应,从而影响姿态的稳定性。
因此,在设计控制策略时,需要兼顾控制精度和响应速度,以实现快速而稳定的姿态控制。
3. 传感器误差传感器误差也是影响姿态控制与稳定性的重要因素之一。
航天器姿态确定与姿态控制

光敏元件阵列是由一排相互平行且独立的
光电池条组成,其数量决定了太阳敏感器输出
编码的位数,从而在一定程度上影响到敏感器
的分辨率。
图4.3 两轴模拟式太阳敏感器
航天器姿态确定
红外地平仪
红外地平仪就是利用地球自身的红外辐射来测量航天器相对于当 地垂线或者当地地平方位的姿态敏感器,简称地平仪。
目前红外地平仪主要有3种形式:地平穿越式、边界跟踪式和辐射 热平衡式。
磁矩与地球磁场相互作用就可产生控制力矩,实现姿态控制。
航天器姿态控制
利用环境场产生控制力矩,最常用的除了磁力矩以外,还有重力 梯度力矩等。
磁力矩与轨道高度的3次方成反比,轨道高度越低,磁力矩越大。 所以磁力矩作为控制力矩比较适用于低轨道航天器。
重力梯度力矩适用于中高度轨道航天器。 太阳辐射力矩适用于同步轨道卫星等高轨道航天器。 气动力矩也适用于低轨道。 但是最后两种力矩较少用来作为控制力矩。利用环境力矩产生控 制力矩的装置可称为环境型执行机构。
单脉冲比相干涉仪是由光的干涉原理引伸而来,至少要采用两个接收 天线,其间矩为d,称为基线长度。当天线与地面距离比基线长度d大得 多时,有如下关系式:
cos 2 d
式中, 为两个天线接收电波的相位差,A为波长。由式可见, 是预先 确定的,因此只要测出两个天线接收信号的相位差,便可确定方向角 。
➢ 被动式
被动控制系统是用自然环境力矩源或物理 力矩源,如自旋、重力梯度、地磁场、太阳辐 射力矩或气动力矩等以及它们之间的组合来控 制航天器的姿态。
其中地平穿越式地平仪扫描视场大,其余两种地平仪的工作视场较 小,只能适用于小范围的姿态测量,但精度较高。
航天器姿态确定
➢ 地平穿越式地平仪
地平穿越式地平仪的视场相对于地球作扫描运动。当视场穿越地平 线时,也就是说扫到地球和空间交界时,地平仪接收到的红外辐射能量 发生跃变,经过热敏元件探测器把这种辐射能量的跃变转变成电信号, 形成地球波形。然后通过放大和处理电路,把它转变成为前后沿脉冲。 最后通过计算电路,把前后沿脉冲与姿态基准信号进行比较,得出姿态 角信息,也就是滚动角或俯仰角。
空中飞行器的飞行控制和稳定性控制系统

空中飞行器的飞行控制和稳定性控制系统空中飞行器的飞行控制和稳定性控制系统在现代航空技术中扮演着重要角色。
这些系统负责控制和维持飞行器的平稳飞行以及各种机动动作。
本文将就飞行控制系统和稳定性控制系统的工作原理和应用进行探讨。
一、飞行控制系统飞行控制系统是指控制飞行器姿态和自稳定的系统。
它通过感知和分析飞行器的状态,依靠飞行控制计算机来决定控制器输出的指令,从而实现对姿态和自稳定的控制。
1. 系统组成飞行控制系统主要由以下几个组成部分构成:传感器:包括陀螺仪、加速度计、气压计等,用于感知飞行器的姿态、速度、高度等参数。
飞行控制计算机:负责算法的计算和控制指令的生成。
控制器:根据控制指令调整飞行器的推力、翼面、襟翼等控制面。
执行器:执行控制指令,通过调整控制面的位置和姿态来控制飞行器的姿态和飞行状态。
2. 工作原理飞行控制系统的工作原理可以简单描述为以下几个步骤:传感器感知飞行器的姿态、速度、高度等参数。
飞行控制计算机根据传感器数据分析并决策。
控制器根据飞行控制计算机生成的控制指令调整飞行器的控制面位置和姿态。
执行器执行控制指令,改变飞行器的状态和姿态。
3. 应用飞行控制系统广泛应用于各类飞行器中,包括商用客机、军用战斗机、直升机、无人机等。
它们通过飞行控制系统实现飞行器的平稳飞行、自动驾驶和飞行特性优化等功能。
在紧急情况下,如飞行器出现故障或遭遇恶劣天气,飞行控制系统也能帮助飞行员稳定飞行器,确保飞行安全。
二、稳定性控制系统稳定性控制系统是飞行器中重要的控制系统之一,它能够使飞行器保持在稳定的状态,抵抗外界扰动并保持飞行安全。
1. 系统组成稳定性控制系统主要由以下几个组成部分构成:纵向稳定性控制:包括俯仰稳定和纵向运动稳定。
横向稳定性控制:包括滚转稳定和侧滑稳定。
自动驾驶系统:可根据预设的稳定性要求自动控制飞行器的稳定状态。
姿态控制系统:根据飞行器的姿态信息,调整控制面的位置和姿态。
2. 工作原理稳定性控制系统的工作原理依赖于飞行控制系统提供的姿态信息。
航天飞行器的动力系统控制方法

航天飞行器的动力系统控制方法航天飞行器的动力系统是实现航天器运行的关键部分,它负责提供动力以推动航天器在宇宙空间中进行飞行任务。
为了保证航天飞行器的安全与稳定,动力系统的控制方法显得尤为重要。
本文将介绍几种常见的航天飞行器动力系统控制方法,包括推进系统控制、姿态控制和能源管理。
一、推进系统控制推进系统是航天飞行器动力系统中最为重要的部分,能够为航天器提供推力。
而推进系统的控制旨在确保航天器能够实现预定的轨道和速度。
目前,常见的航天飞行器推进系统控制方法包括推进剂供给控制、推进剂喷射控制和推力矢量控制。
1.推进剂供给控制:推进剂供给控制主要涉及推进剂的储存与供给,以保证推力系统能够获得足够的推进剂。
在控制方法中,需要考虑推进剂的数量、储存所需的舱容、推进剂的供给速率等因素。
对于液体火箭,需要控制好燃料和氧化剂的供给比例;对于固体火箭,需要控制燃烧速率和燃料的供给方式。
推进剂供给控制方法直接影响到航天器的飞行性能和安全性。
2.推进剂喷射控制:推进剂喷射控制是指通过控制喷嘴的方向和喷射速度来改变推力的方向和大小。
在航天器的任务中,经常需要调整飞行器的速度和位置。
通过控制推进剂的喷射,可以实现速度和位置的调整。
常见的方法包括喷嘴的转向控制、推进剂流量的调节和喷嘴的推力控制等。
3.推力矢量控制:推力矢量控制是指通过改变推进剂喷射方向来控制航天器的姿态和转向。
这种控制方法主要应用于具有多个喷嘴的航天器。
通过改变喷嘴的喷射方向和推力大小,可以实现航天器的姿态调整和转向控制。
推力矢量控制方法可以提高航天器的机动性,并适应复杂的任务需求。
二、姿态控制姿态控制是指控制航天器在空间中的方向和姿态,保持其稳定和准确的飞行状态。
航天器在宇宙空间中受到外部力的干扰,因此需要实现姿态的控制来保持其稳定性。
常见的姿态控制方法包括惯性导航控制、星敏感器控制和陀螺控制。
1.惯性导航控制:惯性导航控制是通过利用陀螺仪和加速度计等装置来检测航天器的姿态和方向。
航天器是怎么保持和控制自己的姿态的?

航天器是怎么保持和控制自己的姿态的?一、背景在轨道上飞行的航天器上,会作用有许多干扰力。
例如有:空气动力、微流星撞击力、地球扁圆度引起的不均匀引力以及太阳辐射压力等。
除此之外,航天器内部的运动机构,例如:发动机、弹簧等,也会产生干扰力。
这些干扰力虽然很小,但是太空中空气稀薄,这些干扰力足以使航天器的飞行姿态发生变化。
然而不同的航天器,有不同的使命与任务。
因此不同的航天器,对姿态也有不同要求。
例如,地球资源卫星、侦察卫星上要保证其上的照相机镜头和通信卫星的抛物面天线始终指向地球。
而天文卫星的太阳望远镜要始终对准太阳等。
航天器受到干扰力时,其姿态发生变化,就会影响正常任务的完成。
因此对航天器的飞行姿态进行控制,是航天器能够正常运转工作的基本保证。
航天器的姿态控制方式很多,不过一般可以分为两种基本类型,即:被动式和主动式。
这两种方式相互组合,又可分为半被动、半主动以及混合式等五种类型。
不过在此,小编主要给大家介绍一下被动式和主动式这两种最基本的控制类型。
二、被动式所谓被动控制系统是利用自然环境所能产生的力量来实现对卫星姿态的控制。
比如自旋、重力梯度地磁场、太阳辐射压力或气动力等。
通过巧妙的运用这些力量,以及它们之间的组合来控制飞行器的姿态。
这种系统不需要电源,因此,也不需要各种传感器与电路。
被动控制系统的主要类型和应用如下:1、自旋稳定自旋稳定是被动控制中最简单的一种方法。
其原理就是利用飞行器绕自旋轴旋转所获得的定轴性,使航天器在空间中保持稳定的方向。
不过这种方法只能稳定航天器的姿态,无法进行实时的调节。
自旋卫星一般都存在章动。
所谓“章动”,就是当与自旋轴垂直的横轴存在角速度时,自旋轴将产生摇摆,这种现象称之为章动。
为此,航天器必须安装章动阻尼器。
早期发射的航天器,包括我国发射的第一颗卫星:“东方红一号”都采用了自旋稳定方式来稳定姿态。
东方红一号2、重力梯度稳定重力梯度稳定是利用飞行器各部分质量在重力场中具有的不同重力,以及在轨道运动中产生离心力的也不同原理。
《航天器概论》

《航天器概论》综合作业 201201003017 陈献琪
小) 优点:密度低、模量高、强度高、可设计性强、热稳定性高、二次加工少、有独 特的物理化学性能 缺点:横向和层间性能差、韧性差、二次加工性能差、质量稳定性差、耐热耐湿 性差、成本高、耐空间环境能力差、不适宜在室温下长期储存和时间长 10. 请阐述被动姿态控制与主动姿态控制等几种典型方式的工作原理,并比较它们的优 缺点。 答: 被动和主动姿态控制的工作原理: 1) 被动姿态控制:航天器姿态被动稳定系统是利用自然环境力矩或物理力矩资源, 如自旋、重力梯度、地磁场、太阳辐射压力矩和气动力矩等以及它们的组合, 来控制航天器的姿态。 (1) 自旋稳定:利用航天器绕自转轴旋转所获得的陀螺定轴性在惯性参考空 间定向。 (2) 重力梯度稳定:重力梯度稳定利用航天器各部分质量在地球引力场中受 到不等的重力,使绕圆轨道运行的刚体航天器的最小能量轴趋向于稳定 在当地垂线方向。 (3) 磁稳定:被动磁稳定一般通过在航天器上安装产生磁矩的永久磁铁或线 圈来实现。 (4) 气动稳定:航天器在轨运行时大气中气体分子与航天器表面碰撞将产生 气动力和气动力矩。通过设计良好的航天器质量分布特性和航天器气动 外形能使卫星姿态对迎面气流方向稳定,称为气动稳定方式。 (5) 辐射压稳定:航天器表面受到空间辐射源(主要是太阳)照射时,入射 光对卫星表面产生一净压力,各处表面的净压力的综合效应产生合成辐 射压力和合成辐射压力矩。 (6) 组合被动稳定:把上述的稳定方式适当的组合起来,即构成组合被动稳 定系统,例如组合采用磁稳定和动力梯度稳定。 2) 主动姿态控制:航天器姿态主动稳定系统,从控制原理上看,就是三自由度的 姿态闭环控制系统,又称三轴稳定系统。姿态控制器由电子线路和航天器载计 算机完成控制规律和控制逻辑。 (1) 轴喷气控制系统:以喷气发动机(或推力器)为执行机构的三周稳定姿态控 制系统是一种主动式零动量姿态控制系统。 (2) 角动量交换装置:长寿命高精度的三轴姿态稳定航天器,在轨道上正常工作 时,普遍采用角动量交换装置(包括固定安装的动量轮,控制力矩陀螺及框 架动量轮)作为姿态控制系统的执行机构。 优缺点: 姿态稳定 控制系统 优点 缺点 备注
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
0
0
z
0 1 0 0
2015/12/22
22
2 零动量反作用轮三轴姿态控制
零动量反作用轮进行三轴姿态控制
• 其特点在于反作用飞轮有正转或反转,但是整个航天器的总 动量矩为零。
• 这种姿态稳定系统的需要俯仰、偏航和滚动三轴姿态信息。 • 所以该三轴控制系统的主要部件是一组提供三轴姿态信息的
敏感器,一组运算的控制器,反作用轮以及卸载去饱和推力 器。
13
1.6 反作用飞轮力矩分配
多飞轮系统
• 设航天器装有n(n≥3)个反作用飞轮,各飞轮的角动量方向矢 量分别为hw1,hw2, … hwn ,对应角动量幅值向量为 hw [hw1 hwn ]T 时,有其角动量在航天器本体系的投影为
hw hw1hw1 hwnhwn Cwhw 其中 Cw hw1 hwn
• 其中由于飞轮相对航天器本体的角速度为ωr ,有
H W
HW t
r HW
• 式中∂HW / ∂t 为相对于固连于飞轮系的微商。代入可得:
H B
B HB
HW t
B HW
r
HW
T
• 整理可得:
H B
B HBTFra bibliotek HW t
B HW
JW W W 0 Tunt
JWW Tunt JWW 0
怎么使得飞轮转速卸载到0?
施加与飞轮初始转速相反的卸载力矩,力矩越大,卸载速度越快。
能否采用磁力矩给飞轮卸载?
2015/12/22
21
主要内容
飞轮系统分类及工作特性 零动量反作用轮三轴姿态控制 偏置动量轮三轴姿态控制
三个正 交安装
多个(4~16) 单个大
斜装
型飞轮
一对V型安装飞轮 (速度相同)
一对V型安装飞轮 一个偏置飞轮& 两对V型安装飞轮 一个偏置飞轮&两个 (速度差动) 一个正交反作用飞轮 (速度差动) 相互正交反作用飞轮
2015/12/22
10
1.4 飞轮的两种工作模式
按照给轮子的控制指令的形式不同,飞轮有两种工作模式
构型矩阵
• 对于反作用飞轮,一般将其角动量变化率视为控制力矩
uc hw = Cwhw Cwuw
飞轮力矩分配策略 在给定期望力矩情况下,根据当前飞轮系统构型及力矩约束,合理的 给定各飞轮指令力矩,从而输出与期望力矩相等或在该方向上最大的 控制力矩。
2015/12/22
14
1.6 反作用飞轮力矩分配
J xx J z J y yz hwzy hwyz Tdx Tcx
J yy J x J z zx hwxz hwzx Tdy Tcy
J zz I y J x xy hwyx hwxy Tdz Tcz
• 三正交一斜装
• 四斜装
能量最优
力矩最优
能量最优
力矩最优
2015/12/22
17
1.6 反作用飞轮力矩分配
能量最优力矩分配策略
• 针对力矩分配问题
uc Cwuw
• 利用飞轮力矩向量构造能量指标函数
J2 0.5 || uw ||22 0.5uwT uw
• 通过构造拉格朗日乘子可得
航天器控制----(七)
航天器主动姿态稳定系统(2)
郭延宁 哈尔滨工业大学
航天器控制
姿态控制系统
姿态确定
姿态敏感器
姿态确定算 法
稳定方式
航天器控制
轨道控制系统
姿态控制 轨道确定 轨道控制
姿态稳定 姿态机动 自主导航 非自主导航 轨道保持 轨道调整
执行机构 控制计算机
2015/12/22
2
主要内容
• 1) 飞轮会发生角速度饱和。 • 2) 由于转动部件存在,特别是轴承的寿命和可靠性受到限制。 • 3) 实际飞轮系统不可避免存在动静不平衡,成为对高精度航
天器姿态控制的干扰力矩。
• 动力不平衡:旋转体的质量轴线与旋转轴线不重合 • 静力不平衡:旋转体的质量轴线与旋转轴线不重合,但平行于旋转轴线
2015/12/22
产生大小相等、方向相反的控制角动量. • 当航天器在某个轴上有控制力矩需求时,飞轮通过角动量变化产生
反作用力矩或陀螺力矩作为控制力矩。
反作用飞轮
Ikonos-2
Quickbird-2
2015/12/22
4
1.2 飞轮工作特性
飞轮在三轴姿态稳定控制系统中的优点:
• 1) 飞轮可以给出较精确的连续变化的控制力矩,可以进行线 性控制。
c
Z
C D
A
X
Y
B
2015/12/22
15
1.6 反作用飞轮力矩分配
• 当航天器配置3个非共面飞轮时,力矩分配策略为
uc
Cwuw
uw
C
u -1
wc
• 当航天器配置3个以上飞轮时,解不唯一。需要根据性能指标 需求设计力矩分配策略。
能量最优力矩分配:在所有可行解中确定能耗最小的解; 力矩最优力矩分配:在所有可行解中确定所需各飞轮力矩最小的解; 控制力矩连续力矩分配:兼顾当前时刻力矩需求和上一时刻力矩幅值;
2015/12/22
24
2.1 姿态动力学模型
航天器惯性角速度分为两部分
• 航天器相对于轨道坐标系角速度 • 航天器轨道参考坐标系角速度
x
0 1 0 0
y
AY
(θ)AX
(
)AZ
(ψ) 0
的陀螺力矩,一般视为耦合力矩,可解耦;
• 3) 飞轮角动量大小变化引起反作用力矩; • 4) 飞轮相对于航天器转动,引起的角动量方向变化而产生的
陀螺力矩。
2015/12/22
9
1.3 飞轮系统分类
H B
B HB
T
B HW
HW t
r HW
用于航天器姿态控制系统的飞轮分类情况:
• 力矩(电流)模式:开环控制,飞轮通过调节电机的电枢电 流产生所需电磁力矩,克服摩擦力矩后,得到控制力矩。
• 动量(电压或转速)模式:闭环控制,飞轮通过通过调节电 压,使得轮子转速打到期望值。
K
Tc 1 hwc + s
K U+ -
1i R Ls
Ke
M Km
Md
++
动量模式飞轮数学模型
1 Jws
以上几种分配策略分别使用何种情形?
2015/12/22
16
1.6 反作用飞轮力矩分配
飞轮系角动量包络 飞轮系在所有方向所能产生的角动量集合构成的包络体; hw Cwhw
飞轮系力矩包络 飞轮系在所有方向所能产生的力矩集合构成的包络体;
uc Cwuw
单个飞轮力矩受限情况下,不同策略对应角动量/力矩包络
飞轮系统分类及工作特性 零动量反作用轮三轴姿态控制 偏置动量轮三轴姿态控制
2015/12/22
3
1.1 飞轮工作原理
飞轮 又称角动量轮或惯性轮,是一种由电机驱动的高速转动部件,通过改 变绕固定转轴的转速进而改变其角动量给航天器提供反向控制力矩。
飞轮工作基本原理:角动量交换 • 当航天器某个轴上有干扰力矩时,飞轮通过变速或者改变框架角等
T JW
t
可求出飞轮达到饱和的时间
t
tmax
JW T
(Wmax
W 0 )
1 T
(HW )max (HW )0
• 当外加扰动力矩为按轨道周期变化的函数 T Td sin ot 时
得飞轮的转速变化规律为
W
W 0
T
JWW 0
cos ot
若飞轮的饱和角速度满足
uw
CwT
(CwC
T w
)
1
uc
•
其中
C
T w
(C
wC
T w
)1
又称构型矩阵Cw的伪逆矩阵,
为与飞轮构型相关的常值矩阵。
能量最优力矩分配策略具有能量最优、计算量小、可靠性高 等诸多优点,在实际工程中得到广泛应用。
2015/12/22
18
1.7 飞轮姿态稳定原理
• 飞轮和航天器相互作用关系
hw
2015/12/22
12
1.5 反作用飞轮系统构型
飞轮系统构型设计因素:
• 提供三轴控制力矩所需最少飞轮数量:3 • 除提供三轴力矩外,还需要实现某种指标优化; • 考虑某一个或几个飞轮失效时,重构的冗余度; • 控制策略不要过分复杂;
飞轮数量大于控制力矩维数,怎么办?
Z
C D
A
X
Y
B
2015/12/22
W
W 0
1 JW
t
Tdt
0
• 若飞轮可按照上式调节转速,则可吸收所有外干扰力矩,始
终保持航天器姿态稳定。
2015/12/22
19
1.7 飞轮姿态稳定原理
W
W 0
1 JW
t
Tdt
0
航天器受到的扰动力矩由周期性的和非周期性的两部分组成。
• 当扰动力矩为常数T时
W
W 0
W
W 0
T
JW W 0
那么飞轮将不会饱和,而无须卸载