材料力学公式总结完美版2

合集下载

材料力学公式汇总

材料力学公式汇总

材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQ max挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tT max4、 平面弯曲 ①[]σσ≤=maxzmax W M②[]max t max t maxmax σσ≤=y I M zt max c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t z max t σσ≤+=y I M A N z []c max c z z max c σσ≤-=ANy I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EAL N EANL L d )(ii EA 为拉伸(压缩)刚度2、 扭转()⎰=∑==Φpp i i p GI dx x T GI L T GI TLGI为抗扭刚度πφ0180⋅=Φ=p GI T L (m / )3、 弯曲 (1)积分法:)()(''x M x E I y =C x x M x EI x EIy +==⎰d )()()('θD Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θ EIML f B 22=EI PL f B 33= EI qL f B 84=EI ML B 3=θ,EIML A 6=θ EIPL A B 162==θθ EIqL A B 243==θθ EI ML f c 162=EIPL f c 483=EIqL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2c o s 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 0PAB MAB A BqL LLLL3、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为4504、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxyxyτγ=()zx yz xy ,,7、强度理论 (1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=(2)[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx yx+-=⎪⎭⎫ ⎝⎛-αεεγα2s i n 22yx αγ2c o s 2⎪⎪⎭⎫⎝⎛-xy(2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x yx γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2m i n 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr ③短粗受压杆s λλ≤ “cr σ”=s σ或 b σ2、关于柔度的几个公式 i L μλ= p2p σπλE= ba s s σλ-=3、惯性半径公式AI i z= (圆截面4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D D d=α⎰==6442d dA y I z π ()44164απ-D 123bh 123hb323maxd y I W zz π==()43132απ-D62bh 62hb2、惯性矩平移轴公式A a I I 2zc z +=。

材料力学公式完全版

材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。

在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。

下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。

2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。

3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。

4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。

5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。

6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。

7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。

8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。

9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。

10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。

11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。

材料力学公式汇总完全版

材料力学公式汇总完全版
(2.35)
平面弯曲梁的挠曲线上任一点挠度方程
(2.36)
双向弯曲梁的合成弯矩
(2.37a)
拉(压)弯组合矩形截面的中性轴在Z轴上的截距
是集中力作用点的标
(2.37b)
拉(压)弯组合矩形截面的中性轴在Y轴上的截距
3 应力状态分析
序号
公式名称
公式
符号说明
(3.1)
单元体上任意截面上的正应力
(3.2)
单元体上任意截面上的剪应力
(3.14)
主应变方向公式
(3.15)
最大主应变
(3.16)
最小主应变
(3.17)
简单应力状态下的虎克定理
, ,
(3.18)
空间应和状态下的虎克定理
(3.19)
平面应力状态下的虎克定理(应变形式)
(3.20)
平面应力状态下的虎克定理(应力形式)
(3.21)
按主应力、主应变形式写出广义虎克定理
(3.22)
1截面几何参数
序号
公式名称
公式
符号说明
(1.1)
截面形心位置

Z为水平方向
Y为竖直方向
(1.2)
截面形心位置

(1.3)
面积矩,(1.4)面积矩,(1.5)
截面形心位置

(1.6)
面积矩

(1.7)
轴惯性矩

(1.8)
极惯必矩
(1.9)
极惯必矩
(1.10)
惯性积
(1.11)
轴惯性矩

(1.12)
惯性半径
的容许应力
(8.5)
构件受竖直方向冲击时的动荷系数
H-下落距离

可打印总结材料力学公式总结

可打印总结材料力学公式总结

基本受力与变拉压形力学简外图力受外力(合力)的作用线力沿杆的轴线。

特征截轴力面法显示内力内力内轴力的作用线力沿杆轴线。

正拉力为正,负压力为负。

号规定平衡方程求内力扭转弯曲外力偶的作用面垂直于轴线。

外力作用在通过梁轴线由功率,转速算外力偶矩的对称面内。

剪力扭矩弯矩扭矩的方向用右手螺旋弯矩向上挤压为正。

定则确定,大拇指方向志向截面外,四指的方向就是扭矩正方向;反之为负。

+—使微段沿顺时针方向转动的剪力为正公式应用条件拉(压)杆外力(合力)作用线沿杆轴线圆轴扭转圆轴,应力不超过材料的比例极限梁弯曲平面弯曲,应力不超过材料的比例极限应力分布材料的失效形式塑性材料和脆性材料在拉伸,扭转实验中失效现象:塑性材料脆性材料拉伸试件表面出现与轴线约成断裂面与轴线垂直45°的滑移线扭转先屈服,出现滑移线。

滑移线出现在试件的横向和纵向,最终沿横截面剪断。

变形很小时便断裂,断裂面和轴线约成45°强度计算准则拉(压)杆圆轴扭转梁弯曲拉压许用应力不相等的材料位移拉(压)杆圆轴扭转梁弯曲EA---- 拉压刚度两个端面相对扭转角挠曲轴 ----弯曲后梁的轴线。

挠度 W---- 横截面形心在垂直于梁轴方向上的位移。

转角θ ---- 横截面相对于变形前转过的角度。

---- 扭转刚度C,D---- 由边界条件和连续条件确定。

EI---- 弯曲刚度刚度计算准则拉(压)杆圆轴扭转梁弯曲——---- 梁的许用转角---- 单位长度许用扭转角---- 梁的许用挠度应力状态和强度理论斜截面上的正应力和切应力:。

《材料力学》公式

《材料力学》公式

《材料力学》公式材料力学是研究材料在外力作用下的力学性能和行为的一门学科。

它是工程力学的一个重要分支,广泛应用于工程结构、材料开发和制造等领域。

以下是《材料力学》中常用的一些公式,供参考。

1.应力(σ)和应变(ε)的关系:材料的应力与应变之间存在一定的线性关系,可表示为σ=Eε,其中E为弹性模量。

2.应力的计算:材料在外力作用下受到的内力为应力,可计算为σ=F/A,其中F为作用力,A为受力面积。

3.应变的计算:材料受到外力作用后的形变称为应变,可计算为ε=(ΔL/L),其中ΔL为变形长度,L为初始长度。

4.弹性模量(E):材料在弹性阶段的应力和应变之间的比值称为弹性模量,可表示为E=σ/ε。

5.屈服强度(σy):材料在受到一定应力作用后开始发生塑性变形的最大应力值,常用于评估材料的强度。

6.抗拉强度(σu):材料在拉伸过程中的最大抗拉应力值。

7.韧性(τ):材料在破坏前能吸收的能量,可表示为τ=∫σdε,即韧性为应力-应变曲线下的面积。

8.断后伸长率(Ag):材料在断裂后的伸长量与原始长度的比值,常用于评估材料的延展性。

9.拉伸应力(σ):材料在拉伸过程中受到的应力。

10.断裂韧性(Kc):材料对裂纹扩展的抵抗能力,用来评估材料的断裂性能。

11.断裂韧性(Gc):材料对裂纹扩展的抵抗能力,通常作为评估材料断裂韧性的指标。

12.蠕变:材料在长期受持续应力作用下发生的形变,其速率与应力、温度等因素有关。

13.疲劳:材料在循环应力作用下产生的破坏,通常以疲劳寿命来评估材料的耐久性。

14.断裂力学:研究材料在受到外力作用下产生裂纹并扩展的过程,分析裂纹的尖端应力场、断裂断面等。

15.刚度(k):材料在受到外力作用下的抵抗形变的能力,可表示为k=F/δ,其中F为作用力,δ为形变量。

以上是《材料力学》中的一些常用公式,通过对材料的力学性能和行为的研究,可以更好地理解和应用材料,为工程结构的设计和材料的选择提供科学的依据。

材料力学常用公式完整版

材料力学常用公式完整版

材料力学常用公式HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】材料力学常用公式1.外力偶矩计算公式(P 功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d ,拉伸后试样直径d1)6.7.纵向线应变和横向线应变8.9.泊松比10.胡克定律11.受多个力作用的杆件纵向变形计算公式12.承受轴向分布力或变截面的杆件,纵向变形计算公式13.轴向拉压杆的强度计算公式14.许用应力,脆性材料,塑性材料15.延伸率16.截面收缩率17.剪切胡克定律(切变模量G,切应变g )18.拉压弹性模量E、泊松比和切变模量G之间关系式19.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆20.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r )21.圆截面周边各点处最大切应力计算公式22.扭转截面系数,(a)实心圆(b)空心圆23.薄壁圆管(壁厚δ≤ R/10 ,R为圆管的平均半径)扭转切应力计算公式24.圆轴扭转角与扭矩T、杆长l、扭转刚度GHp的关系式25.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或26.等直圆轴强度条件27.塑性材料;脆性材料28.扭转圆轴的刚度条件或29.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,30.平面应力状态下斜截面应力的一般公式,31.平面应力状态的三个主应力,,32.主平面方位的计算公式33.面内最大切应力34.受扭圆轴表面某点的三个主应力,,35.三向应力状态最大与最小正应力,36.三向应力状态最大切应力37.广义胡克定律38.39.四种强度理论的相当应力40.一种常见的应力状态的强度条件,41.组合图形的形心坐标计算公式,42.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式43.截面图形对轴z 和轴y 的惯性半径44.,45.平行移轴公式(形心轴z c 与平行轴z 1的距离为a ,图形面积为A )46.纯弯曲梁的正应力计算公式47.横力弯曲最大正应力计算公式48.矩形、圆形、空心圆形的弯曲截面系数,,49.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z 的静矩,b 为横截面在中性轴处的宽度)50.矩形截面梁最大弯曲切应力发生在中性轴处51.工字形截面梁腹板上的弯曲切应力近似公式52.轧制工字钢梁最大弯曲切应力计算公式53.圆形截面梁最大弯曲切应力发生在中性轴处54.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处55.弯曲正应力强度条件56.几种常见截面梁的弯曲切应力强度条件57.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,58.梁的挠曲线近似微分方程59.梁的转角方程60.梁的挠曲线方程61.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式62.偏心拉伸(压缩)63.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,64.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为65.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式66.67.弯拉扭或弯压扭组合作用时强度计算公式68.剪切实用计算的强度条件69.挤压实用计算的强度条件70.等截面细长压杆在四种杆端约束情况下的临界力计算公式71.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.572.压杆的长细比或柔度计算公式,73.细长压杆临界应力的欧拉公式74.欧拉公式的适用范围75.压杆稳定性计算的安全系数法76.压杆稳定性计算的折减系数法77.关系需查表求得。

材料力学公式汇总

材料力学公式汇总

σ −σ y 2 2 σ max σ x + σ y = ± ( x ) + τ xy ; σ min 2 2
tg2α p =
−2τ xy
σ x −σ y
3、二向应力状态的极值剪应力(面内极值剪应力)及所在截面方位角
τ max = ± (
min
σ x −σ y
2
2 ) 2 + τ xy =±
σ max − σ min
(8) 刚度条件:待考察点的位移不超过允许值
2
三、应力状态与强度理论 1、二向应力状态斜截面应力 σ x +σ y σ x −σ y σ x −σ y σα = + cos 2α − τ xy sin 2α τ α = sin 2α + τ xy cos 2α 2 2 2 注:使截面受拉的正应力为正;使单元体顺时针转的剪应力为正; x 轴逆时针转α角与截面 外法线重合的角度为正(-π≤α≤π). 2、二向应力状态极值正应力及所在截面方位角
λ ≥ λp ;
σ cr =
π 2E ; λ2
Pcr =
π 2 EI min
(μL )2
λp ≥ λ ≥ λs ; σ cr = a − bλ
λ ≤ λs ;
“ σ cr ”= σ s 或
σb
π 2E ; σp
于柔度的几个公式: 3、惯性半径公式: i =
Iz A
λ=
μL
3
Θ=
σ +σ2 +σ3 1 − 2μ E (σ 1 + σ 2 + σ 3 ); K = ;σ = 1 ; σ = KΘ E 3(1 − 2μ ) 3
σ eq 2 = σ 1 − μ (σ 2 + σ 3 ) ≤ [σ ]; [σ ] =

材料力学公式汇总

材料力学公式汇总

材料力学公式汇总一、轴向拉压。

1. 轴力计算。

- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。

- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。

- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。

- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。

1. 扭矩计算。

- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。

1. 剪力和弯矩计算。

- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。

- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。

1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学重点及其公式材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。

变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。

外力分类:表面力、体积力;静载荷、动载荷。

内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。

(3)根据平衡条件,列平衡方程,求解截面上和内力。

应力:ΔA?ΔP dPp==ΔA dAlim正应力、切应力。

变形与应变:线应变、切应变。

杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。

静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。

动载荷:载荷和速度随时间急剧变化的载荷为动载荷。

失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。

二者统称为极限应力理想情形。

塑性材料、脆性材料的许用应力分别为:[]s 3σσ=n ,[]b b σσ=n ,强度条件:[]max maxNσ=?A 骣琪琪桫,等截面杆 []m a xN £σA轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:1Δl=l -l ,沿轴线方向的应变和横截面上的应力分别为:Δlε=l,N P σ==A A。

横向应变为:'1b -b Δb ε==b b ,横向应变与轴向应变的关系为:'ε=-με。

胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 σ=E ε,这就是胡克定律。

E 为弹性模量。

将应力与应变的表达式带入得:Nl Δl=EA静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。

圆轴扭转时的应力 变形几何关系—圆轴扭转的平面假设ρd υγ=ρdx 。

物理关系——胡克定律ρρd υτ=G γ=G ρdx 。

力学关系22ρA AA d υd υT=ρτdA=ρG =G ρdA dx dx 蝌? 圆轴扭转时的应力:max p tT T τ=R=I W ;圆轴扭转的强度条件:max tT τ=?W ,可以进行强度校核、截面设计和确定许可载荷。

圆轴扭转时的变形:l l p p T T f=dx=dx GI GI 蝌;等直杆:pTl f=GI 圆轴扭转时的刚度条件: p d f T f ==d xG I¢,max max pT f =?GI ⅱ弯曲内力与分布载荷q 之间的微分关系dQ(x)=q(x)dx ;()()dM x =Q x dx ;()()()22d M x dQ x ==q x dx dxQ 、M 图与外力间的关系a )梁在某一段内无载荷作用,剪力图为一水平直线,弯矩图为一斜直线。

b )梁在某一段内作用均匀载荷,剪力图为一斜直线,弯矩图为一抛物线。

c )在梁的某一截面。

()()dM x =Q x =0dx,剪力等于零,弯矩有一最大值或最小值。

d )由集中力作用截面的左侧和右侧,剪力Q 有一突然变化,弯矩图的斜率也发生突然变化形成一个转折点。

梁的正应力和剪应力强度条件[]m ax m ax s s M =?W,[]m axtt £提高弯曲强度的措施:梁的合理受力(降低最大弯矩max M ,合理放置支座,合理布置载荷,合理设计截面形状 塑性材料:[][]t c s s =,上、下对称,抗弯更好,抗扭差。

脆性材料:[][]t c s s <, 采用T 字型或上下不对称的工字型截面。

等强度梁:截面沿杆长变化,恰使每个截面上的正应力都等于许用应力,这样的变截面梁称为等强度梁。

用叠加法求弯曲变形:当梁上有几个载荷共同作用时,可以分别计算梁在每个载荷单独作用时的变形,然后进行叠加,即可求得梁在几个载荷共同作用时的总变形。

简单超静定梁求解步骤:(1)判断静不定度;(2)建立基本系统(解除静不定结构的内部和外部多余约束后所得到的静定结构);(3)建立相当系统(作用有原静不定梁载荷与多余约束反力的基本系统);(4)求解静不定问题。

二向应力状态分析—解析法 (1)任意斜截面上的应力cos 2sin 222x yx yxy a s s s s s a ta +-=+-;sin 2cos 22x yxya s s t a ta -=+(2)极值应力 正应力:022xyx y tg ta s s =--, max 22min ()22x yx yxys s s s s ts ü+-ï=?ýïþ切应力:122x y xytg s s a t-=, max22min ()2x y xyts s t t ü-ï=?ýïþ(3)主应力所在的平面与剪应力极值所在的平面之间的关系α与1α之间的关系为:101022,24p pa a a a =+=+,即:最大和最小剪应力所在的平面与主平面的夹角为45° 扭转与弯曲的组合(1)外力向杆件截面形心简化(2)画内力图确定危险截面(3)确定危险点并建立强度条件 按第三强度理论,强度条件为:[]13s s s -? 或[]224s ts +?, 对于圆轴,2t W W =,其强度条件为:22[]M T Ws +£。

按第四强度理论,强度条件为:()()()[]22212233112s s s s s s s 轾-+-+-?犏臌 ,经化简得出:[]223s ts +?,对于圆轴,其强度条件为:220.75[]M T Ws +£。

欧拉公式适用范围(1)大柔度压杆(欧拉公式):即当1l l ³,其中21P E p l s =时,22cr Ep s l=(2)中等柔度压杆(经验公式):即当21l l l #,其中2sa bs l -=时,cr a b s l =-(3)小柔度压杆(强度计算公式):即当2l l <时,cr s FAs s =?。

压杆的稳定校核(1)压杆的许用压力:[]crstP P n =,[]P 为许可压力,st n 为工作安全系数。

(2)压杆的稳定条件:[]P P £ 提高压杆稳定性的措施:选择合理的截面形状,改变压杆的约束条件,合理选择材料外力偶矩计算公式 (P 功率,n 转速)弯矩、剪力和荷载集度之间的关系式轴向拉压杆横截面上正应力的计算公式 (杆件横截面轴力F N ,横截面面积A ,拉应力为正) ‘轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)纵向线应变和横向线应变泊松比胡克定律受多个力作用的杆件纵向变形计算公式承受轴向分布力或变截面的杆件,纵向变形计算公式轴向拉压杆的强度计算公式许用应力,脆性材料,塑性材料延伸率截面收缩率剪切胡克定律(切变模量G,切应变g )拉压弹性模量E、泊松比和切变模量G之间关系式圆截面对圆心的极惯性矩(a)实心圆(b)空心圆圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)圆截面周边各点处最大切应力计算公式扭转截面系数,(a)实心圆(b)空心圆薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或等直圆轴强度条件塑性材料;脆性材料扭转圆轴的刚度条件或受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,平面应力状态下斜截面应力的一般公式,平面应力状态的三个主应力, ,主平面方位的计算公式面内最大切应力受扭圆轴表面某点的三个主应力,,三向应力状态最大与最小正应力,三向应力状态最大切应力广义胡克定律四种强度理论的相当应力一种常见的应力状态的强度条件,组合图形的形心坐标计算公式,任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式截面图形对轴z和轴y的惯性半径,平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)纯弯曲梁的正应力计算公式横力弯曲最大正应力计算公式矩形、圆形、空心圆形的弯曲截面系数,,几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)矩形截面梁最大弯曲切应力发生在中性轴处工字形截面梁腹板上的弯曲切应力近似公式轧制工字钢梁最大弯曲切应力计算公式圆形截面梁最大弯曲切应力发生在中性轴处圆环形薄壁截面梁最大弯曲切应力发生在中性轴处弯曲正应力强度条件几种常见截面梁的弯曲切应力强度条件弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,梁的挠曲线近似微分方程梁的转角方程梁的挠曲线方程轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式偏心拉伸(压缩)弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为圆截面杆横截面上有两个弯矩和同时作用时强度计算公式弯拉扭或弯压扭组合作用时强度计算公式剪切实用计算的强度条件挤压实用计算的强度条件等截面细长压杆在四种杆端约束情况下的临界力计算公式压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.5压杆的长细比或柔度计算公式,细长压杆临界应力的欧拉公式欧拉公式的适用范围压杆稳定性计算的安全系数法压杆稳定性计算的折减系数法关系需查表求得。

相关文档
最新文档