医学统计学重点总结
医学统计学重点总结

(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)
医学统计学重点概要

第一章 绪论总体:根据研究目的确定的同质的所有观察单位某种变量值的集合。
总体包括有限总体和无限总体。
样本:从总体中随机抽取的部分观察单位,其实测值的集合。
获取样本仅仅是手段,通过样本信息来推断总体特性才是研究的目的。
资料的类型计量资料、计数资料和等级资料。
误差包括随机误差、系统误差和非系统误差。
抽样误差:由抽样造成的样本统计量和总体参数之间的差异或者是各个样本统计量之间的差异称为抽样误差。
概率:是描述随机事件发生可能性大小的一个度量。
取值范围0≤P ≤1。
小概率事件:表示在一次实验或观察中该事件发生的可能性很小,可以认为很可能不发生。
P ≤0.05或P ≤0.01。
医学统计学的步骤:设计、收集资料、整理资料和分析资料。
统计分析包括:统计描述和统计推断。
统计推断包括:参数估计和假设检验。
第二章计量资料的统计描述频数表和频数分布图的用途:(1)描述频数分布的类型,以便选择相应的统计指标和分析方法。
对称分布:集中位置在中间,左右两侧頻数基本对称。
偏态分布:正、负偏态分布正偏态集中位置偏向值小一侧,负偏态反之。
(2)描述頻数分布的特征;(3)便于发现资料中的可疑值;(4)便于进一步计算统计指标和进行统计分析。
计量资料集中趋势包括算术均数、几何均数和中位数。
算术均数:直接法(样本小):n x x ∑=;頻数表法(样本大)x =nfx ∑ 几何均数:直接法:)lg (lg 1n x G ∑-=;頻数表法)lg (lg )lg (lg 11n x f fx f G ∑∑∑--==(常用于等比资料或对数正态分布资料)中位数:直接法:n 为奇数2/)1(+=n x M ,n 为偶数2/)(12/2/++=n n x x M ;頻数表法:∑-⨯+=)%50(L M M f n f iL M 。
中位数的应用注意事项:可用于各种分布资料,不受极端值的影响,主要用于(1)偏态分布资料(2)端点无确切值的资料(3)分布不明确的资料。
医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结医学统计学是医学研究中不可或缺的一部分,它涉及到数据的收集、分析和解释,帮助医学工作者从大量数据中提取有价值的信息。
以下是新版医学统计学的知识点归纳总结:1. 研究设计:研究设计是统计分析的前提,包括观察性研究和实验性研究。
观察性研究如队列研究、病例对照研究,而实验性研究如随机对照试验(RCT)。
2. 数据类型:医学统计学中的数据可分为定性数据和定量数据。
定性数据如性别、血型,定量数据如血压、体重。
3. 描述性统计:描述性统计用于描述数据集的特征,包括集中趋势(均值、中位数、众数)和离散程度(方差、标准差、极差)。
4. 概率分布:在统计学中,概率分布描述了随机变量取值的概率。
常见的分布有正态分布、二项分布和泊松分布。
5. 假设检验:假设检验是统计推断的核心,用于判断样本数据是否支持某个假设。
常见的检验方法有t检验、卡方检验和F检验。
6. 置信区间:置信区间提供了一个范围,用以估计总体参数的可能值。
95%的置信区间意味着有95%的把握认为总体参数落在这个区间内。
7. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响。
简单线性回归和多元线性回归是常见的回归分析方法。
8. 生存分析:生存分析关注个体生存时间的分布和相关因素,常用于肿瘤学和流行病学研究。
Kaplan-Meier估计和Cox比例风险模型是生存分析中的重要工具。
9. 诊断试验评价:诊断试验评价涉及敏感性、特异性、阳性预测值和阴性预测值等指标,用于评估诊断方法的准确性。
10. 样本量计算:样本量计算是研究设计的重要环节,它决定了研究的可行性和结果的可靠性。
样本量计算需要考虑效应大小、显著性水平和检验力。
11. 多变量分析:多变量分析用于同时考虑多个变量对结果的影响,如多元回归分析和判别分析。
12. 统计软件的应用:统计软件如SPSS、SAS和R在医学统计分析中扮演着重要角色,它们提供了数据处理和统计分析的功能。
医学统计学重点

医学统计学重点说明:本重点仅供参考:不能包括所有选择题考题,名词和简答可信度高,计算题熟练运算过程;同时自己要清楚各种检验方法的基本思想,重点程度与星号数量相关)一、名词解释1、★★★医学统计学:用概率论和数理统计方法研究医学事件的群体特征的一门方法。
2、★总体:根据研究目的确定的同质的研究对象的全体(集合)。
3、样本:从总体中随机抽取的部分研究对象。
4、随机:总体中每个个体有同等的机会进入样本。
5、系统误差:指数据搜集和测量过程中由于仪器不准确、标准不规范等原因,造成观察结果呈倾向性的偏大或偏小,这种误差称为系统误差。
6、随机误差:由于一些非人为的偶然因素使得结果或大或小,是不确定、不可预知的。
7、★★抽样误差:由于抽样原因造成的样本指标与总体指标之间的差,或者是样本指标与样本指标之间的差。
8、准确度(accuracy)或真实性(validity):观察值与真值的接近程度,受系统误差的影响(9、可靠度(reliabiliy)——也称精密度(precision)或重复性(repeatability):重复观察时观察值与其均值的接近程度,受随机误差的影响。
10、★★★小概率事件:一般常将p ≤ 0.05或p ≤ 0.01称为小概率事件,表示某事件发生的可能性很小。
通俗讲一次抽样是不可能发生的事件。
11、★★正态分布定:又称高斯分布,是一条中间高,两头低,左右完全对称地下降,但永远不与横轴相交的钟形曲线。
12、★★医学参考值范围:指绝大多数正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。
最常用的是95%参考值范围。
13、★★标准误:用于反映均数抽样误差大小的指标,也叫样本均数的标准差,它反映了样本均数之间的离散程度。
14、★95%的可信区间:如果从同一总体中重复抽取100个独立样本,将可能有95个可信区间包括总体均数,有5个可信区间未包括总体均数。
二、填空题1、★医学统计学工作基本步骤:统计设计;收集资料.;整理资料;分析资料2、★统计分析包括:统计描述、统计推断3、频数分布的两个重要特征:集中趋势和离散趋势4、正态分布的两个参数:均数;标准差。
(完整版)医学统计学重点总结

1.简述总体和样本的定义,并且举例说明。
总体是研究目的确定的所有同质观察单位的全体。
样品是从研究总体中抽取部分有代表性的观察单位。
2.简述参数和统计量的定义,并且举例说明。
描述总体特征的指标称为参数,描述样本特征的指标称为统计量。
3.变量的类型有哪几种?举例说明各种类型变量有什么特点。
①定量数据:计量资料;定量的观测值是定量的,其特点是能够用数值的大小衡量其水平的高低。
②定性数据:计数资料;变量的观测值是定性的,表现为互不相容的类别或属性。
③有序数据:半定量数据/等级资料;变量的观测值是定性的,但各类别(属性)有程度或顺序上的差异。
4.请举例说明一种类型的变量如何变换为另一种类型的变量。
定量数据>有序数据>定性数据--------------->5.请简述什么是小概率事件?概率是描述事件发生可能性大小的度量,P 0.05事件称为小概率事件。
≤6.举例说明什么是配对设计。
配对设计是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
①同源配对:同一受试对象或同一标本的两个部分,随机分配接受两种不同处理;②异源配对:为消除混杂因素的影响,将两个同质受试对象配对分别接受两种处理。
7.非参数假设检验适合什么类型数据进行分析?①总体分布类型未知或非正态分布数据;②定量或半定量数据;③数据两端无确定的数值。
8.简述P 25 P 50 P 75的统计学意义。
(条件:明显偏态且不能转化为正态或近似对称;一端或两端无确定数值;分布情况未知)用来描述资料的观测值序列在某百分位置的水平,四分位数间距可以作为说明个体差异的指标(说明个体在不同位置的变异情况)。
9.直条图、直方图、圆饼图的使用条件是什么?直条图:各自独立的统计指标的数值大小和他们之间的对比;直方图:连续变量频数分布情况;圆饼图:全体中各部分所占的比例。
10.统计分析包括哪两个方面的内容?为什么要进行统计推断?统计描述和统计分析;统计描述用来描述及总结一组数据的重要特征,其目的是使实验或观察得到的数据表达清楚并便于分析。
医学统计学重点
医学统计学重点医学统计学是医学领域中不可或缺的一门学科,它借助数理统计方法研究医学数据和临床试验的结果,为医学决策提供可靠的依据。
以下是医学统计学的几个重点内容。
一、描述统计学描述统计学是医学统计学的基础,主要研究如何分类、整理和描述医学数据。
其主要方法包括测量尺度、频率分布表、中心趋势测量和变异程度测量。
1. 测量尺度在医学统计学中,常见的测量尺度包括名目尺度、有序尺度和数值尺度。
名目尺度适用于无序分类的变量,有序尺度适用于有序分类的变量,而数值尺度适用于具有度量意义的变量。
2. 频率分布表频率分布表用来展示变量的分布情况,主要包括类别、频数和频率等内容。
通过频率分布表,可以直观地了解变量的分布状况。
3. 中心趋势测量中心趋势测量主要包括平均数、中位数和众数。
平均数是所有观测值的总和除以观测值的个数,中位数是将观测值按大小排列后的中间值,众数是出现次数最多的观测值。
4. 变异程度测量变异程度测量用来描述数据的分散程度,主要包括极差、方差和标准差。
极差是最大观测值与最小观测值之间的差异,方差是观测值与均值之间的差异的平方的平均数,标准差是方差的平方根。
二、推断统计学推断统计学是医学统计学的核心内容,主要研究如何通过样本数据推断总体参数,并对假设进行检验。
其中包括参数估计、假设检验和置信区间等方法。
1. 参数估计参数估计是利用样本数据估计总体参数,常用的方法有点估计和区间估计。
点估计是通过样本数据得到一个单一的数值作为总体参数的估计值,区间估计是通过样本数据得到一个范围作为总体参数的估计区间。
2. 假设检验假设检验是用来检验某个陈述是否与观察数据相符的方法。
在医学研究中,研究者常常根据实验数据对研究假设进行检验,以确定是否有统计显著性。
3. 置信区间置信区间是对总体参数的一个范围估计。
置信区间的计算方法与区间估计相似,通过对样本数据进行分析计算得到。
三、生存分析生存分析是医学统计学中的一个重要分支,主要研究疾病患者的生存时间和生存率等问题。
医学统计学知识点汇总
医学统计学知识点汇总医学统计学是指应用统计学原理和方法进行医学研究设计、数据分析和结果解释的学科。
医学统计学的知识点非常丰富,包括统计学基础知识、研究设计、样本量计算、控制方法、参数估计、假设检验和数据分析等方面。
以下是医学统计学知识点的一些精华汇总。
1.统计学基本概念:包括基本统计量(均值、中位数、众数)、数据类型(定量数据、定性数据)、数据的描述方法(频数分布表、直方图等)。
2.研究设计:包括随机对照试验、队列研究、病例对照研究等,了解不同研究设计的优缺点及适用场景。
3.样本量计算:确定研究样本量是保证研究结果可靠性的重要一环,需要根据研究目的、效应量和统计显著性水平确定样本量。
4.控制方法:包括随机分组、盲法、配对设计等,用于减少实验误差和避免偏倚。
5.参数估计:常用的参数估计方法有点估计和区间估计。
点估计是通过样本数据得到总体参数的一个点估计值,区间估计是对总体参数的一个区间估计。
6.假设检验:假设检验是用来判断样本数据与总体假设之间的差异是否显著的统计方法。
常用的假设检验方法有t检验、卡方检验、方差分析等。
7.数据分析:包括描述性统计分析和推断性统计分析。
描述性统计分析用来描述研究变量的基本情况,推断性统计分析用来推断样本数据与总体数据之间的关系。
8.相关分析:用来分析变量之间的关联程度,包括皮尔逊相关系数和斯皮尔曼等级相关系数等。
9. 回归分析:用来分析因变量与自变量之间的关系,包括线性回归分析和 logistic回归分析等。
10.生存分析:用来分析时间到达事件发生的概率,包括生存曲线的绘制、生存率的估计和影响因素的分析等。
11. 多变量分析:用来分析多个自变量对因变量的影响,包括多元方差分析、多元回归分析和多元Logistic回归分析等。
12. Meta分析:用于综合多个独立研究结果,对总体效应进行定量分析和综合评价。
以上是医学统计学的一些精华知识点的汇总。
医学统计学的应用非常广泛,不仅在医学研究中需要应用统计学的原理和方法,也在临床实践中需要对医学统计学知识有一定的了解和应用。
(完整版)医学统计学复习要点
(完整版)医学统计学复习要点第⼀章绪论1、数据/资料的分类:①、计量资料,⼜称定量资料或者数值变量;为观测每个观察单位某项治疗的⼤⼩⽽获得的资料。
②、计数资料,⼜称定性资料或者⽆序分类变量;为将观察单位按照某种属性或者类别分组计数,分组汇总各组观察单位数后⽽得到的资料。
③、等级资料,⼜称半定量资料或者有序分类变量。
为将观察单位按某种属性的不同程度分成等级后分组计数,分类汇总各组观察单位数后⽽得到的资料。
2、统计学常⽤基本概念:①、统计学(statistics)是关于数据的科学与艺术,包括设计、搜集、整理、分析和表达等步骤,从数据中提炼新的有科学价值的信息。
②、总体(population)指的是根据研究⽬的⽽确定的同质观察单位的全体。
③、医学统计学(medical statistics):⽤统计学的原理和⽅法处理医学资料中的同质性和变异性的科学和艺术,通过⼀定数量的观察、对⽐、分析,揭⽰那些困惑费解的医学问题背后的规律性。
④、样本(sample):指的是从总体中随机抽取的部分观察单位。
⑤、变量(variable):对观察单位某项特征进⾏测量或者观察,这种特征称为变量。
⑥、频率(frequency):指的是样本的实际发⽣率。
⑦、概率(probability):指的是随机事件发⽣的可能性⼤⼩。
⽤⼤写的P表⽰。
3、统计⼯作的基本步骤:①、统计设计:包括对资料的收集、整理和分析全过程的设想与安排;②、收集资料:采取措施取得准确可靠的原始数据;③、整理资料:将原始数据净化、系统化和条理化;④、分析资料:包括统计描述和统计推断两个⽅⾯。
第⼆章计量资料的统计描述1. 频数表的编制⽅法,频数分布的类型及频数表的⽤途①、求极差(range):也称全距,即最⼤值和最⼩值之差,记作R;②、确定组段数和组距,组段数通常取10-15组;③、根据组距写出组段,每个组段的下限为L,上限为U,变量X值得归组统⼀定为L≤X<U,最后⼀组包括下限。
医学统计学重点整理汇总
医学统计学重点第一章绪论1.基本概念:总体:根据研究目的确定的性质相同或相近的研究对象的某个变量值的全体。
样本:从总体中随机抽取部分个体的某个变量值的集合。
总体参数:刻画总体特征的指标,简称参数。
是固定不变的常数,一般未知。
统计量:刻画样本特征的指标,由样本观察值计算得到,不包含任何未知参数。
抽样误差:由随机抽样造成的样本统计量与相应的总体参数之间的差异。
频率:若事件A在n次独立重复试验中发生了m次,则称m为频数。
称m/n为事件A在n次试验中出现的频率或相对频率。
概率:频率所稳定的常数称为概率。
统计描述:选用合适统计指标(样本统计量)、统计图、统计表对数据的数量特征及其分布规律进行刻画和描述。
统计推断:包括参数估计和假设检验。
用样本统计指标(统计量)来推断总体相应指标(参数),称为参数估计。
用样本差别或样本与总体差别推断总体之间是否可能存在差别,称为假设检验。
2.样本特点:足够的样本含量、可靠性、代表性。
3.资料类型:(1)定量资料:又称计量资料、数值变量或尺度资料。
是对观察对象测量指标的数值大小所得的资料,观察指标是定量的,表现为数值大小。
每个个体都能观察到一个观察指标的数值,有度量衡单位。
(2)分类资料:包括无序分类资料(计数资料)和有序分类资料(等级资料)①计数资料:是将观察单位按某种属性或类别分组,清点各组观察单位的个数(频数),由各分组标志及其频数构成。
包括二分类资料和多分类资料。
二分类:将观察对象按两种对立的属性分类,两类间相互对立,互不相容。
多分类:将观察对象按多种互斥的属性分类②等级资料:将观察单位按某种属性的不同程度、档次或等级顺序分组,清点各组观察单位的个数所得的资料。
4.统计工作基本步骤:统计设计、资料收集、资料整理、统计分析。
第二章实验研究的三要素1.实验设计三要素:被试因素、受试对象、实验效应2.误差分类:随机误差(抽样误差、随机测量误差)、系统误差、过失误差。
3.实验设计的三个基本原则:对照原则、随机化分组原则、重复原则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
<<医学统计学>>重点总结
1. 总体:根据研究的目的确定的同质研究对象中所有的观察单位变量值的集合。
2. 样本:按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。
3. 同质:影响研究指标的主要因素易控制的因素基本上相同。
4. 抽样误差:在抽样研究中,由于变异的存在,即使在同一总体中抽取的几个样本,各样本统计量往往不等。
样本统计量与总体参数也不等,这种由于抽样研究所至样本之间和样本与总体之间的差异称为。
5. 变量:观察指标在统计学上统称为指标变量,它反应的是生物个体间的变异情况,根据其性质可分为定性变量(分类)和定量变量(连续)。
6. 截尾数据:生存时间观察过程被人为的截止称为截尾,又称删失或终检。
原因:失访/退出/
终止(研究时限已到而终止观察)。
7. 卡方基本思想:X2分布是一种连续型分布,可用于检验资料的实际频数和按检验假设计算的理论频数是否相等等问题。
X2反应实现了实际频数与理论频数的吻合程度。
如果检验假设成立,则A-T 一般不大,X2应很小,即出现大X2值概率很小。
即X2越大,P越小,若P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则没有理由拒绝H0。
8. X2用途:
(1)实际频数与拟合频数拟合优度:A推断两个或两个以上总体率或构成比有无差别(四格表/行x 列表)。
B两变量之间有无相互关系。
C频数分布的拟合优度检验(判断次样本是否来自某种分布)。
(2)某些分布可用X2近似。
(3)间接应用:如t分布和F分布就是在X2分布基础上推导出来的。
9. 方差分析的基本思想:根据研究目的和设计类型,把总体变异中离均差平方和分解成两部分或更多部分,也把总变异中的自由度相应分成两部分或更多部分,然后再进行比较,评价由某种因素引起的变异是否具有统计学意义。
10. 假设检验中P,a,b(倍他)的关系及统计学意义:
a:检验水准,即显著性检验,在此概率之下的认为是小概率事件,统计学上以为此事件“不可能发生”,以此判断是否不拒绝H0无效假设,在假设检验中,按a检验水准,拒绝了原来正确的H0,即犯了第1类错误,犯此错误的概率为a。
b:在T假设检验中,按照a检验标准,没有拒绝原来错误的无效假设,即犯了第2类错误,犯次错误的概率是b。
P:是在H0成立时大于等于用样本计算的统计值出现的概率用P值与检验水准a比较,根据比较的结果作出统计判断。
如果P≤a时,就怀疑假设的成立,拒绝H0。
若P>a则接受H0拒绝H1。
P值越小只能说明作出拒绝H0,接受H1的推论时犯错误的机会越小。
11.行x列表X2检验应注意:
(1)行x列表中不宜有1/5以上格子的理论频数小于5或有一个格子的理论频数小于1,若发生上述情况可采用:A将理论频数过小的格子所在的行或列与性质相近的邻近行或列中的实际频数合并,使重新计算的理论频数增大。
B删去理论频数过小的行或列。
C增大样本含量以增大理论频数。
(2)当效应按强弱分为若干级别,则按实验结果可整理为单向有序行x列表,在比较各处理组的效应有无差别时,宜用秩和检验,ridit分析等。
如作X2检验只说明各组构成比的差异有无统计学意义。
(3)当多个样本或构成比比较的X2检验,统计推论为拒绝检验假设,只认为总体率或总体构成比之间总的来说有差别,但不能说明每两两之间有差别,若对每两个率或构成比进行比较须进行行x列表的X2分割。
12.四格表X2检验注意:
(1)1≤T<S,而n≥40时,需要计算校正X2值或改用四格表资料的确切概率法计算。
(2)T<1,或n<40时,改用四格表确切。
(3)n≥40且T ≥S时用基本或专用公式,但当P约等于a时,用Fisher确切。
(4)X2连续性校正只用于四格表资料。
13.假设检验的步骤:
(1)建立假设检验和确定检验水准。
(2)选择检验方法和计算检验统计量。
(3)确定概率值作出推断(包括统计专业推断)。
14.制定参考值步骤:
(1)从正常人总体中抽样
(2)控制测量误差
(3)判定是否需要分组确定参考值范围
(4)决定单侧还是双侧
(5)选择合适的百分上限
(6)对资料的分布进行正态性检验
(7)根据资料的分配类型选定恰当的方法进行参考值范围的估计。
15.标准差与标准误不同:
(1)二者描述内容不同:前者个体变异;后者群体变异。
(2)二者与n样本含量关系不同:n很小时S不稳定,n足够大时S接近总体标准差;而S不变时,n接近无穷大时,标准误接近0。
(3)二者用途不同:S:描述观察值的离散程度/计算CV即变异系数/估计医学参考值范围/计算标准误;标准误:反映均数抽样误差大小/估计总体均数可信区间/用于假设检验。
16.判断直线回归的效果:
(1)散点图:回归效果好,散点呈直线趋势。
(2)确定系数r2指的是应变量Y的总变异中归因与X的部分,若r2=1则SS回归。
=0则各点严格遵守函数关系。
(3)标准估计误差即剩余标准差Syx,它越小,回归效果越好。
(4)残差(Y-X),即实测值Y与预测值X之差,反映了X对Y的影响之外的一切因素对Y的变异影响,也就是在总平方和中无法用X解释的部分。
17.直线回归与相关:回归与相关是研究两个或多个随即变量之间相互关系的一种统计分析方法,应用较广,回归是研究随即变量之间的数量依存关系,相关是研究随即变量之间相互联系的密切程度和方向。
(1)区别:
A在资料要求上若应变量Y是随即变量,服从正态分布,自变量是固定的随机变量,在确定自变量的基础上,建立Y回归于X的直线方程,,这样就可以确定当X为某一定值时,Y将会在什么范围内波动这种模型称为1型回归模型。
相关要求XY都是随机变量,而且服从双变量正态分布,这种资料若进行回归分析,一般称为2型回归模型,在这种模型中,X和Y可任意代表两个变量中的某一个,这可根据专业或由实际需要来确定,故对于2型模型,可计算两个回归方程:对X推Y,Y=ayx+byxX,Y推X,X=axy+bxyY.
B在意义和应用上,回归反映两变量间依存关系,相关反映两变量间相互关系。
(2)联系:
A:同一资料的r,b符号相同,如r为正,说明X增大,Y也增大,b为正,说明为X增加一个单位,Y 平均增加b个单位。
B:r和b的假设检验等价,即对同一样本,两者的t值等价,由于r的假设检验可直接查表,较简单,而b的假设检验较复杂故可用r的假设检验代替b的假设检验。
C:r,b可相互换算。
D:回归与相关可以相互解释。
相关系数的平方r2是应变量Y的总变异中归因于X的部分,r2又称确定系数。