统计学重点总结
统计学知识点总结

1、统计的含义(1)统计工作:即统计实践,是指很据科学的方法从事统计设计、收集、整理、分析研究和提供各种统计资料和统计咨询意见的活动的总称。
其成果是统计资料(原始调查资料和加工处理后的系统资料);(2)统计资料:即统计工作过程中所获得的各种有关数字资料以及与之相关的其他资料的总称。
通常以统计表、统计图和统计报告的形式变现,用以反映社会经济现象的规模、水平、速度、结构和比例关系等信息的数字和文字资料;(3)统计科学:即统计理论,是指统计工作实践的理论概括和科学总结.2、统计学统计学:是一门搜集、整理、分析数据方法的科学,其目的是探索数据的内在数量规律性,以达到对客观事物的科学认识。
3、统计学的研究对象统计学研究的对象是:社会经济现象总体的数量特征和数量关系。
其根本特征:在质与量的辩证统一中,研究大量社会经济现象总体的数量方面,反映社会现象发展变化的规律性在具体时间、地点和条件下的数量表现,揭示事物的本质、相互联系、变动规律和发展趋势。
4、统计学研究特点数量性、总体性、具体性、社会性5、统计工作的过程及基本职能统计工作的过程:统计设计、统计调查、统计整理、统计分析(定性-定量-定性:循环往复)统计设计:指根据统计研究对象的特点和研究的目的、任务,对统计工作的各个方面和各个环节的通盘考虑和安排,是统计认识过程的第一个阶段,即定性认识的阶段;统计调查:指根据统计研究对象和目的要求,依据统计设计的内容、指标和指标体系的要求,有计划、有目的、有组织的收集原始资料的工作过程,即由定性到定量认识的阶段;统计整理:指根据统计研究的目的,将统计调查得到的原始资料和通过各种方法得到的次级资料进行科学的分类和汇总,使其条理化、系统化的工作过程,即为统计分析准备在一定程度上可以反映总体特征的统计资料;统计分析:指在统计整理的基础上,根据研究的目的和任务,应用各种科学的统计方法,从静态和动态两个方面对研究对象的数量方面进行计算、分析研究,认识和揭示所研究对象的本质和规律性,做出科学的结论,进而提出建议和可预测性的意见的工作过程,即从定量到定性深入认识的阶段。
统计知识点总结高中

统计知识点总结高中1. 统计学基本概念统计学是一门研究数据的收集、整理、分析和解释的学科。
统计学的基本概念包括总体、样本、变量、数据类型、数据分布等。
总体是研究对象的全部个体,样本是从总体中选取的一部分个体,变量是研究对象的特征或属性,数据类型包括定量数据和定性数据,数据分布是指数据在不同取值上的分布情况。
2. 统计数据的收集统计数据的收集是统计学的第一步,常见的数据收集方法包括实地调查、问卷调查、抽样调查、实验观察等。
在数据收集过程中,需要注意样本的选择、数据的记录和整理、数据的真实性和合法性等问题。
3. 描述统计描述统计是通过图表、统计量等方法对数据进行总结和描述,常见的描述统计方法包括频数分布、频率分布、累积频率、平均数、中位数、众数、方差、标准差、分位数等。
这些方法可以帮助我们更好地理解数据的特征和分布情况。
4. 概率分布概率分布是描述随机变量取值的规律性的数学模型,常见的概率分布包括正态分布、均匀分布、泊松分布等。
了解不同概率分布的特点和应用场景对于理解和解决实际问题非常重要。
5. 统计推断统计推断是利用样本信息对总体特征进行推断的一种统计方法,包括点估计和区间估计两种方法。
在学习统计推断时,需要了解参数估计、置信区间、假设检验等概念和方法,以及它们在社会科学、自然科学、工程技术等领域的应用。
6. 相关性分析相关性分析是研究变量之间的关系和相互影响的统计方法,包括皮尔逊相关系数、斯皮尔曼相关系数、判定系数等。
掌握相关性分析的方法可以帮助我们发现变量之间存在的关联性,并进行进一步的预测和决策。
7. 多元统计分析多元统计分析是研究多个变量之间关系的统计方法,包括多元回归分析、主成分分析、因子分析等。
这些方法可以帮助我们更全面地理解数据的特征和规律,进行更深入的数据挖掘和分析。
总之,统计知识是培养学生数据分析能力和统计思维的重要工具,通过学习统计知识,学生可以更好地理解和应用数据,从而更好地应对未来的学业和职业挑战。
统计学基础知识点总结

统计学基础知识点总结统计学是研究数据收集、分析和解释的科学。
它提供了一种用来了解和解释各种数据的方法和工具。
统计学的基础知识点是学习统计学的基础,下面是一些重要的基础知识点总结:1. 数据类型:统计学中的数据可以分为两类:定量数据和定性数据。
定量数据是可以量化的,例如身高、温度等,而定性数据是描述性质和特征的,例如性别、颜色等。
2. 数据收集:数据收集是统计学的基础,它包括设计问卷、调查、实验等方法来收集数据。
收集数据时需要注意样本的代表性,并尽量避免抽样偏差。
3. 描述性统计:描述性统计是用来总结和描述数据的方法。
常用的描述性统计包括计算平均数、中位数、范围和标准差等指标来衡量数据的集中趋势和离散程度。
4. 概率:概率是研究随机事件发生可能性的数学工具。
它可以用来计算事件发生的概率,从而预测未来事件的可能性。
概率可以分为古典概率和条件概率等不同类型。
5. 概率分布:概率分布是描述随机变量的分布规律的数学模型。
常见的概率分布包括均匀分布、正态分布和泊松分布等。
概率分布可以用来计算随机变量的期望、方差等统计指标。
6. 假设检验:假设检验是统计学中用来验证关于总体参数的假设的方法。
通过对样本数据进行统计分析,可以得出关于总体参数是否符合假设的结论。
假设检验包括设定假设、选择检验统计量、计算显著性水平和做出决策等步骤。
7. 相关分析:相关分析是用来研究两个变量之间关系的方法。
它可以通过计算相关系数来衡量两个变量之间的相关性,并判断相关性是否显著。
常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。
8. 回归分析:回归分析是研究因果关系的统计方法。
它通过建立数学模型来描述自变量和因变量之间的关系,并可以用来预测因变量的取值。
常见的回归分析包括线性回归和多元回归等。
9. 抽样分布:抽样分布是指统计量在不同样本中的分布情况。
它可以用来计算统计量的置信区间和显著性水平等,从而对总体参数进行推断。
10. 统计软件:统计软件是进行统计分析的工具。
统计的知识点总结

统计的知识点总结1. 描述统计描述统计是通过数据的收集、整理和呈现,来对数据的特征进行描述和解释的方法。
描述统计包括了测度中心趋势的方法(如均值、中位数、众数)、测度离散程度的方法(如标准差、方差、极差)以及数据的呈现方法(如表格、图表、频率分布)。
2. 推论统计推论统计是通过对样本数据的分析和推断,来对总体特征进行推测和预测的方法。
推论统计包括了参数估计和假设检验两个主要方法。
在参数估计中,我们通过样本数据来估计总体的参数值;在假设检验中,我们通过样本数据来对总体的某个假设进行检验。
推论统计方法在科学研究和决策制定中具有重要的应用价值。
3. 概率统计概率统计是研究随机现象规律性的科学,它包括了概率的概念、概率分布、随机变量的概念和性质、大数定律和中心极限定理等。
概率统计的基本概念对于理解统计学的理论和方法具有重要的意义。
4. 回归分析回归分析是一种对两个或多个变量之间关系进行建模和分析的方法。
它包括了简单线性回归、多元线性回归、非线性回归等。
回归分析的方法对于预测和决策具有重要的应用价值。
5. 方差分析方差分析是一种用于比较两个或两个以上样本均值之间差异的方法。
它包括了单因素方差分析、双因素方差分析、多因素方差分析等。
方差分析的方法在生物、医学、社会科学等领域都具有重要的应用价值。
6. 生存分析生存分析是一种对时间至事件发生之间关系进行建模和分析的方法。
它包括了生存函数、风险集与危险比、生存曲线、生存比较等。
生存分析的方法在医学、流行病学、生物统计学等领域都具有重要的应用价值。
以上是统计学的一些基本知识点总结。
统计学作为一门科学,它的研究对象是数据,通过数据的收集、整理、分析和解释,来探索数据之间的关系和规律,从而推断和验证问题的解答。
统计学的方法和技术在各个领域都有着广泛的应用价值,它不仅可以帮助我们理解世界,还可以指导我们进行决策和预测。
统计学的知识点非常丰富,每一个知识点都有着自己的理论和方法,对于我们学习和应用统计学都具有着重要的意义。
统计学期末知识点总结

1.多重共线性:当回归模型中存在两个或两个以上的自变量彼此相关时,则称回归模型中存在多重共线性。
2.相关关系:变量之间存在的不确定的数量关系,称为相关关系。
3.五个相关关系:正线性相关,负线性相关,完全正线性相关,完全负线性相关,非线性相关,不相关。
若 0<r≤1,表明 x 与 y 之间存在正线性相关关系;若-1≤r <0,表明 x 与 y 之间存在负线性相关关系;若 r=+1,表明 x 与 y 之间为完全正线性相关关系;若 r=-1,表明 x 与 y 之间为完全负线性相关关系。
|r|→1 说明两个变量之间的线性关系越强;|r|→0 说明两个变量之间的线性关系越弱。
4.回归直线的拟合优度:回归直线与各观测点的接近程度称为回归直线对数据的拟合优度。
判定系数 R2测度了回归直线对观测数据的拟合程度。
5.最小二乘估计法:通过使因变量的观测值 yi 与估计值yi ∧之间的离差平方和,即残差平方和,达到最小来估计β0和β1的方法。
6. F 检验和 t 检验各有什么作用:F 检验是检验自变量 x 和因变量 y 之间的线性关系是否显著;t 检验是检验自变量对因变量的影响是否显著,也就是回归系数的检验。
7.8.正态分布—Z分布:大样本或小样本总体标准差σ已知。
9.N-1的T分布:小样本σ未知。
10.参数估计:点估计与区间估计11.置信区间:由样本统计量所构造的总体参数的估计区间。
12.置信水平:置信区间中包含总体参数真值的次数所占的比例。
置信水平越大,所需的样本量也就越大,置信区间越宽。
13.评价估计量的标准:无偏性:是指估计量抽样分布的数学期望等于被估计的总体参数有效性:是指对同一参数的两个无偏估计量,有更小方差的估计量越有效。
一致性:是指随着样本量n的增大,估计量的值越来越接近总体参数的真值。
14.样本量越大,样本均值的抽样标准差就越小。
15.总体数据的方差越大,估计时所需的样本量越大。
16.数据概括性度量:(数据分布特征的测量)集中趋势,离散程度,分布形态(偏态与峰态)17.三个分布:对称分布—众数=中位数=平均数左偏分布—平均数<中位数<众数右偏分布—众数<中位数<平均数18.标准分数的用途:①变量值与其平均数的离差除以标准差后的值称为标准分数,用Z表示。
统计学贾俊平考研知识点总结

统计学贾俊平考研知识点总结Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】统计学重点笔记第一章导论一、比较描述统计和推断统计:数据分析是通过统计方法研究数据,其所用的方法可分为描述统计和推断统计。
(1)描述性统计:研究一组数据的组织、整理和描述的统计学分支,是社会科学实证研究中最常用的方法,也是统计分析中必不可少的一步。
内容包括取得研究所需要的数据、用图表形式对数据进行加工处理和显示,进而通过综合、概括与分析,得出反映所研究现象的一般性特征。
(2)推断统计学:是研究如何利用样本数据对总体的数量特征进行推断的统计学分支。
研究者所关心的是总体的某些特征,但许多总体太大,无法对每个个体进行测量,有时我们得到的数据往往需要破坏性试验,这就需要抽取部分个体即样本进行测量,然后根据样本数据对所研究的总体特征进行推断,这就是推断统计所要解决的问题。
其内容包括抽样分布理论,参数估计,假设检验,方差分析,回归分析,时间序列分析等等。
(3)两者的关系:描述统计是基础,推断统计是主体二、比较分类数据、顺序数据和数值型数据:根据所采用的计量尺度不同,可以将统计数据分为分类数据、顺序数据和数值型数据。
(1)分类数据是只能归于某一类别的非数字型数据。
它是对事物进行分类的结果,数据表现为类别,是用文字来表达的,它是由分类尺度计量形成的。
(2)顺序数量是只能归于某一有序类别的非数字型数据。
也是对事物进行分类的结果,但这些类别是有顺序的,它是由顺序尺度计量形成的。
(3)数值型数据是按数字尺度测量的观察值。
其结果表现为具体的数值,现实中我们所处理的大多数都是数值型数据。
总之,分类数据和顺序数据说明的是事物的本质特征,通常是用文字来表达的,其结果均表现为类别,因而也统称为定型数据或品质数据;数值型数据说明的是现象的数量特征,通常是用数值来表现的,因此可称为定量数据或数量数据。
统计学自考本科知识点总结

统计学自考本科知识点总结一、统计学概论1.1 统计学的基本概念统计学是研究数据的收集、整理、分析和解释的一门科学。
它是一门研究数据收集、整理、分析、解释的科学,它是一门运用概率论、数理逻辑、数学统计原理和方法等,对大量的数据进行分析和研究的一门科学。
1.2 统计学的发展历程统计学的发展历程主要包括古典统计学、现代统计学和统计学在应用中的发展。
1.3 统计学的基本原理统计学的基本原理有:1.数据的收集,整理和分析;2.对数据的基本描述;3.推断和判断数据的特征;4.推断和判断数据的规律性;5.推断和判断数据的相关性。
二、统计学的基本概念与方法2.1 数据的搜集数据的收集是统计学的第一步。
数据的搜集可以通过实验观察、调查和问卷调查等方式进行。
2.2 数据的整理和分类数据的整理是统计学的第二步。
数据的整理包括数据的描述、变换、排序、排列和分组。
2.3 数据的分析方法数据的分析方法主要包括描述统计学和推断统计学。
描述统计学是通过图表、频数分布、总体分布等方法对数据进行描述和分析。
推断统计学是通过推断和判断对数据进行推断和判断。
2.4 数据的可视化数据的可视化是统计学的重要方法。
数据的可视化主要包括散点图、柱状图、折线图、饼状图、雷达图等。
2.5 统计学的模型统计学的模型是对数据的描述和分析的方法。
统计学的模型主要包括概率模型、数理模型、统计模型、贝叶斯模型、机器学习模型等。
三、统计学的基本概念与方法3.1 统计学的基本概念统计学的基本概念包括总体、样本、频数、频率、比率、中心趋势、稳定性、方差等。
3.2 统计学的基本指标统计学的基本指标包括均值、中位数、众数、标准差、相关系数、回归系数、协方差等。
3.3 统计学的推断方法统计学的推断方法主要包括置信区间估计、假设检验、方差分析、卡方检验、t检验、相关分析、回归分析等。
3.4 统计学的应用方法统计学的应用方法主要包括数理统计、贝叶斯统计、时间序列分析、生存分析、图像识别等。
统计学基础知识点总结

统计学基础知识点总结1.数据与变量数据是指收集到的一组数字或符号,而变量是指可以变化的数值。
在统计学中,常用的变量类型有两种:定量变量和定性变量。
定量变量是用数字表示的,如身高、体重等;而定性变量是用非数字表示的,如性别、血型等。
2.数据的描述在统计学中,常用的描述性统计方法有中心趋势度量和离散程度度量。
中心趋势度量包括均值、中位数和众数,用来衡量数据的集中程度;离散程度度量包括极差、方差和标准差,用来衡量数据的分散程度。
3.概率与概率分布概率是指在一定条件下某事件发生的可能性,它是统计学中的重要概念。
概率分布是用来描述随机变量可能取值的分布情况的概率分布函数,常见的概率分布有正态分布、均匀分布、二项分布和泊松分布等。
4.统计推断统计推断是指根据样本数据对总体特征进行推断的方法,它包括点估计和区间估计两种方法。
点估计是通过样本数据估计总体参数的数值,而区间估计是通过样本数据估计总体参数的范围。
5.假设检验假设检验是统计学中用来检验总体参数假设的方法,它包括参数假设检验和非参数假设检验两种。
参数假设检验是对总体参数的假设进行检验,常用的方法有t检验、F检验等;非参数假设检验是对总体分布形式的假设进行检验,常用的方法有卡方检验、秩和检验等。
6.相关性与回归分析相关性是指两个变量之间的关系程度,常用的相关性指标有Pearson相关系数和Spearman秩相关系数;回归分析是用来分析自变量与因变量之间的关系的方法,常用的回归分析方法有一元线性回归分析和多元线性回归分析。
7.贝叶斯统计学贝叶斯统计学是一种基于贝叶斯定理的统计学方法,它与频率统计学有所不同。
在贝叶斯统计学中,统计推断是基于先验概率和似然函数进行的,而不是基于频率分布进行的。
8.实验设计实验设计是指在统计实验中如何设计实验方案,以达到准确、可靠、有效地进行统计分析的目的。
常用的实验设计方法有完全随机设计、区组设计和受试者设计等。
以上就是统计学基础知识点的总结,通过学习这些知识点,可以帮助人们更好地理解和应用统计学在各种领域中的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n S n
, ,
n 31.比例P的数学期望和标准差 : E ( p ) p,
有限总体时 P
(3)总体正态, 小样本, 方差已知X Z 2
n
,
N n N 1 p(1 p) n
p(1 p) S (4)总体正态, 小样本, 方差未知X t 2 n n
异众比率是指非众数组的频数占总频数的比例 24、 离散系数 离散系数是一组数据的标准差与平均数之比 25、 抽样分布 (定义)在总体 X 的分布类型已知时,若对任意自然数 n,都 能导出统计量 T=T(X1,X2,…Xn)的分布的数学表达式, 这种分布 称为精确地抽样分布 26、 总体分布 总体中各元素的观测值所形成的相对频数分布是总体分布 27、 样本分布 从总体中抽取一个容量为 n 的样本,由这 n 个观测值形成的相 对频数分布,称为样本分布 28、 抽样分布 在重复选取样本量为 n 的样本时,由该样本统计量的所有可能 取值形成的相对频数分布,称为抽样分布 29、 相关关系 变量之间存在的不确定的数量关系,称为相关关系 30、 相关系数 相关系数是根据样本数据计算的度量两个变量之间线性关系强 度的统计量。若为总体的,称为总体相关系数;若为样本的, 则称为样本相关系数,记为
另附重要公式:
统计学重要公式
1. 样 本 平 均 数 : X 2 . 总 体 平 均 数 : 4 .方 差 : (1) 总 体 方 差 :
2
X
5.标 准 差 : (1) 总 体 标 准 差 : 2 (2) 样 本 标 准 差 :S 6.变 异 系 数
2
N 3 . 四 分 位 差 :Q D IQ R Q U Q L
P ( A ) P(B|A
i 1 i
n
i
)
n
20.贝 叶 斯 公 式 P(A i |B)
P ( Ai ) P(B|A i ) P(B)
P ( Ai ) P(B|A i )
j
P( A
j 1 2
) P(B|A j )
21.离散型随机变量的数学期望 E ( X ) xp ( x ) 22.离散型随机变量的方差 Var ( X ) 2 x p ( x ) 23.二项分布的概率函数 p ( x ) C nx p x q n x , x 0,1, 2,..., n , q 1 p 24.二项分布的数学期望和方差 E ( X ) np , Var ( X ) 2 np (1 p )
xe xe x! x! x n x C C 27.超几何分布 p ( x ) r n N r , 0 x r CN
25.泊松分布 p ( x ) 28.正态概率密度函数 f ( x ) 29.标准正态分布变换 Z
1 e 2
x 2
最小值 下四分位数 中位数 上四分位数 最大值
18、 箱线图
19、 众数 众数是一组数据中出现次数最多的变量值,用 M0 表示
20、 中位数 中位数是一组数据排序后处于中间位置上的变量值 21、 四分位数 四分位数是数据排序后处于 25%和 75%位置上的数 22、平均数 平均数是一组数据相加后除以数据个数得到的结果 1 简单平均数 ○ 2 加权平均数 ○ 3 几何平均数:G= ○ 23、 异众比率
X
(1)大样本( n1 , n2 30), 1 , 2已知
1
X 2 Z 2
X1 X 2
1 2
X X 的点估计量为 : S X X
1 2
(2)大样本, 1 , 2未知
2 1 2 2
X
1
X 2 Z 2 S
2 S12 S 2 n1 n2
准 本 尔
分 协 逊
数 方 相
( Z 分 差 关
数
)
Z
i
X
i
S
X Y X Y
X
, 或
Z
i
i
X X ,
Y Y
i
C o v ( X ,Y ) 系 数 rX
Y
S S
L L X n
i
X
X Y
Y
i
Y
n 1 L
S
X
S
Y
X X
L
X X
i 1
n
X
i
无限总体时
P
34.估计时所需的样本容量 : n
2 2 Z 2
2
p (1 p ) 2 n 2 Z 2 p (1 p ) 36. p的 区 间 估 计 时 所 需 的 样 本 容 量 n 2 37.大 样 本 总 体 均 值 的 检 验 统 计 量 : 35.总 体 比 率 P的 区 间 估 计 p Z 方差已知 : Z 方差未知 : Z X , / n X S/ n X , df n 1 S/ n
X1 X 2
时, X 1 X 2 的标准差 X X
1
2
2 12 2 1 1 2( ) n1 n2 n1 n2
X
(3)小样本, 正态
1
X 2 t 2 S
X1 X 2
4 3 .两 个 总 体 均 值 之 差 的 假 设 检 验 统 计 量 (1) 大 样 本 Z
2 2
x
30. X的数学期望和标准差 : E( X ) , 有限总体时 X 无限总体时 X N n N 1 n
32.估计时的抽样误差 : X 33.总体均值的区间估计 (1)大样本且方差已知 : X Z 2 (2)大样本且方差未知 : X Z 2
X
n
S2 100%
X
i
i
2
(2 ) 样 本 方 差 :S 2
X
N
标准差 总 体 : CV 100% 平均数 S 样 本 : CV 100% X
n 1
7 .标 8 .样 9 .皮
1 条形图使用条形的长度表示各类别频数的多少,宽度是固定 ○ 的;直方图是用面积表示各类别频数的多少,矩形的高表示每 一组的频数或频率,宽度则表示各组的组距,因此其高度和宽 度都有意义 2 分组数据具有连续性,直方图的各举行通常是连续排列,条 ○ 形图是分开排列, 3 条形图用于展示数据,直方图用于展示数学值型数据 ○
X
1
1
X 2 1 2
(2 )小 样 本ห้องสมุดไป่ตู้t
X
12 22 n1 n2
X 2 1 2 1 2 1 Sp n1 n 2 d d Sd n
,
,
(3) 相 关 样 本 t
4 4 .两 个 比 率 之 差 的 点 估 计 量 : p1 p 2 p1 p 2的 期 望 值 与 标 准 差 E p1 p 2 p1 p 2 p1 (1 p1 ) p 2 (1 p 2 ) p1 (1 p1 ) p 2 (1 p 2 ) p 1 p2 n1 n2 n1 n2 p1 (1 p1 ) p 2 (1 p 2 ) 的点估计量 : S p 1 p2 p1 p 2 n1 n2
i
Y
n
Y
i
n
Y
Y n
i 1
i
,
i 1
X
n
X n
i 1
i
,Y
i 1
n
1 0 .加 权 平 均 数
X
W X W
i i
i
1 1 .分 组 数 据 样 本 平 均 数
X
F X F
i i
i
1 2 .分 组 数 据 样 本 方 差 1 3 .排 列 组 合 公 式 n ! n n 1 m ! n ! 1 2 n , P nm C C
38.小 样 本 总 体 均 值 的 检 验 统 计 量 : t 39.总 体 比 率 检 验 统 计 量 : Z
p p0 p 0 (1 p 0 ) n
40.总 体 均 值 的 单 侧 检 验 中 所 需 样 本 容 量 :
Z n
Z
2
2
2
0 1
, 用 Z 2代 替 Z即 为 双 侧 检 验 的 公 式
m n m n
S
2
F
i
X
i
X
2
n 1 n m 1
n 2
,
P nm m !
n m n
m !
n ! n m
!
,
C
14.事 件 补 的 概 率 P ( A ) 1 P ( A ) 15.加 法 公 式 P(A B) P(A) P(B)-P(A B) P(A B) P(A B) 16.条 件 概 率 P(A|B) , P(B|A) P(B) P ( A) 17.乘 法 公 式 P(A B) P ( B ) P(A|B) P ( A ) P(B|A) 18.独 立 事 件 P(A B) P ( A ) P ( B ) 19.全 概 率 公 式 P(B)