材料力学,重点、公式(期末必备)
(完整版)材料力学常用公式

材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得。
(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。
二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。
三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。
第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。
二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。
注意此规定只适用于轴力,轴力是内力,不适用于外力。
三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。
四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。
五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。
八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。
会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。
九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。
十、卸载定律及冷作硬化:课本第23页。
材料力学重点公式(期末必备)PPT课件

① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。 ② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得 。
—该点到圆心的距离。
2020/3/2I8p—极惯性矩,纯几何量,无物理意义。
15
材料力学 第三章 扭 转
例3-5 一内径d=100mm的空心圆轴如图示,已知圆轴受扭矩 T=5kN·m,许用切应力[τ]=80MPa,试确定空心圆轴的壁厚。
材的G值约为80GPa。
弹性模量、泊松比、切变模量之间的关系
G E
2(1 )
注意:剪切胡克定律式只有在切应力不超过材料的某一极限值
时才式适用的。该极限值称为材料的剪切比例极限 p。
2020/3/28
14
材料力学 第三章 扭 转
T
Ip
—横截面上距圆心为处任一点剪应力计算公式
。
3.4.4 公式讨论:
2020/3/28
9
材料力学 第二章 拉伸、压缩与剪切
解:
FN
FR 2
FR
π
( pb
d
d )s in
pbd
0
2
1 ( pbd ) pd b 2 2
2 200 40 MPa 25
2020/3/28
10
材料力学 第二章 拉伸、压缩与剪切
F
p
FF
FN
p
①全应力:p
F cos
A
0
cos
2、变形几何关系
l1 l2 l3 cos
3、物理关系
4、补充方程
FN1l FN3l cos
l1
FN1l
EAcos
EAcos EA
5、求解方程组得
l3
(完整版)材料力学知识点总结

一、基本变形材料力学总结变形现象: 平面假设: 应变规律: = d ∆l = 常数dx变形现象:平面假设: 应变规律:=d = dx变形现象:平面假设: 应变规律:= y= N =T= T = MyI Z = M max WZ= QS * z I z b = QS max max I bz max W= E (单向应力状态) = G(纯剪应力状态)=⎛ N ⎫≤ []maxA ⎪ ⎝ ⎭max[]=un塑材:u=s 脆材:u =bmax= ⎛ T ⎫ ≤ [] ⎪ ⎝ W t ⎭max弯曲正应力 1. [t ]= [c ]max≤ []2. [t ]≠ [c ] t max ≤ [t ] cmac ≤ [c ]弯曲剪应力=Q max S max ≤ [] max I bz轴向拉压扭转弯曲刚度条=T ⋅180 ≤[]max GIP注意:单位统一ymax≤[y]max≤[]件变形d∆l=N ; ∆L =NLdx EA EAEA—抗拉压刚度=d=Tdx GIZ=TLGIPGI p—抗扭刚度1=M (x)(x) EIy '' =M (x)EIEI—抗弯刚度应用条件应力在比例极限圆截面杆,应力在比例极限小变形,应力在比例极限矩形A=bhbh 3bh 2IZ=12;WZ=6实心圆A= d 24d4d3IP=32;Wt=16d4d3IZ=64;WZ=32空心圆D 2A =(1-2)4d44IP=32(1 -)d 3W =(1 -4)t16d 4I =(1-4)Z64d34WZ=32(1-)其(1)'剪切(1)强度条件:=Q≤[]A—剪切面积A(2)挤压条件:=P bs ≤[]bs A bsJA j—挤压面积矩形:=3Qmax 2 A圆形:=4Qmax 3A环形:= 2Qmax Amax均发生在中性轴上它公(2)GE式2(1 )二、还有:(1)外力偶矩:m = 9549 N (N •m)n(2)薄壁圆管扭转剪应力:=TN—千瓦;n—转/分2r 2t(3)矩形截面杆扭转剪应力:max =Tb2h;=TG b3hDB c AD 'Z ZC c cn n三、截面几何性质(1)平行移轴公式:I =I +a 2A;(2)组合截面:IYZ=IZ Y+abA1.形心:y c∑A i y ci=i =1 ;∑A ii =1∑A i z ciz =i =1∑A ii =12.静矩:S Z =∑A i y ci ;S y =∑A i z ci3.惯性矩:I Z =∑(I Z ) i ;I y =∑(I y ) i四、应力分析:(1)二向应力状态(解析法、图解法)a.解析法: b.应力圆:n σ:拉为“+”,压为“-”xτ:使单元体顺时针转动为“+”x yx y cos 2sin 2α:从x 轴逆时针转到截面的法线为“+”2 2 xx y sin 2cos 22 xtg22xmaxminxx yy2c:适用条件:平衡状态(2)三向应力圆:;; 1 3max 1 min 3 max 2nn2x y22xyxc121223311(3) 广义虎克定律:1(1 (1E 123xE xyz1 ( 1(2E 231yE yzx1(1(3E3 1 2zExy*适用条件:各向同性材料;材料服从虎克定律(4) 常用的二向应力状态 31. 纯剪切应力状态:1,20 ,3x2. 一种常见的二向应力状态:132r 3r 4五、强度理论破坏形式脆性断裂塑性断裂强度理论 第一强度理论(最大拉应力理论)莫尔强度理论 第三强度理论 (最大剪应力理论) 第四强度理论(形状改变比能理论) 破坏主要因素 单元体内的最大拉应力单元体内的最大剪应力单元体内的改变比能破坏条件 1 = bmax =su f = u fs强度条件 1 ≤ [] 1-3≤ []适用条件 脆性材料 脆性材料 塑性材料 塑性材料*相当应力:r,,]r 11r 313r 4222242232r=2+42≤[]=2+32≤[]4r22(M +N ) + 4≤ []r3 =r=(M+N)2+32≤[]WM 2 +T 2r3 =圆截面WM 2 + 0.75T 2r4=(M+N)2 + 4(T)2W Z A W t(M+N)2 + 4(T)2W Z A W t α 中性轴ZMpr3 =≤ []r 4 =≤ []i 2I Z*y =-=-ZAe y e ytg=y=-I ZtgZ I y中性轴Z≤ []Z≤ []A W≤ []P Mmax =±max ±max≤ []sincos( +)W Z W y=max maxM强度条件43=±P ±MA W)I yI Z=M (y c os+z s in公式简图弯扭拉(压)弯扭拉(压)弯斜弯曲类型六、材料的力学性质脆性材料<5%塑性材料≥5%低碳钢四阶段:(1)弹性阶段(2)屈服阶段(3)强化阶段(4)局部收缩阶段b强度指标s ,b e sα塑性指标,tg E七.组合变形只有σs,无σbb剪断断口垂直轴线拉断断口与轴夹角45ºb45º拉断铸铁断口垂直轴线剪断s b 滑移线与轴线45︒,剪45低碳钢扭压拉八、压杆稳定欧拉公式: P=2EI min,=2E,应用范围:线弹性范围,σ<σ ,λ>λcr(l ) 2cr2crpp柔度:=ul;=E;0 =a -s, σib柔度是一个与杆件长度、约束、截面尺寸、形状有关的数据,λ↑P cr ↓σcr ↓λ>λp ——大柔度杆:cr =2E2临界应力λo <λ<λp ——中柔度杆:σcr=a-b λλ<λ0——小柔度杆:σcr =σsλoλPλ稳定校核:安全系数法: n P c rP I n w ,折减系数法:P []A提高杆件稳定性的措施有: 1、减少长度2、选择合理截面3、加强约束4、合理选择材料九、交变应力金属疲劳破坏特点:应力特征:破坏应力小于静荷强度; 断裂特征:断裂前无显著塑性变形; 断口特征:断口成光滑区和粗糙区。
材料力学公式超级大汇总

1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65. 挤压实用计算的强度条件66. 等截面细长压杆在四种杆端约束情况下的临界力计算公式67. 压杆的约束条件:(a )两端铰支 μ=l(b )一端固定、一端自由 μ=2 (c )一端固定、一端铰支 μ=0.7 (d )两端固定 μ=0.568. 压杆的长细比或柔度计算公式 ,69. 细长压杆临界应力的欧拉公式70. 欧拉公式的适用范围71. 压杆稳定性计算的安全系数法72. 压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数序号 公式名称 公式 符号说明(3.1)截面形心位置AzdA z Ac⎰=,AydA y Ac⎰=Z 为水平方向 Y 为竖直方向 (3.2)截面形心位置∑∑=i i i cA A z z , ∑∑=iii cAA y y4 应力和应变5 应力状态分析2 内力和内力图6 强度计算7 刚度校核8 压杆稳定性校核10 动荷载9 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、拉压 []σσ≤=maxmax AN2、剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I Mz tmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z 2n2w 2n2wr34W M M②第四强度理论 []στσσ≤+=+=z2n2w 2n2w r475.03W M M二、变形及刚度条件 1、拉压 ∑⎰===∆LEAxx N EAL N EANLL d )(ii 2、扭转 ()⎰=∑==Φpp i i p GI dx x T GI L T GI TLπφ0180⋅=Φ=p GI T L (m / ) 3、弯曲 (1)积分法:)()(''x M x EIy =C x x M x EI x EIy +==⎰d )()()('θD Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EIPL B 22=θ EI qL B 63=θEI ML f B 22=EI PL f B 33= EIqL f B 84=EI ML B 3=θ,EI ML A 6=θ EIPL A B 162==θθ EI qL A B 243==θθEI ML f c 162=EI PL f c 483= EIqL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==i i i EI L M 22∑=()⎰EI dxx M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式) =∂∂=∆i i P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论1、二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy y x y x --++= ατασστα2cos 2sin 2xy yx +-=2、二向应力状态极值正应力及所在截面方位角22min max )2(2xy y x y x τσσσσσσ+-±+= y x xy σστα--=22tg 0 3、二向应力状态的极值剪应力22max )2(xyyx τσστ+-= 注:极值正应力所在截面与极值剪应力所在截面夹角为4504、三向应力状态的主应力:321σσσ≥≥ 最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x E μσσε-=)(1x y y E μσσε-= )(y x z E σσμε+-= Gxy xy τγ= (2)、表达形式之二(用应变表示应力) )(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ= PAB MAB A BqL LLLL6、三向应力状态的广义胡克定律()[]z y x x E σσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论(1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤ []bb n σσ=(2)[]σσσσ≤-=313r ()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []s s n σσ=8、平面应力状态下的应变分析(1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫ ⎝⎛---++=xyy x y x +-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫⎝⎛-xy(2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr ③短粗受压杆 s λλ≤ “cr σ”=s σ 或 b σ2、关于柔度的几个公式 i Lμλ= p 2p σπλE= ba s s σλ-=3、惯性半径公式AI i z =(圆截面 4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击) st20d ∆=g v K (水平冲击) 六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D D d =α⎰==6442d dA y I z π ()44164απ-D 123bh 123hb323maxd y I W zz π==()43132απ-D 62bh 62hb2、惯性矩平移轴公式A a I I 2zc z +=。
材料力学公式大全(值得收藏)

材料⼒学公式⼤全(值得收藏)
1、轴向拉伸与压缩强度条件
2、切应⼒强度条件
3、泊松⽐
4、轴向拉伸和压缩的胡克定律
5、挤压强度条件
6、外⼒偶矩
7、薄壁圆筒横截⾯上的切应⼒
8、剪切胡克定律
9、弹性模量、泊松⽐、剪切弹性模量的关系
10、圆轴扭转的切应⼒
Ip为极惯性矩
11、圆轴扭转的最⼤切应⼒(Wt抗扭截⾯系数)
12、扭转强度条件
13、圆轴扭转时的变形及刚度计算
14、载荷集度、剪⼒和弯矩关系
15、弯曲正应⼒公式
Iz为惯性矩(常⽤型钢查表可得)
16、最⼤弯曲正应⼒
Wz为抗弯截⾯模量。
17、常见截⾯的I Z 和WZ
18、梁在弯曲变形下的微分⽅程
19、⼴义胡克定律的⼀般形式
20、最⼤拉应⼒理论(第⼀强度理论)
21、最⼤伸长线应变理论(第⼆强度理论)
22、最⼤切应⼒理论(第三强度理论)
23、畸变能密度理论(第四强度理论)
24、欧拉公式的普遍形式(适⽤于细长杆)
临界应⼒
25、细长杆稳定的临界压⼒
26、压杆柔度
27、中⼩柔度杆临界应⼒经验公式(系数a、b查表)
28、平⾯图形形⼼坐标
29、静矩
30、惯性积
31、平⾏移轴公式
32、转轴公式
33、主惯性矩公式。
材料力学常用基本公式

1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M z tmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n 2w r34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAx x N EAL N EA NL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dxx T GI L T GI TL πφ0180⋅=Φ=p GI T L (m / )3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EIML B3=θ,EI MLA 6=θEIPL A B 162==θθEIqL A B 243==θθEIML f c 162=EIPL f c 483=EIqL f c 3844=(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)PAB MAB A BqL LLLL=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i 三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2c o s 2s i n 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 03、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxy xy τγ= ()zx yz xy ,,7、强度理论 (1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=(2)[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx y x+-=⎪⎭⎫ ⎝⎛-αεεγα2s i n 22yx αγ2c o s 2⎪⎪⎭⎫ ⎝⎛-xy (2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE= ②中长受压杆 s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ”=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= (圆截面4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。
材料力学公式汇总

材料力学公式汇总一、轴向拉压。
1. 轴力计算。
- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。
- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。
- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。
- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。
1. 扭矩计算。
- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。
1. 剪力和弯矩计算。
- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。
- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。
1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学
第三章
扭 转
径为:d =18mm,受拉力
[例3-10] 圆柱形密圈螺旋弹簧的平均直径为:D=125mm,簧丝直
P=500N 的作用,试求最大剪应力的近似值和精确值;若 G =82GPa,欲使弹簧变形等于 6mm, 问:弹簧至少应有几圈?
解:①最大剪应力的近似值:
max ( d 1 ) 8DP 2D d 3
kN
FN图
+
FN 2 60103 4 2 191 MP a 2 A2 20 FN 3 50103 4 3 52MP a 2 A3 35
材料力学
第二章 拉伸、压缩与剪切
例2-7:试求薄壁圆环在内压力作用下径向截面上 的拉应力。已知:d = 200 mm,δ= 5 mm,p = 2 MPa。
A
d 2
4
3.4cm
FN
F
d
4P
(2)按钢板剪切强度计算 t
Fs u A
A dt
F
u
F t 1.04cm d u
材料力学
挤压应力
第二章 拉伸、压缩与剪切
d
挤压力
t
Fbs
Abs=td
bs
Fbs Abs
①挤压面为平面,计算挤压面就是该面 ②挤压面为弧面,取受力面对半径的投 影面
()
②正应力:
正应力和切应力的正 ③切应力: 负规定:
( )
p cos cos2
p sin 0
2 sin 2
( )
1) α=00时, σmax=σ
2)α=450时, τmax=σ/2
()
材料力学
第二章 拉伸、压缩与剪切
材料力学
解:
第二章 拉伸、压缩与剪切
FR FN 2
d FR ( pb d )sin pbd 0 2
π
1 pbd pd ( ) b 2 2 2 200 40 MP a 25
材料力学
F
第二章 拉伸、压缩与剪切
F F
p
FN
F ①全应力:p cos 0 cos p A
3.位移(变形)的计算(能量法)
1 1 T U dU dV LdA V V 2 V 2G I p
2
2RnPR 1 T L 2G I p 2GI p
2
2
64 PR 3n P Gd 4 W U ; ; K 4 3 为弹簧常数。 K Gd 64 R n
材料力学
F
第二章 拉伸、压缩与剪切
二、拉压杆的胡克定律
F
E
FN l Fl l EA EA
※“EA”称为杆的抗拉压刚度。
材料力学
F F
y x
第二章 拉伸、压缩与剪切
超静定结构的求解方法:
1、列出独立的平衡方程:
0 FN1 FN 2
0 2FN1 cos FN 3 F
材料力学
T Ip
3.4.4 公式讨论:
第三章
扭 转
—横截面上距圆心为处任一点剪应力计算公式 。
① 仅适用于各向同性、线弹性材料,在小变形时的等圆截面
直杆。
② 式中:T—横截面上的扭矩,由截面法通过外力偶矩求得 。
—该点到圆心的距离。
Ip—极惯性矩,纯几何量,无物理意义。
材料力学
2.单位扭转角 或
第三章
'
扭 转
d T (rad/m) dx GI p d T 180 ' (/m) dx GI p
GIp反映了截面抵抗扭转变形的能力,称为截面的抗扭刚度
。 3.刚度条件
或
T max ' GI p
'
'
(rad/m)
T 180 max ' GI p
③弹簧圈数:
Gd 4 6 82 184 10 6 n 3 3 6.6(圈)
64 PR 64 500 0.125
材料力学
2、形心公式
第四章
Sz yc A
平面图形的几何性质
zc Sy A
3、组合截面的静矩 n个简单图形组成的截面,其静矩为:
S z Ai yci
解得:
sin2 ; cos2
材料力学
1.扭转时的变形 由公式
第三章
扭 转
3.5 圆轴扭转时的变形
d T dx GI p
知:长为 l一段杆两截面间相对扭转角 为
T d GI p
材料力学
当δ≤R0/10时,即可认为是薄壁圆筒
材料力学
( d)
第三章
n
转角规定:
扭 转
x
´ t
轴正向转至截面外法线 由平衡方程:
逆时针:为“+” 顺时针:为“–”
Fn 0 ; dA (dAcos)sin ( dAsin)cos 0 dAsin)sin 0 Ft 0 ; dA (dAcos)cos (
0
材料力学
第三章
扭 转
3.4.1. 变形几何关系
G1G d tg dx dx
d dx
研究横截面上任一点处切应 变随点的位置变化的规律
距圆心为 任一点处的与到圆心的距离成正比。
d —— 扭转角沿长度方向变化率。 dx
材料力学
第三章
扭 转
(/m)
材料力学
第三章
扭 转
刚度计算的三方面: ① 校核刚度: ② 设计截面尺寸 : ③ 计算许可载荷 :
max '
Ip T G[ ]
max '
T
max
GI p [ ]
'
有时,还可依据此条件进行选材。
材料力学
外力功 : 变形能 :
第三章
1 W P 2
扭 转
FS
平面弯曲梁横截面上的内力
FS FS
剪力为正
剪力为负
M
M
M
M
弯矩为正
弯矩为负
材料力学
l1 l2 l3 cos
2、变形几何关系 3、物理关系 FN 1l l1 EA cos F l l3 N 3 EA 4、补充方程
FN 1l FN 3l cos EA cos EA FN 3 F 1 2 cos 3
5、求解方程组得 F cos2 FN 1 FN 2 1 2 cos3
强度满足要求
材料力学
1 30
60kN 2 20
第二章 拉伸、压缩与剪切
例2-4:作图示杆件的轴力图,并求1-1、2-2、3-3截 面的应力。
3 35 40kN 30kN 50kN
FN1 0 FN 2 60kN FN 3 50kN
FN1 0 A1
1
2
60
3 50 20
1
I P ρ 2 dA
A
y
zc Z
Z
实心圆截面: I P dA
2
D 2 0
D 4
32
(α d ) D
D
空心圆截面:
πD 4 IP (1 α 4 ) 32
ρ
dρ
材料力学
4.3 惯性积:
第四章
平面图形的几何性质
定义:平面图形内,微面积dA与其两个 坐标z、y的乘积zydA在整个图形内的积分称 为该图形对z、y轴的惯性积。
i 1 n
S y Ai zci
i 1
n
4、组合截面形心公式
yc
A y
i 1 i
n
ci
A
i 1
n
zc
A z
i 1 i
n
ci
i
A
i 1
n
i
材料力学
4.2
1、极惯性矩
第四章
平面图形的几何性质
y dA ρ c yc A
惯性矩和惯性半径
截面对坐标原点O的极惯性矩为:
例2-8 直径为d =1 cm 杆受拉力P =10 kN的作用,试求 最大剪应力,并求与横截面夹角30°的斜截面上的正 应力和剪应力。
P 410000 0 127 .4MPa 2 A 3.1410
max 0 /2127.4/263.7MPa
127 .4 (1cos 2 ) (1cos 60)95.5MPa 2 2 0 127 .4 sin 2 sin6055.2MPa 2 2
G
式中:G是材料的一个弹性常数,称为剪切弹性模量,因 无 量纲,故G的量纲与 相同,不同材料的G值可通过实验确定,钢 材的G值约为80GPa。
弹性模量、泊松比、切变模量之间的关系
E G 2(1 )
注意:剪切胡克定律式只有在切应力不超过材料的某一极限值 时才式适用的。该极限值称为材料的剪切比例极限 p。
F n
S
n
d O
l O Me h/2 n Fs n
Me
Fbs
校核键的剪切强度: FS 2M e / d 57.1kN AS bl 校核键的挤压强度:
FS FS 28.6MPa AS bl Fbs FS 57.1kN Abs hl/2 F F bs bs bs 95.2MPa bs Abs (hl) / 2