文氏电桥振荡电路仿真实验报告

合集下载

RC文氏电桥振荡电路仿真及实验分析

RC文氏电桥振荡电路仿真及实验分析

《工业控制计算机》2021年第34卷第1期实验课是高等教育体系中的一类重要课程。

实验课以观察为基础,通过操作来提高学生的动手、思维和创新能力[1]。

模拟电路的理论相较于数字电路更难理解,因此对于模拟电路的教学,实验成为必不可少的一部分,实验课上不仅可以验证理论结果,也可以更为细致地“查看”电路工作的过程及变化。

实验课上,学生通过正确、精准的实验操作过程获得实验结果,通过对实验结果的分析、判断、综合与归纳,对整个实验进行总结,从而对知识有更深刻的认识。

电子信息系统中,正弦波作为测试信号、参考信号以及载波信号而被广泛使用。

正弦信号产生的最直接方法则是利用运算放大器,配以少量的外接元件构成正弦波振荡电路[2-3]。

文氏电桥振荡器是一种无需外加激励而能产生1Hz~1MHz范围内的正弦波电路,也是模拟电子技术理论教学中的重要知识点之一。

本文从RC文氏电桥振荡波形的观察,到各个状态振荡电路的数据测量,验证振荡成立的条件,通过实验实际接线操作中出现的问题,分析稳幅环节的重要作用。

1自激振荡自激振荡电路是在没有外加输入信号的情况下,依靠电路自激振荡而产生信号的电路,结构示意图如图1所示。

图1自激振荡的结构示意图1)当自激振荡电路接通电源的一瞬间,振荡还未建立,要使振荡电路能自行建立振荡,就必须满足|AF|>1的起振条件。

2)待振荡建立后,必须满足振幅平衡条件和相位平衡条件:①振幅平衡条件:V F=V i或|AF|=1和②相位平衡条件:φ=±2nπ(n=0、1、2…)。

相位平衡条件说明,产生振荡时,反馈信号的相位与所需输入信号的相位同相,即形成正反馈。

3)正弦波振荡电路的构成。

正弦波振荡电路通常包含以下3个部分:放大电路、正反馈网络(也是选频网络)和稳幅环节。

稳幅环节通常采用负反馈电路来实现。

为了限制输出振荡电压的幅度不断增加,防止集成运放工作到非线性区,可采用热敏电阻、二极管或场效应管等稳幅措施[4-7]。

实验四 RC振荡器实验

实验四 RC振荡器实验

实验四 RC振荡器实验一、实验目的1、掌握文氏电桥振荡电路的原理2、掌握文氏电桥振荡电路振荡频率的计算方法二、实验内容1.调试文氏电桥振荡电路;2.测量并记录振荡波形的相关参数。

三、实验仪器20MHz示波器四、实验原理RC振荡器由放大器和RC网络组成,根据RC网络的不同,可将RC振荡器分为相移振荡器和文氏电桥振荡器两大类。

其中,文氏电桥振荡器广泛用于产生几Hz到几百KHz频段范围的振荡器。

图10-1为文氏电桥振荡器的实验原理图.R27, C25, R28, C26组成RC选频网络同时兼作正反馈支路,R25, R26, R29, D3,D2构成负反馈及稳幅环节。

当R27= R28=R, C25=C26=C时(本实验R27= R28=12KS2,C25=C26=0.01uF),电路的振荡频率为:(10-1)设二极管D2, D3的正向导通电阻为rD当R26+(R29||rD)=RF时,电路起振的振辐条条件(10-2 ) 运放UlA组成放大器,振荡信号从TP6和TT2处输出,通过W3调节输出信号的幅度。

由于D2. D3正向电阻非线性特性不可能完全一致,所以振荡波形会有正负半周不对称的失。

本实验产生的信号仅用于一般原理性验证实验,因此对输出波形的失真未做处理。

五、实验步骤正弦波振荡器模块如图l、连接实验电路在主板上正确插好正弦波振荡器模块,开关K1. K9, K10, K11, K12向左拨,主板GND接模块GND,主板+12V接模块+l2V,主板-12V 接模块-12Vo检查连线正确无误后,打开实验箱右侧的船形开关,K9, Kl0向右拨。

若正确连接,则模块上的电源指示灯LED2,LED3亮。

2、观察、测量振荡输出波形及其相关参数用示波器在TT2处测量,调节电位器W3,观察TT2处波形的幅度变化及失真情况,记录TT2处波形的最大峰峰及频率fo,填表10-1a六、实验现象1. 将TT2引入到模拟示波器中观察波形如图2.调节电位器W3可观察到幅度变化及失真情况,如图波形底部被切割。

实验七 文氏桥正弦振荡器

实验七 文氏桥正弦振荡器

实验七 文氏桥正弦振荡器一、 实验目的1.掌握振荡条件和稳幅措施。

2.研究文氏桥网络的选频特性和传输特性。

3. 学习文氏桥振荡器的调试与测试技术。

二、 实验原理1. 振荡器的振荡条件振荡过程是一个正反馈过程,振荡常常是一个微扰引起的,如果这个微扰经过反馈,弱于原输入的讯号,循环一次减弱一次,直至消亡,即为负反馈或环增益小于1, 无法起振。

如果经过反馈后的信号强于原来的输入讯号,循环一次增强一次,振幅越来越大,直至晶体管的非线性或外部稳幅系统限制了它的振幅为止。

我们把这个放大与反馈的过程表达为∙∙FA ,即称为环路增益,简称环增益。

电压放大倍数∙A 与反馈系数∙F都是复数:AFj j eA A eF F φφ∙∙∙∙==7-1∙∙F A =)(F A j eF A φφ+∙∙7-2令AA =∙, F F =∙,因此起振条件有两个:振幅条件: 1>AF (6-3) 相位条件:2 n=0,1,2A F n φφπ+= (6-4)起振以后,振幅逐渐增大,但由于晶体管的非线性或稳幅系统起控,A 逐渐变小,达到一个平衡状态,此时1=AF ,所以振荡器的振幅平衡条件为:1=AF(6-5)A 与F 都是频率的函数,在某个频率上,这两个条件都满足了,这个频率便是振荡器的振荡频率。

2. 文氏桥正弦振荡器文氏桥振荡器是低频振荡器中最常见的一种电路。

它使用的元件只需电阻、电容,而不需要难于制作的电感元件,且波形比较好,故得到广泛应用。

文氏桥原是电学中的交流电桥,用来测量电容的容量,以及交流电频率的电桥。

原名是维恩电桥(Wien Bridge ),我国简称为文氏桥。

这个电桥的电路如图7-1(a )所示图7-1 文氏电桥如果电桥的R 1=R 2=R ,C 1=C 2=C ,R 4=2R 3,那么从A 、C 两端输入一个频率为:12f R Cπ=的正弦波电压,B 、D 两端的电压便为零。

我们可以将这个桥路分解为图7-1(b )与7-1(c )两个网络。

文氏桥振荡器设计

文氏桥振荡器设计

实验二 文氏桥振荡器设计[实验内容]一、实验电路的原理图本次实验主要是集成运放的应用,如图所示。

R40127KU401是由ha741所构成的文氏桥振荡器,运放的负端到地接可调电位器VR401,因此运算放大器的增益可以调节,从而滿足电路起振条件:311≥+=R R A FVF , VT401接成电压跟随器,其输出接VR402电位器,因此输出的正弦波幅度可调。

器件清单:可变电阻:100k (1个); 20k (1个); 1k (1个) Ha741:1个;0.01uF (103):2个 ; 20uF :1个27k (1个) 10k (2个) 2k (1个) 20k (1个) 51k (1个)3DG6:1个 LED :1个 Key :1个 二、实验常见故障与排除①如果没有波形输出:看6脚有无输出,然后调节VR401(满足起振条件) 3VR4014011≥+=R A VF (过弱,不起振;过强,失真) ②波形出现失真:调节VR401 ③波形幅度大小:调节VR403、VR402 三、实验结果测量利用示波器测量正弦波的频率及输出最大幅度和最小幅度。

注意事项:利用示波器测量频率和幅度应先对示波器进行校准。

具体方法:利用示波器输出的标准方波信号1KHz ,峰峰值1V 来调节示波器得到正确显示后再进行测量。

在以后的实验中都应该这样做。

四、实验报告要求 1、 实验目的。

2、 实验主要内容(含电原理图及对原理图的分析等)。

3、 实验组装和调试情况(含组装和调试中出现的问题及解决对策等)。

4、 实验结果的测量值与理论值的分析(含实验测量结果与理论计算值的比 较,是否有误差,误差主要由哪些因素造成等)。

5、 分析影响电路起振、波形失真及稳定性的主要因素?6、 实验总结(含个人心得、经验和教训等)。

7、 设计一宽度可调的矩形波发生器(提示:在图12(a )电路中,接入两只二极管),画出设计的电路图。

RC文氏电桥振荡电路原理分析

RC文氏电桥振荡电路原理分析

RC文氏电桥振荡电路原理分析这有个例子,如下:咋一看有点傻眼了,这2个二极管是干啥的,莫大疑问,需要仔细分析原理,首先既然是振荡电路需满足起振条件如图(图中都为向量):图中向量A=Uo/Ui ;F=Uf/Uo起振条件:|AF|>1且Ui 与Uf同相位,这样才能自激励当起振后又需要|AF|=1,才能稳定振荡(也就是Ui =Uf),而UA741CD是个高增益运放,把电路先做简化然后推导分析,简化如下:当此网络发生谐振时虚部为零即:此为谐振角频率如果取R1=R2=R,C1=C2=C,那么F的模如下:F的相角如下:当选频正反馈网络谐振时正反馈系数|F|=1/3,由起振条件|AF|>1 ,需要负反馈网络组成的闭环增益大于3即而起振后应该Au=3,所以需要R3/R4分别是负温度系数热敏电阻和正温度系数热敏电阻,如果不用热敏电阻,有啥办法到稳定后让放大倍数减小呢?我们先把例子中的电路改成这样:这时Au=11倍看波形已经限幅了如图,而且很容易起振:如果把R3改成30k,Au=4倍看看波形如何:如果把R3改成21k,Au=3.1倍看看波形如何:如果把R3改成20k,Au=3倍看看波形永远不会起振的,如果我们想个办法起振时候为4倍,而起振完成后变成稍稍小于3倍,不就不在限幅也能起振如下图:很明显起振时候Au=4,而起振后由于二极管导通R2//R3=18.9K,得Au≈2.89倍,得到波形如下:而例子中也是这个原理,如果运放是单电源又该咋办呢,就需要抬一下直流电平更改如下:R4//R7=R5的值,交流通路就是把V2和C3短路即可原理:V2通过R7和R4分压由于2个阻值相等,又由于运放正端输入阻抗无穷大,那么可以认为运放正端的直流电平为V2/2,而负端"虚短"缘故则也为V2/2,从而输出处也为V2/2的直流电平(也可以看出一个电压跟随器,所以负端和输出都为V2/2的直流电平),交流通路就是把R7和R1接地,由于R4//R7=R5,交流通路没变,所以还是满足振荡条件的。

[详细讲解]文氏桥振荡电路(multisim仿真)

[详细讲解]文氏桥振荡电路(multisim仿真)

高频电子线课程设计题目:院(系、部):学生姓名:指导教师:年月日河北科技师范学院教务处制摘要无论是从数学意义上还是从实际的意义上,正弦波都是最基本的波形之一——在数学上,任何其他波形都可以表示为基本正弦波的傅里叶组合;从实际意义上来讲,它作为测试信号、参考信号以及载波信号而被广泛的应用。

在运算放大电路中,最适于发生正弦波的是文氏电桥振荡器和正交振荡器。

本文中介绍了一种基于运算放大器的文氏电桥正弦波发生器。

文氏桥振荡电路由两部分组成:即放大电路和选频网络。

由集成运放组成的电压串联负反馈放大电路,取其输入电阻高、输出电阻低的特点。

经测试,该发生器能产生频率为100-1000Hz的正弦波,且能在较小的误差范围内将振幅限制在2.5V以内。

关键词:正弦波;振荡器;文氏电桥目录摘要..................................................... 错误!未定义书签。

1设计任务及要求. (3)............................................................................................................. 错误!未定义书签。

1.2 ***............................................................................................... 错误!未定义书签。

2 方案论证 (4)3 单元电路设计 (5)4 电路原理图及PCB版图 (5)5 总结.................................................... 错误!未定义书签。

附录及参考文献............................................ 错误!未定义书签。

文氏电桥振荡电路分析

文氏电桥振荡电路分析

文氏电桥振荡电路分析近年来,文氏电桥振荡电路成为各种科学和工程应用的核心技术,如通讯、网络、控制、信号处理等等。

它由电路中最重要的控制元件文氏电桥提供所需要的电路模型,可以用来设计按照预期的振荡情况运行的电路系统。

由此可见,对于文氏电桥振荡电路的理解是重要的,本文将针对文氏电桥振荡电路分析这一问题进行深入研究,以期为相关应用提供参考。

首先介绍文氏电桥振荡电路的基本原理。

文氏电桥振荡电路的基本原理是电流控制电路模型,它由四个基本组件组成,即电阻R、电容C、绝缘变压器T和电感L,它们组合在一起构成文氏电桥振荡电路,在这种电路中,电流循环的过程和时间常数τ随元件直流和交流参数的变化而变化,从而改变振荡的特性。

其次要介绍文氏电桥振荡电路的工作特性。

文氏电桥振荡电路的工作特性非常复杂,它可以根据电路中电路组件参数的变化而产生不同的正弦波,满足系统的需求,此外,它可以根据开关的状态自动调节电路的振荡频率,并且表现出良好的安定性。

此外,需要介绍文氏电桥振荡电路的应用。

文氏电桥振荡电路在各种领域都有着广泛的应用,其中最突出的是通讯领域,它可以用来实现高品质的数字转换,提高系统的工作效率,另外,它还可以应用在量子计算、可编程逻辑电路设计、超声通讯等领域中。

最后,要提出文氏电桥振荡电路的发展趋势。

在将来,文氏电桥振荡电路将继续向更加简单、低成本、高性能的方向发展,更多的新型智能元件将被发明,以满足不断增加的应用需求;另外,文氏电桥振荡电路也会更加安全可靠,抗干扰能力也将会大大增强,从而更加稳定;而且,文氏电桥振荡电路的可配置性将会得到大大提升,以满足不同领域的需求;最后,文氏电桥振荡电路的控制能力也将会有所提升,可以应用于各种复杂的系统中。

综上所述,文氏电桥振荡电路可以说是近年来科技发展的一大重要贡献,它可以满足不断发展的各种应用,并且还将朝着更加简单、低成本、高性能的方向发展。

本文对文氏电桥振荡电路进行了全面的分析,希望能为相关应用提供参考。

实验五:RC文氏电桥振荡器说课讲解

实验五:RC文氏电桥振荡器说课讲解

实验五:R C文氏电桥振荡器RC文氏电桥振荡器一、实验目的(1)学习RC正弦波振荡器的组成及其振荡条件。

(2)学会测量、调试振荡器。

二、实验原理文氏电桥振荡器是一种较好的正弦波产生电路,适用于产生频率小于1MHz,频率范围宽,波形较好的低频振荡信号。

因为没有输入信号,为了产生正弦波,必须在电路里加入正反馈。

下图是用运算放大器组成的电路,图中R3,R4构成负反馈支路,R1,R2,C1,C2的串并联选频网络构成正反馈支路并兼作选频网络,二极管构成稳幅电路。

调节电位器Rp可以改变负反馈的深度,以满足振荡的振幅条件和改善波形。

二极管D1,D2要求温度稳定性好且特性匹配,这样才能保证输出波形正负半周对称,同时接入R4以消除二极管的非线性影响。

若R1=R2,C1=C2,则振荡频率为f0=1/2πRC,正反馈的电压与输出电压同相位,且正反馈系数为1/3。

为满足电路的起振条件放大器的电压放大倍数AV > 3,其中AV = 1+R5/ =Rp+R4。

由此可得出当R5 >2R3时,可满足电路的自激振荡的振幅起振条件。

在实际应用中R5应略大于R3,这样既可以满足起振条件,又不会因其过大而引起波形严重失真。

此外,为了输出单一的正弦波,还必须进行选频。

由于振荡频率为f0=1/2πRC,故在电路中可变换电容来进行振荡频率的粗调,可用电位器代替R1,R2来进行频率的细调。

电路起振后,由于元件参数的不稳定性,如果电路增益增大,输出幅度将越来越大,最后由于二极管的非线性限幅,这必然产生非线性失真。

反之,如果增益不足,则输出幅度减小,可能停振,为此振荡电路要有一个稳幅电路。

图中两个二极管主要是利用二极管的正向电阻随所加电压而改变的特性,来自动调节负反馈深度。

三、实验内容(1)计算机仿真部分仿真电路如图所示启动仿真按钮,通过调节电位器使输出为不失真的正弦波(如下图所示)。

此时Vf=1.987V,Vo=5.964V,f=1.572KHZ正弦波振荡器仿真数据测试记录Vf Vo 临界频率C1=C2=0.01uF 1.987V 5.964V 1.572KHZ计算得到的数据fo=1/2piRC=1.592KHZ(c=0.01uF时)与仿真得到的数据基本一致,证明本次仿真是十分成功的【得到输出波形图如下】(2)实验室操作部分调整示波器到有正弦输出正弦波振荡器实验数据测试记录Vf Vo 临界频率C1=C2=0.01uF 4.69V 16.22V 1.60KHZ四、问题及原因分析试验中我组始终得不到实验想要的正弦波形的情况(包括波形跳动明显等),经分析后我们得出的结论为集成块损坏的情况,更换后即得出正确的正弦波形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模拟电子技术课程
文氏电桥振荡器电路仿真实验报告
学号:515021910574 姓名:梁奥
一、 本仿真实验的目的
1.理解RC桥式正弦波震荡电路的原理和功能。

2.能够调节反馈电阻使电路产生正弦波振荡。

3.能够选择适当的RC参数选出特定频率。

4.能够选择适当的稳幅网络,实现稳幅功能,且失真较小。

二、 仿真电路
图2.1
注:集成运放使用LM324,其电源电压为±15V,图中Multisim默认为电源端4、11已接电源。

XSC1示波器观察输出电压。

三、 仿真内容
(1)设计电路参数使 f0=500Hz。

(2)计算RC串并联选频网络的频响特性。

(3)使用二极管稳幅电路,使输出振荡波形稳幅,且波形失真较小。

四、 仿真结果
选择RF1=1kΩ,RF2=1.8kΩ,电路产生正弦波,起振过程如图4.1。

由于二极管存在动态电阻,因此RF2与RF1的比值小于2。

图4.1
(1)由选频网络特性可知:
f
=
1
2πRC
因此,选择电阻R=31.8kΩ,电容C=0.01µF,经计算可得 f0理论值为500.7Hz。

实验结果为:
f
=
1
T
=498.0Hz。

图4.2
(2)已知RC 串并联网络的幅频特性为:
F i
相频特性为:
ϕF =−arctan 13f f 0−f 0f ⎛⎝⎜⎞⎠

当 f =f 0时, F i
=13,
U f i =13U 0i , ϕF =00
如图4.3所示
图4.3
通过一个电路图测试RC串并联电路的频率响应:
图4.4
输入为1kHz,1V的正弦信号,由XBP1可以看出:
图4.5
当 f=f0时,Uf为0.333mV。

图4.6
当 f=f0时, ϕF=00。

(3)使用二极管稳幅网络,输出失真较小,见图4.2和图4.3。

因为电流增大时,二极管动态电阻减小、电流减小时,二极管动态电阻增大。

输出电压稳定。

五、 结论及体会
1.在最开始连接电路时,因为没有注意运放的同向反向输入端的位置,导致仿真不成功,
经过检查才发现并得以解决。

细心很重要!
2.对Multisim的运用已经较为熟练,各个元件的选择也较成功。

3.由于示波器和XBP手动调cursor时,不太准确,键盘的←,→不知道为什么不能用,
导致测量有一定误差。

相关文档
最新文档