材料力学重点及其公式
材料力学 -公式汇总-全要点

材料力学公式汇总一、应力与强度条件 1、拉压σmax N=A≤[σ]max4、平面弯曲①σmax=②σtmax=σcmaxMWz≤[σ]max2、剪切τmax=Q≤[τ] A挤压σ挤压=P挤压A≤σ挤压[]Mmaxytmax≤[σtmax] IzM=maxycmax≤[σcnax]IzIz⋅b*③τmax=QmaxSz max≤[τ]3、圆轴扭转τmax=5、斜弯曲σmax= T≤[τ] Wt≤[σ]maxMzMy+WzWy6、拉(压)弯组合σmax=σtmax=NM+AWz≤[σ]maxMzNMzN+ytmax≤[σt] σcmax=ycmax-≤[σc] AIzIzA注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论σr3=②第四强度理论σr4=二、变形及刚度条件 NL1、拉压∆L==EANiLi=EAN(x)dxEA2w2+4τn==22Mw+MnWzWz≤[σ]≤[σ]2w2+3τn22Mw+0.75Mn∑⎰LTiLiT(x)dxTLΦT1800=∑=⋅2、扭转Φ= φ== ( /m)GIpGIpGIpLGIpπ⎰3、弯曲(1)积分法:EIy''(x)=M(x) EIy'(x)=EIθ(x)=⎰M(x)dx+C EIy(x)=[M(x)dx]dx+Cx+D (2)叠加法:f(P1,P2)…=f(P1)+f(P2)+…,θ(P1,P2)=θ(P1)+θ(P2)+…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)MALq⎰⎰PALBBALBMLPL2qL3θB= θB= θB=EI2EI6EIqL4ML2PL3fB= fB= fB=8EI3EI2EIMLMLqL3PL2,θA= θB=θA= θB=θA= θB=6EI3EI24EI16EIqL4ML2PL3fc= fc= fc= 16EI48EI384EI(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)Mi2LiM2LM2(x)dx=∑= U=2EIi2EI2EI⎰(5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)∆i=M(x)∂M(x)∂U=∑dx EI∂Pi∂Pi⎰三、应力状态与强度理论1、二向应力状态斜截面应力σx+σyσx-σyσx-σyσα=+cos2α-τxysin2α τα=sin2α+τxyco2sα 2222、二向应力状态极值正应力及所在截面方位角σx-σy2-2τxyσmaxσx+σy2=±()+τxy tg2α0= σminσx-σy223、二向应力状态的极值剪应力τmax=(σx-σy22)2+τxy0注:极值正应力所在截面与极值剪应力所在截面夹角为454、三向应力状态的主应力:σ1≥σ2≥σ3σ-σ3最大剪应力:τmax=1 25、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变)τxy11μεx=(σx-μσy) εy=(σy-μσx) εz=-(σx+σy) γxy= EEEG(2)、表达形式之二(用应变表示应力)σx=E1-μ2(εx+μεy) σy=E1-μ2(εy+μεx) σz=0 τxy=Gγxy6、三向应力状态的广义胡克定律εx=τxy1σx-μσy+σz (x,y,z) γxy= (xy,yz,zx) EG[()]27、强度理论(1)σr1=σ1≤[σ1] σr2=σ1-μ(σ2+σ3)≤[σ] [σ]=(2)σr3=σ1-σ3≤[σ] σr4=σbnb1(σ1-σ2)2+(σ2-σ3)2+(σ3-σ1)2≤[σ] [σ]=σsns28、平面应力状态下的应变分析εx+εyεx-εy⎛γxy⎫⎪sin2α (1)εα=+cos2α- - ⎪22222⎛εx-εy⎫⎛γxy⎫εmaxεx+εy⎪+ ⎪ =±(2)⎪⎪εmin2⎝2⎭⎝2⎭⎛γxy⎛γα⎫εx-εysin2α+ -⎪= -22⎝2⎭⎝⎫⎪co2sα ⎪⎭γxytg2α0=εx-εy四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)π2EIminπ2E①细长受压杆λ≥λp Pcr= σcr=2 2λ(μL)②中长受压杆λp≥λ≥λs σcr=a-bλ ③短粗受压杆λ≤λs “σcr”=σs 或σba-σsπ2E2、关于柔度的几个公式λ= λp= λs=iσpbμL3、惯性半径公式i=Izd(圆截面 iz=,矩形截面iminA4=b(b为短边长度))五、动载荷(只给出冲击问题的有关公式)能量方程∆T+∆V=∆U 2h冲击系数 Kd=1++(自由落体冲击) Kd=∆st2v0(水平冲击)g∆st六、截面几何性质1、惯性矩(以下只给出公式,不注明截面的形状)dπd4πD42IP=ρdA= 1-α4 α=D3232⎰()bh3hb3Iz=ydA=1-α 64641212Izπd3πD3hb2bh24Wz== 1-αymax326326⎰2πd4πD4((4))2、惯性矩平移轴公式Iz=Izc+a2A。
材料力学基本概念及计算公式

材料力学基本概念及计算公式材料力学是研究物质在外力作用下的力学性质和变形规律的学科,主要研究物质的力学性质,包括弹性、塑性、稳定性等。
下面将介绍材料力学的基本概念及计算公式。
1.弹性力学:(1) 弹性模量(Young’s modulus):材料承受应力时的应变程度。
计算公式:E = σ / ε,其中 E 为弹性模量,σ 为应力,ε 为应变。
(2) 剪切模量(Shear modulus):材料抵抗剪切变形的能力。
计算公式:G = τ/ γ,其中 G 为剪切模量,τ 为剪切应力,γ 为剪切应变。
(3) 泊松比(Poisson’s ratio):材料在受力作用下沿一方向延伸时,在垂直方向上收缩的比例。
计算公式:ν = -ε_y / ε_x,其中ν 为泊松比,ε_x 为纵向应变,ε_y 为横向应变。
2.稳定性分析:(1) 屈曲载荷(Buckling load):结构在受压作用下失去稳定性的临界载荷。
计算公式:F_cr = π²EI / L²,其中 F_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,L 为结构长度。
(2) 欧拉稳定性理论(Euler’s stability theory):用于分析长杆(例如柱子)的稳定性。
计算公式:P_cr = π²EI / (KL)²,其中P_cr 为屈曲载荷,E 为弹性模量,I 为截面惯性矩,K 为杆件端部支撑系数,L 为杆件长度。
3.塑性力学:(1) 屈服点(yield point):材料开始发生塑性变形的点,也是材料在加强阶段的上线。
计算公式:σ_y = F_y / A_0,其中σ_y 为屈服点应力,F_y 为屈服点力,A_0 为断面积。
(2) 韧性(toughness):材料吸收能量的能力,一般由应力-应变曲线上的面积表示。
计算公式:T = ∫σ dε,其中 T 为韧性,σ 为应力,ε 为应变。
4.疲劳力学:(1) 疲劳极限(fatigue limit):材料在循环应力作用下出现裂纹的最大应力。
材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。
在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。
下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。
2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。
3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。
4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。
5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。
6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。
7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。
8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。
9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。
10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。
11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。
材料力学常用基本公式

1.外力偶矩计算公式 (P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件?或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径?,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得3 截面的几何参数4 应力和应变5 应力状态分析6 内力和内力图7 强度计算8 刚度校核9 压杆稳定性校核10 动荷载11 能量法和简单超静定问题材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQmax 挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tTmax 4、平面弯曲 ①[]σσ≤=maxz max W M②[]max t max t max max σσ≤=y I M ztmax c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t zmax t σσ≤+=y I M A N z[]c max c z z max c σσ≤-=A N y I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EALN EANL L d )(ii2、 扭转 ()⎰=∑==Φpp i i p GI dxx T GI LT GI TL πφ0180⋅=Φ=p GI T L (m / )3、 弯曲(1)积分法:)()(''x M x EIy = C x x M x EI x EIy +==⎰d )()()('θ D Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θEIML f B 22=EI PL f B 33= EI qL f B 84=EI ML B 3=θ,EI ML A 6=θ EI PL A B 162==θθ EIqL A B 243==θθEI ML f c 162=EI PL f c 483= EIqL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆i i P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2cos 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 0PAB MAB A BqL LLLL3、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为450 4、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,,Gxyxy τγ=()zx yz xy ,,7、强度理论 (1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=(2)[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析(1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx yx+-=⎪⎭⎫ ⎝⎛-αεεγα2sin 22yx αγ2cos 2⎪⎪⎭⎫⎝⎛-xy(2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x y x γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2min 2cr L EI P μπ= 22cr λπσE= ②中长受压杆s p λλλ≥≥ λσb a -=cr③短粗受压杆s λλ≤ “cr σ”=s σ或 b σ2、关于柔度的几个公式 i Lμλ= p2p σπλE=ba s s σλ-=3、惯性半径公式AI i z= (圆截面4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D Dd =α ⎰==6442d dA y I z π ()44164απ-D 123bh123hb 323maxd y I W zz π==()43132απ-D62bh62hb2、惯性矩平移轴公式A a I I 2zc z +=。
(完整版)材料力学常用公式

材料力学常用公式1.外力偶矩计算公式(P功率,n转速)2.弯矩、剪力和荷载集度之间的关系式3.轴向拉压杆横截面上正应力的计算公式(杆件横截面轴力F N,横截面面积A,拉应力为正)4.轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x轴正方向逆时针转至外法线的方位角为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松比8.胡克定律9.受多个力作用的杆件纵向变形计算公式?10.承受轴向分布力或变截面的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许用应力,脆性材料,塑性材料13.延伸率14.截面收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松比和切变模量G之间关系式17.圆截面对圆心的极惯性矩(a)实心圆(b)空心圆18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)19.圆截面周边各点处最大切应力计算公式20.扭转截面系数,(a)实心圆(b)空心圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,28.平面应力状态下斜截面应力的一般公式,29.平面应力状态的三个主应力,,30.主平面方位的计算公式31.面内最大切应力32.受扭圆轴表面某点的三个主应力,,33.三向应力状态最大与最小正应力 ,34.三向应力状态最大切应力35.广义胡克定律36.四种强度理论的相当应力37.一种常见的应力状态的强度条件,38.组合图形的形心坐标计算公式,39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截面图形对轴z和轴y的惯性半径? ,41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)42.纯弯曲梁的正应力计算公式43.横力弯曲最大正应力计算公式44.矩形、圆形、空心圆形的弯曲截面系数? ,,45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽度)46.矩形截面梁最大弯曲切应力发生在中性轴处47.工字形截面梁腹板上的弯曲切应力近似公式48.轧制工字钢梁最大弯曲切应力计算公式49.圆形截面梁最大弯曲切应力发生在中性轴处50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处51.弯曲正应力强度条件52.几种常见截面梁的弯曲切应力强度条件53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或,54.梁的挠曲线近似微分方程55.梁的转角方程56.梁的挠曲线方程?57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式58.偏心拉伸(压缩)59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式62.63.弯拉扭或弯压扭组合作用时强度计算公式64.剪切实用计算的强度条件65.挤压实用计算的强度条件66.等截面细长压杆在四种杆端约束情况下的临界力计算公式67.压杆的约束条件:(a)两端铰支μ=l(b)一端固定、一端自由μ=2(c)一端固定、一端铰支μ=0.7(d)两端固定μ=0.568.压杆的长细比或柔度计算公式,69.细长压杆临界应力的欧拉公式70.欧拉公式的适用范围71.压杆稳定性计算的安全系数法72.压杆稳定性计算的折减系数法73.关系需查表求得。
材料力学公式汇总

材料力学公式汇总一、轴向拉压。
1. 轴力计算。
- 截面法:F_N=∑ F_i(F_N为轴力,F_i为截面一侧外力的代数和,拉力为正,压力为负)2. 正应力计算。
- σ=(F_N)/(A)(σ为正应力,A为横截面面积)3. 胡克定律。
- Δ L=(F_NL)/(EA)(Δ L为轴向变形量,L为杆件原长,E为弹性模量)4. 泊松比。
- ν =-(varepsilon')/(varepsilon)(ν为泊松比,varepsilon为轴向线应变,varepsilon'为横向线应变)二、扭转。
1. 扭矩计算。
- 截面法:T=∑ M_i(T为扭矩,M_i为截面一侧外力偶矩的代数和,右手螺旋法则确定正负,拇指指向截面外法线方向时,扭矩为正)2. 切应力计算(圆轴扭转)- τ=(Tρ)/(I_p)(τ为切应力,ρ为所求点到圆心的距离,I_p为极惯性矩)- 对于圆轴最大切应力:τ_max=(T)/(W_t)(W_t=(I_p)/(R),R为圆轴半径)- 对于实心圆轴:I_p=(π D^4)/(32),W_t=(π D^3)/(16)(D为圆轴直径)- 对于空心圆轴:I_p=(π)/(32)(D^4 - d^4),W_t=(π)/(16D)(D^4 - d^4)(d为空心圆轴内径)3. 扭转角计算(圆轴扭转)- φ=(TL)/(GI_p)(φ为扭转角,L为轴长,G为切变模量)三、弯曲内力。
1. 剪力和弯矩计算。
- 截面法:F_Q=∑ F_i(F_Q为剪力,截面左侧向上的外力或右侧向下的外力为正)- M=∑ M_i(M为弯矩,使梁下侧受拉的弯矩为正)2. 剪力图和弯矩图绘制。
- 利用载荷、剪力、弯矩之间的微分关系:(dF_Q)/(dx)=q(x),(dM)/(dx)=F_Q,frac{d^2M}{dx^2} = q(x)(q(x)为分布载荷集度)四、弯曲应力。
1. 正应力计算(梁的纯弯曲)- σ=(My)/(I_z)(σ为正应力,M为弯矩,y为所求点到中性轴的距离,I_z为截面对中性轴的惯性矩)- 最大正应力:σ_max=(M)/(W_z)(W_z=(I_z)/(y_max))- 对于矩形截面:I_z=frac{bh^3}{12},W_z=frac{bh^2}{6}(b为截面宽度,h 为截面高度)- 对于圆形截面:I_z=(π D^4)/(64),W_z=(π D^3)/(32)2. 切应力计算(矩形截面梁)- τ=frac{F_QS_z^*}{bI_z}(S_z^*为所求点以上(或以下)部分截面对中性轴的静矩,b为截面宽度)- 最大切应力(矩形截面):τ_max=(3F_Q)/(2bh)(发生在中性轴上)五、弯曲变形。
材料力学重点及公式(期末复习)

1、材料力学得任务:强度、刚度与稳定性;应力单位面积上得内力。
平均应力(1、1)全应力(1、2)正应力垂直于截面得应力分量,用符号表示。
切应力相切于截面得应力分量,用符号表示。
应力得量纲:线应变单位长度上得变形量,无量纲,其物理意义就是构件上一点沿某一方向变形量得大小。
外力偶矩传动轴所受得外力偶矩通常不就是直接给出,而就是根据轴得转速n与传递得功率P来计算。
当功率P单位为千瓦(kW),转速为n(r/min)时,外力偶矩为当功率P单位为马力(PS),转速为n(r/min)时,外力偶矩为拉(压)杆横截面上得正应力拉压杆件横截面上只有正应力,且为平均分布,其计算公式为 (3 -1)式中为该横截面得轴力,A为横截面面积。
正负号规定拉应力为正,压应力为负。
公式(3-1)得适用条件:(1)杆端外力得合力作用线与杆轴线重合,即只适于轴向拉(压)杆件;(2)适用于离杆件受力区域稍远处得横截面;(3)杆件上有孔洞或凹槽时,该处将产生局部应力集中现象,横截面上应力分布很不均匀;(4)截面连续变化得直杆,杆件两侧棱边得夹角时拉压杆件任意斜截面(a图)上得应力为平均分布,其计算公式为全应力 (3-2)正应力(3-3)切应力(3-4)式中为横截面上得应力。
正负号规定:由横截面外法线转至斜截面得外法线,逆时针转向为正,反之为负。
拉应力为正,压应力为负。
对脱离体内一点产生顺时针力矩得为正,反之为负。
两点结论:(1)当时,即横截面上,达到最大值,即。
当=时,即纵截面上,==0。
(2)当时,即与杆轴成得斜截面上,达到最大值,即1.2 拉(压)杆得应变与胡克定律(1)变形及应变杆件受到轴向拉力时,轴向伸长,横向缩短;受到轴向压力时,轴向缩短,横向伸长。
如图3-2。
图3-2轴向变形轴向线应变横向变形横向线应变正负号规定伸长为正,缩短为负。
(2)胡克定律当应力不超过材料得比例极限时,应力与应变成正比。
即(3-5)或用轴力及杆件得变形量表示为 (3-6)式中EA称为杆件得抗拉(压)刚度,就是表征杆件抵抗拉压弹性变形能力得量。
材料力学公式大全pdf

材料力学公式大全pdf
材料力学公式大全pdf
本文主要介绍材料力学中的相关公式,方便学习和应用。
以下是材料力学公式大全pdf:
1. 应力公式:
应力(σ)=受力(F)/截面积(A)
2. 应变公式:
应变(ε)=变形(ΔL)/初始长度(L)
3. 餘弦定理:
c² = a² + b² - 2ab cosC
4. 正弦定理:
a / sinA =
b / sinB =
c / sinC
其中A,B,C为三角形的内角。
5. 费马原理:
任何在保持稳定的条件下遵循最短路线的点在路线最短。
6. 钢材强度公式:
σs = Fs / A
其中,σs表示钢材的强度,Fs表示钢材的极限拉力,A表示截面积。
7. 钢材弹性模量公式:
Es = σs / εs
其中,Es表示钢材的弹性模量,σs表示钢材的强度,εs表示钢材的应变。
8. 抗弯公式:
M = σ x I / y
其中,M表示悬臂梁的弯矩,σ表示应力,I表示截面惯性矩,y 为距截面中性轴的距离。
9. 泊松比公式:
ν = -ε₂ / ε₁
其中,ν为泊松比,ε₁为轴向应变,ε₂为横向应变。
10. 拉力公式:
F = A x ε x E
其中,F表示拉力,A表示截面积,ε表示应变,E为材料的弹性模量。
以上就是材料力学公式大全pdf。
希望能对大家学习和应用材料力学有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 横力弯曲最大正应力计算公式
3. 矩形、圆形、空心圆形的弯曲截面系数?
,
,
4. 几种常见截面的最大弯曲切应力计算公式(
为中性轴一侧的横截面对中性轴 z 的静矩,b 为横截
面在中性轴处的宽度)
5. 矩形截面梁最大弯曲切应力发生在中性轴处
6. 工字形截面梁腹板上的弯曲切应力近似公式
7. 轧制工字钢梁最大弯曲切应力计算公式
(4.16)
图 4.5 根据微体内的应变能在数值上等于微体上的内力功,得应变能的密度 Vr : 5,梁的弯曲应变能 在线弹性范围内,纯弯曲时,由功能原理得 1 V W M e 2 将 M e M 与
Ml 代入上式得 EI
1 Vr r 2
(4.17)
V
M 2l 2 EI
(4.7)
式
' max
Tmax 180 ' GI P
(/ m)
(4.8)
2,挠曲线的近似微分方程及其积分 在分析纯弯曲梁的正应力时,得到弯矩与曲率的关系
1
M EI
1 M x x EI
M x EI
对于跨度远大于截面高度的梁,略去剪力对弯曲变形的影响,由上式可得
Q A
(3-28)
bs
Pbs bs Abs
(3-29)
式中, Abs 表示有效挤压面积,即挤压面面积在垂直于挤压力作用线平面上的投影。当挤压面为平面时为 接触面面积,当挤压面为曲面时为设计承压接触面面积在挤压力垂直面上的 投影面积。 挤压强度条件挤压面上的工作挤压应力不得超过材料的许用挤压应力
i 1
n
Ti li Gi I Pi
(rad)
(4.6)
当 T、 I P 沿轴线连续变化时,用式(4.4)计算 。
2, 刚度条件 扭转的刚度条件 圆轴最大的单位长度扭转角 ' max 不得超过许可的单位长度扭转角 ' ,即
Tmax ' GI P
' max
(rad/m)
3,梁的刚度条件 限制梁的最大挠度与最大转角不超过规定的许可数值,就得到梁的刚度条件,即
m a x , max
3,轴向拉伸或压缩杆件的应变能 在线弹性范围内,由功能原理得
V W
(4.12)
1 Fl 2
F l 当杆件的横截面面积 A、轴力 FN 为常量时,由胡克定律 l N ,可得 EA
bs
P bs Abs
(3-30) 1, 变形计算 圆轴扭转时,任意两个横截面绕轴线相对转动而产生相对扭转角。相距为 l 的两个横截面的相对扭转角 为
T dx 0 GI P
l
(rad)
(4.4)
若等截面圆轴两截面之间的扭矩为常数,则上式化为
Tl GI P
(rad)
(4.5) 图 4.2
ML 3EI
,
(4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)
U
M 2L M 2L M 2 x dx = i i = 2 EI 2 EI i 2 EI
(5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)
i
M x M x U dx EI Pi Pi
外力偶矩 传动轴所受的外力偶矩通常不是直接给出,而是根据轴的转速 n 与传递的功率 P 来计算。 当功率 P 单位为千瓦(kW) ,转速为 n(r/min)时,外力偶矩为 P M e 9549 (N . m) n 当功率 P 单位为马力(PS) ,转速为 n(r/min)时,外力偶矩为 P M e 7024 (N . m) n 2.5.2 切应力计算公式 横截面上某一点切应力大小为
(2)叠加法: f P1 , P2 …= f P1 f P2 +…, P1 , P2 = P 1 P 2 … (3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)
M A
L
P
A
L
q
B
B
A
L
B
B
ML EI ML2 fB 2 EI
(3-14)
对等圆截面直杆
m a x
Tm a x Wt
(3-15)式中 为
材料的许用切应力。 3.1.1 中性层的曲率与弯矩的关系
1
M EI z
(3-16)
式中, 是变形后梁轴线的曲率半径;E 是材料的弹性模量; I E 是横截面对中性轴 Z 轴的惯性矩。 3.1.2 横截面上各点弯曲正应力计算公式
利用平面曲线的曲率公式,并忽略高阶微量,得挠曲线的近似微分方程,即 ' ' 将上式积分一次得转角方程为
(4.9)
'
M x dx C EI
(4.10) (4.11)
M x 再积分得挠曲线方程 dx dx Cx D EI
m a x
QS I zb
z
Q
d 2 2d 8 3 4 Q d4 3A
64 d
(3-25)
圆环形截面上的切应力分布与圆截面类似。 3.4 切应力强度条件 梁的最大工作切应力不得超过材料的许用切应力,即
m a x
Qm a S xz I zb
m a x
式中 GI P 称为圆轴的抗扭刚度。显然, 的正负号与扭矩正负号相同。 公式(4.4)的适用条件: (1) 材料在线弹性范围内的等截面圆轴,即 P ; (2) 在长度 l 内,T、G、 I P 均为常量。当以上参数沿轴线分段变化时,则应分段计算扭转角,然后求 代数和得总扭转角。即
A
S y zdA
A
I y z 2 dA
A
iy
Iy A
I yz yzdA
A
S z ydA
A
I z y 2 dA
A
iz
Iz A
3.惯性矩的平行移轴公式
I y I yC a 2 A
I z I zC b 2 A
静矩:平面图形面积对某坐标轴的一次矩,如图Ⅰ-1 所示。 定义式: S y zdA , S z ydA
p
T Ip
(3-12)
式中 I p 为该截面对圆心的极惯性矩, 为欲求的点至圆心的距离。 圆截面周边上的切应力为
m a x
T Wt
(3-13)
式中 Wt
Ip R
称为扭转截面系数,R 为圆截面半径。
2.5.3 切应力公式讨论 (1) 切应力公式(3-12)和式(3-13)适用于材料在线弹性范围内、小变形时的等圆截面直杆;对小锥 度圆截面直杆以及阶梯形圆轴亦可近似应用,其误差在工程允许范围内。 (2) 极惯性矩 I p 和扭转截面系数 Wt 是截面几何特征量,计算公式见表 3-3。在面积不变情况下,材料离 散程度高,其值愈大;反映出轴抵抗扭转破坏和变形的能力愈强。因此,设计空心轴比实心轴更为 合理。 表 3-3 实心圆 (外径为 d)
(4.18)
图 4.6 横力弯曲时,梁横截面上的弯矩沿轴线变化,此时,对于微段梁应用 式 (4.18) , 积分得全梁的弯曲应变能 V , 即 V
l
M 2 x dx 2 EI
(4.19)
2.截面几何性质的定义式列表于下: 静 矩 惯性矩 惯性半径 惯性积 极惯性矩
I p p 2 dA
Mm a x Wz
(3-19)
对于由拉、压强度不等的材料制成的上下不对称截面梁(如 T 字形截面、上下不等边的工字形截面等) , 其强度条件应表达为
l max
M max y1 t Iz M max y2 c Iz
(3-20a)
y max
(3-20b)
3 d 的环形截面, Wz D (1 a 4 ) 。 32 D 若中性轴是横截面的对称轴,则最大拉应力与最大压应力数值相等,若不是对称轴,则最大拉应力与最大压 应力数值不相等。 3.2 梁的正应力强度条件
对于内外径之比为 a 梁的最大工作应力不得超过材料的容许应力,其表达式为
m a x
B
PL2 2 EI PL3 fB 3EI
B
qL3 6 EI qL4 fB 8EI
A
C
B
L
M
A
C
P
q
B
B
B
A
C
L/2
L/2
L
fc
ML2 16 EI
fc
PL3 48EI
fc
qL4 384 EI
ML A 6 EI PL2 B A 16 EI qL3 B A 24 EI
F l V N 2 EA
V 1 2
2
(4.14) (4.15)
杆单位体积内的应变能称为应变能密度,用 V 表示。线弹性范围内,得 4,圆截面直杆扭转应变能 在线弹性范围内,由功能原 Vr W
Tl 将 M e T 与 代入上式得 GI P
1 M e 2
T 2l Vr 2GI P
2h Q B 2 b 2 2 H h y I zb 8 2 4
(3-23)
F dh
s
d 为腹板宽度 h1 为上下两翼缘内侧距
1
3.3.3 圆形截面梁 横截面上同一高度各点的切应力汇交于一点,其竖直分量沿截面宽度相等,沿高度呈抛物线变化。
最大切应力发生在中性轴上,其大小为
M y IZ