人教版数学八年级下册变量与函数
人教版八年级数学下册说课课件-19.1.1 变量和函数(共16张PPT)

子表示 y ? y的值随x的值的变化而变化吗?
y = 10x
八年级 数学
第十九章 一次函数
19.1 变量与函数
19.1.1 变 量
活动二 问题(3) lián yī
你见过水中的涟漪吗?圆形水波慢慢地扩大,在这一过程 中,当圆的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?S的值随r的值的变化而变化吗?
y= 5-x S = 60t y = 10x S= πr2
活动四:巩固练习
变量:月用水量x吨和月应交水费y元, 常量:自来水价4元/吨。
变量:通话时间t分钟和话费余额w元, 常量:通话费0.2元/分钟和存入话费30元。
变量:半径r和圆周长C 常量:圆周率π及计算公式中的数字2。
变量:第一个抽屉放书量x本和第二个抽屉放书量y本, 常量:书的总数10本。
当r=10cm时,S=400πcm2
当r=30cm时,S=900πcm2
圆面积S= πr2
题目中没有 特别要求时,
要保留π
S的值随r的值变化而变化吗?
八年级 数学
19.1 函数
第十九章 一次函数
19.1.1 变 量
活动二 问题(4)
用10 m 长的绳子围成一个长方形,当长方形的一边长x分
别为 3m,3.5m,4m,4.5m时,它的邻边长y分别为多少?y的值
随x
的值的变化而变化吗? 矩形的周长=(长+宽)×2
已知周长,如何去求长或宽呢?
矩形的宽=周长÷2-长
当x=3m时,y=2m 当x=3.5m时,y=1.5m
当x=4m时,y=1m
y= 5-x
活动二:创设情境-----新知探究
问题1:分别指出思考(1)~(4)的变化过程中所涉及的量, 在这些量中哪些量是发生了变化的?哪些量是始终不变的?
19.1.2变量与函数-说课稿 2022-2023学年人教版八年级数学下册

19.1.2 变量与函数-说课稿一、教材分析《2022-2023学年人教版八年级数学下册》中的第19章是关于函数的学习内容。
本说课稿将重点介绍第19章第1节的内容——变量与函数。
本节内容主要包括以下几个方面:1.通过实际例子引入变量的概念;2.介绍变量的定义、表示和使用;3.探讨函数的定义及其基本性质;4.练习函数的使用,包括计算函数值和计算函数的解析式。
通过这一节的学习,学生应该能够了解变量的概念和用途,并掌握函数的基本概念和使用方法。
二、教学目标1. 知识与能力目标•了解变量的概念、定义和表示方法;•掌握函数的定义和函数值的计算方法;•能够计算简单函数的解析式。
2. 过程与方法目标•通过引入实际例子,激发学生对变量的兴趣;•通过提问、讨论和演示等多种教学方法,培养学生分析和解决问题的能力;•鼓励学生进行小组合作学习,提高学生的合作与交流能力。
3. 情感态度价值观目标•培养学生的探究精神和创新思维能力;•培养学生的数学思维和逻辑思维能力;•引导学生积极参与课堂活动,增强课堂互动氛围。
三、教学重点•变量的概念和表示方法;•函数的定义和计算方法。
四、教学难点•函数的解析式的计算。
五、教学准备•教材:《2022-2023学年人教版八年级数学下册》;•多媒体设备;•板书工具。
六、教学过程1. 导入新课通过一个生动有趣的例子引出变量的概念。
比如:小明去水果店买苹果,苹果的价格是每个1元,那么10个苹果的价格是多少?引导学生思考如何计算苹果的总价。
2. 引入变量通过上述例子引导学生理解变量的概念。
告诉学生,我们可以用一个字母或一个符号代表一个数,这个字母或符号就叫做变量。
比如,我们可以用字母x表示苹果的个数,用数字1表示每个苹果的价格,那么苹果的总价就是x乘以1,即x元。
3. 变量的表示方法向学生介绍变量的表示方法,即用字母或符号代表一个数。
同时,告诉学生变量通常都是小写字母,如x、y、z等。
4. 变量的使用通过一些练习题引导学生巩固对变量的理解和使用方法。
人教版数学八年级下册教学设计:第19章 变量与函数(一)

人教版数学八年级下册教学设计:第19章变量与函数(一)一. 教材分析人教版数学八年级下册第19章《变量与函数(一)》是学生在学习了初中数学基础知识后,进一步深入研究数学的一个章节。
本章主要介绍了变量的概念,函数的定义及其性质,函数的图像,以及函数的表示方法。
通过本章的学习,使学生能够理解变量与函数之间的关系,掌握函数的基本性质和图像,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章内容前,已经掌握了初中数学的基本知识,对一些概念和性质有一定的理解。
但是,对于函数这一概念,学生可能还存在一定的模糊认识。
因此,在教学过程中,需要教师引导学生深入理解函数的概念,并通过实例使学生能够更好地理解函数的性质和图像。
三. 教学目标1.了解变量与函数的概念,理解函数的性质和图像。
2.掌握函数的表示方法,包括解析式和图像表示。
3.能够运用函数解决实际问题,提高学生的应用能力。
四. 教学重难点1.函数的概念和性质。
2.函数的图像表示。
3.函数的实际应用。
五. 教学方法1.讲授法:教师通过讲解,使学生掌握函数的基本概念和性质。
2.案例分析法:通过实例,使学生更好地理解函数的性质和图像。
3.问题驱动法:引导学生通过解决问题,提高运用函数解决实际问题的能力。
六. 教学准备1.教材:人教版数学八年级下册。
2.教学PPT:包含函数的基本概念、性质、图像和实际应用等内容。
3.实例:选取一些与生活实际相关的问题,用于讲解函数的应用。
七. 教学过程1.导入(5分钟)教师通过一个简单的实例,引导学生回顾已学的数学知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT呈现函数的基本概念、性质和图像,使学生初步了解函数。
3.操练(10分钟)教师引导学生通过解决一些实际问题,运用函数的知识,加深学生对函数的理解。
4.巩固(10分钟)教师通过一些练习题,检查学生对函数知识的掌握程度,并对学生的疑问进行解答。
5.拓展(10分钟)教师引导学生进一步深入研究函数,探讨函数的性质和图像之间的关系。
八年级数学下册第19章一次函数19.1变量与函数19.1.1变量与函数课件(新版)新人教版

例2 下列变量间的关系是函数关系的是
.
①长方形的长与面积;②圆的面积与半径;
③y=± x ;④S= 1 ah中的S与h.
2
解析 ①因为长方形的长、宽、面积都不确定,有三个变量,所以长方
形的长与面积不是函数关系.②因为圆的面积公式为S=πr2,当半径r取一
个确定的值时,面积S就唯一确定,所以圆的面积与半径是函数关系.③当
解析 (1)根据函数的定义可知,对于底面半径的每个值,都有一个确定 的体积的值按照一定的法则与之相对应,所以自变量是底面半径,因变 量是体积. (2)体积增加了(π×102-π×12)×3=297π cm3.
2.(2018湖北咸宁咸安模拟)若函数y=
x
2
2(
x
2),
则当函数值y=8时,自
答案 B 把h=2代入T=21-6h,得T=21-6×2=9.故选B.
5.在函数y=3x+4中,当x=1时,函数值为 为10.
,当x=
时,函数值
答案 7;2
解析 当x=1时,y=3x+4=3×1+4=7.当函数值为10时,3x+4=10,解得x=2.
知识点三 自变量的取值范围
6.(2018江苏宿迁中考)函数y= 1 中,自变量x的取值范围是( )
知识点一 常量与变量 1.(2017河北唐山乐亭期中)一辆汽车以50 km/h的速度行驶,行驶的路程 s(km)与行驶的时间t(h)之间的关系式为s=50t,其中变量是 ( ) A.速度与路程 B.速度与时间 C.路程与时间 D.三者均为变量
答案 C 在s=50t中路程随时间的变化而变化,所以行驶时间是自变 量,行驶路程是因变量,速度为50 km/h,是常量.故选C.
人教八年级数学下册-变量与函数(附习题)

C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
《变量与函数》公开课教学设计 人教版八年级下册

人教版八年级下册19.1.1变量与函数教学设计因为数是固定不变的,所以在一个关系式中,常量是数,而字母可以取相应变化的值,所以变量是字母。
下列运动变化过程中的关系式,哪些是变量,哪些是常量:①y=0.4x常量:变量:②a=3+2.4b常量:变量:③C=2πR常量:变量:④V=6abc常量:变量:2、函数的相关概念:P73一般地,在一个变化过程中,如果有____个变量___与___,并且对于____的每一个确定的值,____都有___________的值与其对应,那么我们就说 x是_________,y是 x的______.如果当x=a 时,对应的y=b,那么 b 叫做当自变量的值为a时的_______.P74用关于自变量的数学式子表示函数与自变量之间的关系,这种式子叫做函数的_________.x/h 1 2 3 4 (x)y/km 60 120 180 240 (60x)在上述汽车行驶的过程中, y与x的关系式是_________,这其中有____个变量,给一个x,得____个y,所以____是自变量,_____是_____的函数。
x=1时,y的函数值是60;x=2时,y的函数值是120;x=3时,y的函数值是_______;x=4时,y的函数值是_______。
函数解析式即y与x的关系式:___________.y是x的函数吗?如果是,指出自变量。
①y=0.4x 两个变量x和y,给一个x,得一个y,所以,x是自变量,y是x的函数。
②y=±x 反例:当 x=1时,y=±1,给一个x,得两个y,所以y不是x函数。
③y2=x 问题前置的目的。
左题由组代表抢答,并计入本组竞赛成绩,教师根据答题情况纠偏改错。
2、学生齐读并齐答,教师根据回答情况纠偏改错。
①②③④是难点题目,教师先讲解,学生讨论研究。
反例:(±3)2=9,当 x=9时,y=±3,给一个x,得两个y,所以y不是x的函数。
人教版八年级数学下册19.1.1 变量与函数(第1课时)

行星在宇宙中的位置随时间而变化
万物皆变
气温随海拔而变化
汽车行驶里程随行驶时间而变化
像这样在某一个过程中,有些量固定不变,有些量不断改变.为了更深刻地认识和了解这些变化现象中所隐含的变化规律,在这一章里,我们将学习有关一种量随另一种量变化的知识,共同见证事物变化的规律.
变量
数值始终不变的量
常量
上述运动变化过程中出现的量,你认为可以怎样分类?
s = 60t
y = 10x
变量:在一个变化过程中,数值发生变化的量为变量.
常量:在一个变化过程中,数值始终不变的量为常量.
2(x+y)=10
S=πr2
提示:在同一个变化过程中,理解变量与常量的关键词:发生了变化和始终不变.
B
B
元/升
数量、金额
指出下列关系式中的变量与常量:
(1) y = 3x -4;
(2) y=x;
(3) y= x2+2x-8;
(4) S = πr2.
解:(1)3和-4是常量,x和y是变量.
(2)1是常量,x、y是变量.
(3)1、2、-8是常量,x、y是变量.
(4)π是常量,s、r是变量.
1. 结合实例,了解变量、常量的意义,并能正确区分常量与变量.
2. 体会运动变化过程中的数量变化.
学习目标
3. 能确定两个量之间的关系式.
t /h
1
2
3
4
5
s /km
1.汽车以60 km/h的速度匀速行驶,行驶路程为s km,行驶时间为t h,填写下表,s的值随t 的值的变化而变化吗? (1)请同学们根据题意填写上表:(2)在以上这个过程中,变化的量是______________, 不变化的量是_____.(3)试用含t的式子表示s 是_______.
人教版八年级数学下册《变量与函数》

如: 当矩形的长一定时,矩形的面积依赖 宽的变化而变化他们之间是否存在函数关 系呢?
交流反思:函数概念理解
1.函数概念包含:
(1)在一个变化过程中两个变量; (2)两个变量之间的对应关系 (3)对于x的每一个确定的值,y都有唯 一 确定的值与 其对应 2.在某个变化过程中,可以取不同数值的量,叫做变 量;数值始终保持不变的量,叫做常量.例如x和y, 对于x的每一个值,y都有惟一的值与之对应,我们 就说x是自变量,y是x的函数.
自我挑战
1、判断下列问题中的变量y是不是x的函数?
(1)在 y = 2x 中的y与x; 是 (2)在 y = x 中的y与x; 是
2
(3)在 y = x 中的y与x; 不是
2
2.下列各曲线中不表示 y 是 x 的函数的是(பைடு நூலகம்
4
)
3.下列关系中,y不是x函数的是(
D
)
x A. y 2
B. y x
(2)火车以60千米/时的速度行驶,它 驶过的路程 s(千米)和所用时间t(时)的关系式; (3)n边形的内角和S与边数n的关系式.
教你一招: 1、先认真审题,根据题意找出相等关系 2、按相等关系,写出含有两个变量的等式 3、将等式变形为用含有自变量的代数式 表示函数的式子
根据所给的 条件,写出y与x的函数关系式:
用含重物质量m(kg)的式子表示受力后的 弹簧长度 L(cm)为:
L=10+0.5m
3
11.5
重物质量 m(Kg)
1
2
11
4
12
5
12.5
弹簧长度 10.5 L(cm)
弹簧长度L 重物质量 m 当 确定一个值时, 就 随之确定一个值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
找一找
下面问题中变化的量和不变的量: (4)用10 m长的绳子围一个矩形,当矩形的一边 长 x 分别为3 m,3.5 m,4 m,4.5 m 时,它的邻边长 y 分别为多少?在矩形改变形状的变化过程中,哪些 量是变化的?哪些量是固定不变的?
矩形 D
C
动画
y
A
x
B
说一说
上述运动变化过程中出现的数量,你认为可以 怎样分类?
想一想
注意:
1.变量和常量是相对的,对不 同的过程而言,其中的变量和常 量是不相同的. 2.圆周率π是常量.
做一做
作业:教科书第71~72页练习.
思考题
⑴ 把式子y-5x=7写成用含x的式子表示y是
,
其中常量是
,变量是
.
⑵ 已知y=2m+1,x=m ,则y=
(用含x的式
子表示),其中常量是
,变量是
下面问题中变化的量和不变的量: (2)电影《离开雷锋的日子》,每张电影票售价 为10 元,设某场电影售出 x 张票,票房收入为 y 元.
y=10x 变化的量是x,y; 不变的量是10
找一找
下面问题中变化的量和不变的量: (3)圆形水波慢慢地扩大,在这一过程中,当圆 的半径r 分别为10 cm,20 cm,30 cm 时,圆的面积S 分别为多少?在这个过程中,哪些量是变化的?
八年级 下册 P70-72
19.1.1 变量与函数(1)
看一看
万物皆变
瞧一瞧
如图,小球在斜坡上滚动,请观察这一运动变化 过程,你注意到了什么变化?
s 小球
x
动画
y
万物皆变 从数学角度 研究变化过程 关注其中数量的变化,用数量变化描述变化规律
想一想
如图,小球在斜坡上滚动,请观察这一运动变化
过程,你注意到了什么变化?
s
小球 动画
x
y
变化的量: 小球在斜坡上滚动的路程 s; 小球离起点的水平距离 x; 小球离坡底水平面的高度 y.
不变的量: 斜坡高度,斜坡长度,斜坡水平长度等.
找一找
下面问题中变化的量和不变的量: (1)新能源汽车以60 km/h 的速度匀速行驶, 行驶时间为 t h,行驶路程为 s km.
找一找
⑸ 下图是黄陂某日温度变化图,横坐标 t 表示时间,纵坐标 T 表示温度。
当变量t取定一个值时,另一个变量T能有几 个确定的值与之对应?
结束语
合作愉快! 谢谢!
.
⑶ 心电图是医学检查中用仪器记录心脏跳动状 况的曲线,其中每个点的横坐标x表示时间,纵坐 标y表示心脏部位的生物电流。
当变量x取定一个值时,另个变量y能有几个 确定的值与之对应?
⑷ 在下面的我国人口数统计表中,年份记作x, 人口数记作y。
当变量x取定一个值时,另一个变量y能有几个 确定的值与之对应?
议一议
你能举出一个变化过程的例子,并说出其中的 变量和常量吗?试一试!
你能确定下列变化过程中的变量吗? (1)不挑食,多锻炼,小敏长高了; (2)往“神仙汤”里加水,汤变淡了; (3)小狗越来越可爱了.
测一测
填空:
⑴ 4月1日起“我国重点国有林区全面停止商业性采伐
”。“光头强”破坏森林每天砍树10棵,他砍掉的大树数记
,变量是
。
⑷ 某手机的月租费为每月10元,通话费0.15元/分,月通话
总费用y元与通话时间t分的关系为
,其中常量
是
,变量是
。
测一测
填空: ⑸在计算器上按照下面的程序进行操作:
则y与x的关系为
,其中常量是 ,变量是 .
课堂小结
(1)什么叫变量?什么叫常量? (2)举一个运动变化的例子并指出其变量和常量. (3)你认为变化过程中的变量之间会有联系吗?
作s,砍树的天数记作n。(在熊大熊二极力阻止下,“光头
强”现在不砍树了。),则s与n的关系为
,
其中常量是
,变量是
.
⑵ 某汽车的平均耗油量为0.1升/km,油箱可装30升油。
行驶里程(km)与剩余油量Q的关系为
,其中常
量是
,变量是
。
测一测
填空:
⑶ 一个凸n边形的内角和为S度,则S与n的关系为
,
其中常量是
数值不断 变化的量
变量
数值固定 不变的量
常量
记一记
变量和常量
在一个变化过程中, 数值发生变化的量叫变量, 数值始终保持不变的量叫常 量.
辨一辨
指出下列变化过程中的变量和常量: (1)环保节能汽油添加剂的价格是3元/毫升, 加这种汽油添加剂 x 毫升,车主需付费 y 元; (2)小明在电子书上看一部200 页的科幻小说, 看完这部小说需要 t 天,平均每天所看的页数为 n; (3)用长为40 cm 的绳子围一矩形,围成的矩形 一边长为 x cm,其面积为 S cm2.