最终版线性代数期末复习题.doc
(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。
每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。
1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。
x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。
4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。
5.n阶方阵A满足A23A E 0 ,则A1。
二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。
a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。
2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。
线性代数期末复习题

线性代数期末复习题《线性代数》综合复习题⼀、单项选择题:1、若三阶⾏列式D 的第三⾏的元素依次为1、2、3,它们的余⼦式分别为4、2、1,则D =()(A)-3 (B) 3 (C) -11 (D) 112、设123,,ααα是三阶⽅阵A 的列向量组,且齐次线性⽅程组AX =O 仅有零解,则()(A) 1α可由23,αα线性表⽰ (B) 2α可由13,αα线性表⽰ (C) 3α可由12,αα线性表⽰ (D) 以上说法都不对3、设A 为n(n ≥2)阶⽅阵,且A 的⾏列式|A |=a ≠0,A *为A 的伴随矩阵,则| 3A * | 等于()(A) 3n a (B) 3a n -1(C) 3n a n -1 (D) 3a n4、设A =333231232221131211a a aa a a a a a , B =????? ??+++133311311232232122131112a a a a a a a a a a a a ,????? ??=1000010101P ,????=1010100012P ,则有()(A) B AP P =12 (B) B AP P =21 (C) B A P P =21 (D) B A P P =12 5、设A 是正交矩阵,则下列结论错误..的是() (A) |A |2必为1 (B) |A |必为1 (C) A -1=A T (D) A 的⾏向量组是正交单位向量组 6、设A 是n 阶⽅阵,且O E A A =+-232,则()(A) 1和2必是A 的特征值 (B) 若,2E A ≠则E A =(C) 若,E A ≠则E A 2= (D) 若1不是A 的特征值,则E A 2=7、设矩阵210120001A ??=,矩阵B 满⾜2ABA BA E **=+,其中E 为三阶单位矩阵,A *为A 的伴随矩阵,则B = (A )13;(B )19;(C )14;(D )13。
线性代数期末复习题目

一.单项选择题1.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是【 】(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [五.特征值,特征向量]2. 设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B , **,A B 分别为A,B 的伴随矩阵,则【 】.(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B . (B) 交换*A 的第1列与第2列得*B -; (D) 交换*A 的第1行与第2行得*B -. [二.四.矩阵及其运算,行列式]3.设矩阵A =33)(⨯ij a 满足*T A A =,其中*A 为A 的伴随矩阵,T A 为A 的转置矩阵. 若131211,,a a a 为三个相等的正数,则11a 为【 】.(A) 33. (B) 3. (C) 31. (D)3. [二.四.伴随矩阵,行列式]4.设A,B,C 均为n 阶矩阵,E 为n 阶单位矩阵,若B =E +AB ,C =A +CA ,则B -C 为【 】(A) E . (B )-E . (C )A . (D) -A [二.矩阵及其运算]5 .设12,,,,a a a 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是【 】(A )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性相关. (B )若12,,,,a a a 线性相关,则12,,,,Aa Aa Aa 线性无关.(C )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性相关. (D )若12,,,,a a a 线性无关,则12,,,,Aa Aa Aa 线性无关.[二.向量组的线性相关性]6.设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则 【 】(A )1.-=C P AP (B )1.-=C PAP (C ).=T C P AP (D ).=TC PAP[二.矩阵及其运算,初等矩阵]7.设125,,......∂∂∂,均为n 维列向量 A 是m n ⨯矩阵,下列正确的是【 】(A) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性相关 (B) 若125,,......∂∂∂线性相关,则125,......A A A ∂∂∂线性无关 (C) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性相关 (D) 若125,,......∂∂∂线性无关,则125,......A A A ∂∂∂线性无关 [二.向量组的线性相关性]8.设向量组123,,ααα线性无关,则下列向量组线性相关的是【 】 (A) 122331,,;---αααααα (B) 122331,,;+++αααααα (C)1223312,2,2;---αααααα (D) 1223312,2,2+++αααααα. [二.向量组的线性相关性]9.设矩阵211100121,010112000--⎛⎫⎛⎫ ⎪ ⎪=--= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A B ,则A 与B 【 】(A) 合同且相似; (B) 合同但不相似; (C) 不合同但相似; (D) 既不合同也不相似.[五.矩阵的相似与合同]10.设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则【 】 (A) -E A 不可逆,+E A 不可逆. (B) -E A 不可逆,+E A 可逆. (C) -E A 可逆,+E A 可逆. (D) -E A 可逆,+E A 不可逆.[二.矩阵及其运算,逆矩阵]11.设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z A y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭在正交变换下的标准方程的图形如图,则A 的正特征值个数为【 】 (A) 0 ; (B) 1 ; (C) 2 ; (D) 3. [五.矩阵的特征值]12.设1221⎛⎫=⎪⎝⎭A 则在实数域上与A 合同的矩阵为【 】 (A) 2112-⎛⎫⎪-⎝⎭;(B) 2112-⎛⎫⎪-⎝⎭;(C) 2112⎛⎫⎪⎝⎭.;(D) 1221-⎛⎫⎪-⎝⎭.[五.矩阵的合同]13.设123,,a a a 是3维向量空间3R 的一组基,则由基12311,,23a a a 到基122331,,+++a a a a a a 的过渡矩阵为【 】.(A )101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭(B )120023103⎛⎫ ⎪ ⎪ ⎪⎝⎭(C )111246111246111246⎛⎫- ⎪ ⎪ ⎪-⎪⎪ ⎪- ⎪⎝⎭(D )111222111444111666⎛⎫-⎪ ⎪⎪- ⎪ ⎪ ⎪- ⎪⎝⎭. [三. 向量空间,基,过渡矩阵]14.设 A ,B 均为 2 阶矩阵,,**A B 分别为A ,B 的伴随矩阵,若|A |=2,|B |=3,则分块矩阵00⎛⎫⎪⎝⎭A B 的伴随矩阵为【 】. (A )32**⎛⎫ ⎪⎝⎭O B A O (B )23**⎛⎫ ⎪⎝⎭O B A O (C )32**⎛⎫ ⎪⎝⎭O A B O (D )23**⎛⎫ ⎪⎝⎭O A BO [二. 三..四.伴随矩阵,逆矩阵,分块矩阵,行列式]15.设A ,P 均为3阶矩阵,T P 为P 的转置矩阵,且TP A P=100010002 ⎛⎫⎪ ⎪ ⎪ ⎝⎭,若1231223(,,),(,,)==+P Q ααααααα,则T Q AQ 为【 】.(A)2101 ⎛⎫ ⎪ 1 0 ⎪ ⎪0 0 2⎝⎭ (B)11012000 ⎛⎫ ⎪ ⎪ ⎪ 2⎝⎭ (C)20001 ⎛⎫ ⎪ 0 ⎪ ⎪0 0 2⎝⎭ (D)100020002 ⎛⎫ ⎪ ⎪ ⎪ ⎝⎭[二. 四.伴随矩阵,分块矩阵的行列式与逆矩阵]16.设矩阵142242A ab a 2 1⎛⎫ ⎪=2 + ⎪ ⎪ + ⎝⎭的秩为2,则【 】.(A )a =0,b =0(B )a =0,b ≠0 (C )a ≠0,b =0 (D )a ≠0,b ≠0.[一. 矩阵的秩]17.设A 为3阶矩阵,*A 为A 的伴随矩阵,A 的行列式|A |=2,则|-2*A |=【 】.(A )52-; (B )32-; (C )32 ; (D )52.[四. 伴随矩阵,方阵的行列式]二.填空题1.设123,,ααα均为三维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .[四.方阵的行列式]2. 设行向量组)1,1,1,2(,),,1,2(a a ,),1,2,3(a ,)1,2,3,4(线性相关,且1≠a ,则a = . .[二.四.向量组的线性相关性,行列式] 3.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .[四.方阵的行列式]4.设矩阵2112A ⎛⎫=⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = .[二.矩阵及其运算]5. 已知12,a a 为2维列向量,矩阵1212(2,)=+-A a a a a ,12(,)=B a a .若行列式||6=A ,则||B = .[四.方阵的行列式] 6.设矩阵0100001000010000⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为 . [二.矩阵及其运算,矩阵的秩]7.设A 为2阶矩阵,12,αα为线性无关的2维列向量,10,=A α,2122=+A ααα则A 的非零特征值为 .[五.矩阵的特征值]8.设3阶矩阵A 的特征值1,2,2,14--=A E .[五.矩阵的特征值,行列式]9.设3阶矩阵A 的特征值为2,3,λ. 若行列式248=-A ,则λ= . [五.矩阵的特征值,行列式]10.设3阶矩阵A 的特征值互不相同,若行列式0=A , 则A 的秩为 . [五.矩阵的特征值,行列式]11.若 3 维向量,a β满足2=Taβ,其中T a 为a 的转置,则矩阵T a β的非零特征值为______.[五.矩阵的特征值与特征向量]12.设,αβ为3维列向量,T β为β的转置,若T β相似于200000000 ⎛⎫ ⎪⎪ ⎪ ⎝⎭,则T βα=___________[五. 相似矩阵,特征值]13.设(1,1,1),(1,0,)k ==αβ,若矩阵Tαβ相似于300000000 ⎛⎫ ⎪ ⎪ ⎪ ⎝⎭,则k =_______[五. 相似矩阵,特征值]14.设向量组(1,0,1),(2,1),TTk ==-αβ(1,1,4)=--Ty 线性相关,则k =______ [二.四. 向量组的线性相关性,行列式]三 .解答题1.已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换=x Qy ,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解. [五. 二次型,矩阵的特征值, 特征向量,正交变换]2.已知三阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636⎛⎫⎪= ⎪ ⎪⎝⎭B k (k 为常数),且AB =O , 求线性方程组Ax =0的通解.[二.线性方程组,基础解系,矩阵]3.确定常数a ,使向量组,),1,1(1Ta =α,)1,,1(2T a =αT a )1,1,(3=α可由向量组,),1,1(1T a =β,)4,,2(2T a -=βT a a ),,2(3-=β线性表示,但向量组321,,βββ不能由向量组321,,ααα线性表示. [二.向量组的线性相关性]4.已知齐次线性方程组(i ) ⎪⎩⎪⎨⎧=++=++=++,0,0532,032321321321ax x x x x x x x x 和 (ii)⎩⎨⎧=+++=++,0)1(2,03221321x c x b x cx bx x 同解,求,,a b c 的值. [一.线性方程组求解]5.设⎛⎫= ⎪⎝⎭TAC D CB 为正定矩阵,其中A,B 分别为m 阶,n 阶对称矩阵,C 为n m ⨯矩阵. (I) 计算TP DP ,其中1-⎛⎫-= ⎪ ⎪⎝⎭mn E A C P OE ; (II )利用(I)的结果判断矩阵1--T B C A C 是否为正定矩阵,并证明你的结论. [五.分块矩阵,正定矩阵]6.设A 为三阶矩阵,123,,ααα是线性无关的三维列向量,且满足 1123=++A αααα,2232=+A ααα,32323=+A ααα.(I) 求矩阵B , 使得123123(,,)(,,)=A B αααααα;(II )求矩阵A 的特征值;(III )求可逆矩阵P , 使得1-P AP 为对角矩阵. [五.矩阵的特征值,相似矩阵]7.已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解. (Ⅰ)证明方程组系数矩阵A 的秩()2R A =; (Ⅱ)求,a b 的值及方程组的通解. [二.线性方程组求解]8.设3阶实对称矩阵A 的各行元素之和均为3,向量()11,2,1Tα=--,()20,1,1Tα=-是线性方程组0=Ax 的两个解, (Ⅰ)求A 的特征值与特征向量; (Ⅱ)求正交矩阵Q 和对角矩阵Λ使得=TQ AQ Λ;.(Ⅲ)求A 及63()2A E -,其中E 为3阶单位矩阵. [五.矩阵的特征值,相似矩阵]9.设4维向量组()11,1,1,1,Ta ∂=+()22,2,2,2,Ta ∂=+()33,3,3,3,Ta ∂=+()44,4,4,4Ta ∂=+.问a 为何值时1234,,,∂∂∂∂线性相关? 当1234,,,∂∂∂∂线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关组线性表出. [二.向量组的线性相关性]10.设线性方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值及所有公共解. [二.线性方程组求解]11.设3阶实对称矩阵A 的特征值2,2,1321-===λλλ,且T )1,1,1(1-=α是A 的属于1λ的一个特征向量。
线性代数期末复习题

线性代数复习题一、判断题 (正确在括号里打√,错误打×)1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即333332222211111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( )2. 若一个行列式等于零,则它必有一行(列)元素全为零,或有两行(列)完全相同,或有两行(列)元素成比例. ( )3. 若行列式D 中每个元素都大于零,则D > 0. ( )4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. ( )5. 若矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. ( )6. 若矩阵A 与矩阵B 等价,则矩阵的秩R (A ) = R (B ). ( )7. 零向量一定可以表示成任意一组向量的线性组合. ( )8. 若向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. ( )9. 向量组s ααα,...,,21中,若1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. ( ) 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. ( ) 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. ( ) 12. 齐次线性方程组一定有解. ( ) 13. 若λ为可逆矩阵A 的特征值,则1-λ为1-A 的特征值. ( ) 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. ( ) 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. ( ) 16. 若矩阵A 与矩阵B 相似,则R R =A B ()(). ( )二、单项选择题 1. 设行列式,,2123121322211211n a a a a m a a a a ==则行列式=++232221131211a a a a a a ( )n m + )A ( )( )B (n m +- m n - )C ( n m - )D (2. 行列式701215683的元素21a 的代数余子式21A 的值为 ( )33 )A ( 33 )B (- 56 )C ( 56 )D (-3. 四阶行列式111111111111101-------x 中x 的一次项系数为 ( )1 )A (-1 )B ( 4 )C (4 )D (- 4. 设,..................... ,......... (112)11,12,11,12122122221112111nnn n n nn n n nnn n n n a a a a a a a a a D a a a a a a a a a D ---==则D 2与D 1的关系是 ( )12 )A (D D =12 )B (D D -= 12)1(2)1( )C (D D n n --=1)1(2)1( )D (D D n n --=5. n 阶行列式abb a b a b a D n 0000000000ΛΛΛΛΛΛΛΛΛΛ=的值为 ( ) n n b a + )A ( n n b a - )B (n n nb a 1)1( )C (+-+ )( )D (b a n +6. 已知,1002103211⎪⎪⎪⎭⎫ ⎝⎛=-A 则=*A ( )1 )A (2 )B (- 2 )C (3 )D (7. 设A 是n 阶方阵且5=A ,则=-1T )5(A ( )15 )A (+n 15 )B (-n 15 )C (--nn -5 )D (8. 设A 是n m ⨯矩阵,B 是m n ⨯矩阵)(n m ≠,则下列运算结果是m 阶方阵的是 ( )AB )A (T T )B (B ABA )C (T )( )D (B A +9. A 和B 均为n 阶方阵,且2222)(B AB A B A ++=+,则必有 ()E A = )A (E B = )B ( B A = )C ( BA AB = )D (10. 设A 、B 均为n 阶方阵,满足等式O AB =,则必有 ( )O B O A == )A (或 O B A =+ )B (0 0 )C (==B A 或 0 )D (=+B A11. 设A 是方阵,若有矩阵关系式AC AB =,则必有 ( )O A = )A ( O A C B =≠ )B (时 C B O A =≠ )C (时C B A =≠ 0 )D (时12. 已知方阵⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=133312321131131211232221333231232221131211 ,a a a a a a a a a a a a a a a a a a a a a B A ,以及初等变换矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=101010001 ,10000101021P P ,则有 ( )B P AP =21 )A ( B P AP =12 )B ( B A P P =12 )C ( B A P P =21 )D (13. 设A 、B 为n 阶对称阵且B 可逆,则下列矩阵中为对称阵的是 ( )A B AB 11 )A (--- A B AB 11 )B (--+ AB B 1 )C (- 2 )D ()(AB14. 设A 、B 均为n 阶方阵,下面结论正确的是 ( )(A) 若A 、B 均可逆,则A +B 可逆 (B) 若A 、B 均可逆,则AB 可逆 (C) 若A+B 均可逆,则A -B 可逆 (D) 若A +B 可逆,则A 、B 均可逆15. 下列结论正确的是 ( )(A) 降秩矩阵经过若干次初等变换可以化为满秩矩阵 (B) 满秩矩阵经过若干次初等变换可以化为降秩矩阵 (C) 非奇异阵等价于单位阵 (D) 奇异阵等价于单位阵 16. 设矩阵A 的秩为r ,则A 中 ( )(A) 所有r -1阶子式都不为0 (B) 所有r -1阶子式全为0 (C) 至少有一个r 阶子式不为0(D) 所有r 阶子式都不为0 17. 设A 、B 、C 均为n 阶矩阵,且ABC = E ,以下式子(1) BCA = E ,(2) BAC = E ,(3) CAB = E ,(4) CBA = E中,一定成立的是 ( ) (A) (1) (3)(B) (2) (3)(C) (1) (4)(D) (2) (4)18. 设A 是n 阶方阵,且O A =s (s 为正整数),则1)(--A E 等于 ( )AE -1)A ( 1 )B (--A E s A A A +++... )C (2 1... )D (-+++s A A E 19. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛---=412101213A ,*A 是A 的伴随矩阵,则*A 中位于(1, 2)的元素是 ( ) (A) -6 (B) 6 (C) 2 (D) -220. 已知A 为三阶方阵,R (A ) = 1,则 ( )3 )A (=*)(A R2 )B (=*)(A R1 )C (=*)(A R0 )D (=*)(A R21. 已知43⨯矩阵A 的行向量组线性无关,则矩阵A T 的秩等于 ( )(A) 1(B) 2(C) 3(D) 422. 设两个向量组s ααα ..., , ,21和s βββ ..., , ,21均线性无关,则 ( )(A) 存在不全为0的数s λλλ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββλλλ (2211)(B) 存在不全为0的数s λλλ ..., , ,21使得0=++++++)(... )( )(222111s s s βαβαβαλλλ(C) 存在不全为0的数s λλλ ..., , ,21使得0=-++-+-)(... )( )(222111s s s βαβαβαλλλ(D) 存在不全为0的数s λλλ ..., , ,21和不全为0的数s μμμ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββμμμ (2211)23. 设有4维向量组621 ..., , ,ααα,则 ( )(A) 621 ..., , ,ααα中至少有两个向量能由其余向量线性表示 (B) 621 ..., , ,ααα线性无关 (C) 621 ..., , ,ααα的秩为4 (D) 上述说法都不对24. 设321 , ,ααα线性无关,则下面向量组一定线性无关的是 ( )32 , , )A (αα0321 ,2 , )B (ααα133221 , , )C (αααααα+++133221 , , )D (αααααα---25. n 维向量组)3( ..., , ,21n s s ≤≤ααα线性无关的充要条件是 ( )(A) s ααα ..., , ,21中任意两个向量都线性无关(B) s ααα ..., , ,21中存在一个向量不能用其余向量线性表示 (C) s ααα ..., , ,21中任一个向量都不能用其余向量线性表示 (D) s ααα ..., , ,21中不含零向量 26. 下列命题中正确的是 ( )(A) 任意n 个n +1维向量线性相关(B) 任意n 个n +1维向量线性无关 (C) 任意n +1个n 维向量线性相关(D) 任意n +1个n 维向量线性无关27. 已知线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0......0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的系数行列式D =0,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解28. 已知非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112)222212111212111的系数行列式D =0,把D 的第一列换成常数项得到的行列式01≠D ,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解29. 已知A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关(D) A 的行向量线性相关30. 已知A 为n m ⨯矩阵,且方程组b Ax =有唯一解,则必有 ( )m R <),( )A (b An R <),( )B (b A m R =),( )C (b A n R =),( )D (b A31. 已知n 阶方阵A 不可逆,则必有 ( )n R <)( )A (A1)( )B (-=n R A0=A )C ((D) 方程组0=Ax 只有零解32. n 元非齐次线性方程组b Ax =的增广矩阵的秩为n +1,则此方程组 ( )(A) 有唯一解(B) 有无穷多解(C) 无解(D) 不能确定其解的数量33. 已知21 ,ηη是非齐次线性方程组b Ax =的任意两个解,则下列结论错误的是 ( )(A) 21ηη+是0=Ax 的一个解 (B))(2121ηη+是b Ax =的一个解 (C) 21ηη-是0=Ax 的一个解(D) 212ηη-是b Ax =的一个解34. 若4321 , , ,v v v v 是线性方程组0=Ax 的基础解系,则4321v v v v +++是该方程组的 ( )(A) 解向量(B) 基础解系(C) 通解(D) A 的行向量35. 若η是线性方程组b Ax =的解,ξ是方程0=Ax 的解,则以下选项中是方程b Ax =的解的是 ( ) (C 为任意常数)ξηC + )A (ξηC C + )B ( ξηC C - )C ( ξη+C )D (36. 已知n m ⨯矩阵A 的秩为1-n ,21 ,αα是齐次线性方程组0=Ax 的任意两个不同的解,k 为任意常数,则方程组0=Ax 的通解为 ( )1 )A (αk2 )B (αk)( )C (21αα+k)( )D (21αα-k37. n 阶方阵A 为奇异矩阵的充要条件是 ( )(A) A 的秩小于n0 )B (≠A(C) A 的特征值都等于零(D) A 的特征值都不等于零38. 已知A 为三阶方阵,E 为三阶单位阵,A 的三个特征值分别为3 ,2 ,1-,则下列矩阵中是可逆矩阵的是 ( )E A - )A (E A + )B ( E A 3 )C (+ E A 2 )D (-39. 已知21 ,λλ是n 阶方阵A 的两个不同特征值,对应的特征向量分别为21 ,ξξ,则 ( )(A) 1ξ和2ξ线性相关 (B) 1ξ和2ξ线性无关 (C) 1ξ和2ξ正交(D) 1ξ和2ξ的内积等于零40. 已知A 是一个)3( ≥n 阶方阵,下列叙述中正确的是 ( )(A) 若存在数λ和向量α使得αA αλ=,则α是A 的属于特征值λ的特征值 (B) 若存在数λ和非零向量α使得0=-αA E )(λ,则λ是A 的特征值 (C) A 的两个不同特征值可以有同一个特征向量(D) 若321 , ,λλλ是A 的三个互不相同的特征值,321 , ,ααα分别是相应的特征向量,则 321 , ,ααα有可能线性相关41. 已知0λ是矩阵A 的特征方程的三重根,A 的属于0λ的线性无关的特征向量的个数为k ,则必有 ( )3 )A (≤k3 )B (<k 3 )C (=k 3 )D (>k42. 矩阵A 与B 相似,则下列说法不正确的是 ( )(A) R (A ) = R (B )(B) A = BB A = )C ((D) A 与B 有相同的特征值43. n 阶方阵A 具有n 个线性无关的特征向量是A 与对角阵相似的 ( )(A) 充分条件(B) 必要条件(C) 充要条件(D) 既不充分也不必要条件44. n 阶方阵A 是正交矩阵的充要条件是 ( )(A) A 相似于单位矩阵E (B) A 的n 个列向量都是单位向量 (C) 1T -=A A(D) A 的n 个列向量是一个正交向量组45. 已知A 是正交矩阵,则下列结论错误的是 ( )1 )A (2=AA )B (必为1T 1 )C (A A =-(D) A 的行(列)向量组是单位正交组46. n 阶方阵A 是实对称矩阵,则 ( )(A) A 相似于单位矩阵E (B) A 相似于对角矩阵T 1 )C (A A =-(D) A 的n 个列向量是一个正交向量组47. 已知A 是实对称矩阵,C 是实可逆矩阵,AC C B T =,则 ( )(A) A 与B 相似(B) A 与B 不等价 (C) A 与B 有相同的特征值(D) A 与B 合同三、填空题1. 已知44513231a a a a a k i 是五阶行列式中的一项且带正号,则i = ,k = .2. 已知三阶行列式987654321=D ,ij A 表示元素ij a 对应的代数余子式,则与232221cA bA aA ++对应的三阶行列式为.3. 已知022150131=---x ,则x = . 4. 已知A ,B 均为n 阶方阵,且0 ,0≠=≠=b a B A ,则=T )2(B A ,=-121AB . 5. 已知A 是四阶方阵,且31=A ,则=-1A ,=--1*43A A . 6. 已知三阶矩阵A 的三个特征值分别为123-,,,则=---*134A A . 7. 设矩阵⎪⎪⎭⎫⎝⎛=232221131211a a aa a a A ,B 是方阵,且AB 有意义,则B 是 阶矩阵,AB 是 行 列矩阵.8. 已知矩阵n s ij c ⨯=)( , ,C B A ,满足CB AC =,则A 与B 分别是 , 阶矩阵. 9. 可逆矩阵A 满足O E A A =--22,则=-1A .10. 已知T 3T 2T 1)2 ,3 ,1( ,) ,0 ,( ,)1 ,1 ,1(===αααy x ,若321 , ,ααα线性相关,则x ,y 满足关系式 .11. 矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性 关. 12. 一个非齐次线性方程组的增广矩阵的秩比系数矩阵的秩最多大 .13. 设A 是43⨯矩阵,3)(=A R ,若21 ,ηη为非齐次线性方程组b Ax =的两个不同的解,则该方程的通解为 .14. 已知A 是n m ⨯矩阵,)( )(n r R <=A ,则齐次线性方程组0=Ax 的一个基础解系中含有解的个数为 .15. 已知方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+32121232121321x x x a a 无解,则a = .16. 若齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213211x x x x x x x x x λλ只有零解,则λ需要满足 .17. 已知矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,则x = .18. 已知向量α、β的长度依次为2和3,则向量内积[, ]+-=αβαβ .19. 已知向量⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=324 ,201b a ,c 与a 正交,且c a b +=λ,则=λ ,c = .20. 已知⎪⎪⎪⎭⎫ ⎝⎛-=111x 为⎪⎪⎪⎭⎫ ⎝⎛---=2135212b aA 的特征向量,则a = ,b = . 21. 已知三阶矩阵A 的行列式8=A ,且有两个特征值1-和4,则第三个特征值为 . 22. 设实二次型),,,,(54321x x x x x f 的秩为4,正惯性指数为3,则其规范形),,,,(54321z z z z z f 为 .23. 二次型233221321342),,(x x x x x x x x f +-=的矩阵为 .24. 已知二次型),,(z y x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--050532021,则此二次型=),,(z y x f .25. 已知二次型31212322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 要满足 .四、行列式计算1. 已知A ,B 为三阶方阵,2 ,1-==B A ,求行列式A AB 1*)2(-.2. 已知行列式219221612132402-----=D ,求4131211145A A A A ++-.3. 计算n 阶行列式2...010...201...02MOM M =n D ,其中主对角线上的元素都是2,另外两个角落的元素 是1,其它元素都是0.4. 计算n 阶行列式xaa a xaa ax D n .........MO M M =.5. 计算n 阶行列式21...00000 (2100)0 (1)2100...012M M O M M M =n D .6. 计算行列式dx cbad c x b a d c b x a d c b ax ++++.7. 计算行列式yy x xD -+-+=1111111111111111.8. 计算行列式3......3 (3)212121+++=n n n n x x x x x x x x x D M O M M .五、矩阵计算1. 设⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=042132 ,121043021B A ,求 (1)T AB ;(2)14-A .2. 已知⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=115202 ,212241222B A ,且X B AX +=,求X .3. 设⎪⎪⎪⎭⎫ ⎝⎛-=101020102A ,B 均为三阶方阵,E 为三阶单位阵,且B A E AB +=+2,求B .4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2000120031204312 ,1000110001100011C B ,E 为四阶单位阵,且矩阵X 满足关系式E B C X =-T )(,求X .5. 已知⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=310021 ,110162031B A ,且B XA =,求X .6. 设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问:当k 取何值时,有 (1)1)(=A R ;(2)2)(=A R ;(3)3)(=A R .六、向量组的线性相关性及计算1. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1325 ,3214 ,2143 ,21114321αααα,求向量组4321 , , ,αααα的秩和一个最大线性无关向量组,并判断4321 , , ,αααα是线性相关还是线性无关.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 ,1301 ,3192 ,01414321αααα,求此向量组的秩和一个最大无关组,并将其余向量用该最大无关组线性表示.3. 当a 取何值时,向量组⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=a a a 2121 ,2121 ,2121321ααα线性相关?4. 将向量组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014 ,131 ,121321ααα规范正交化.七、线性方程组的解1. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=9410 ,1203 ,4231 ,30124321αααα,试判断4α是否为321 , ,ααα的线性组合;若是,则求出线性表达式.2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x .3. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x .4. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=++=++-=++022232212321321x k x x k kx x x k x x x 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.5. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321321321kx x k kx x kx kx x x k kx 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.6. 已知非齐次线性方程组b Ax =为⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 543215432543215432133453622 3232,问:当a 、b 取何值时,方程组b Ax =有无穷多个解?并求出该方程组的通解.7. 设方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值.8. 设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,已知321 , ,ηηη是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+432132ηη,求该方程组的通解.9. 设非齐次线性方程组b Ax =的增广矩阵()b A A M=,A 经过初等行变换为 ⎪⎪⎪⎭⎫ ⎝⎛---→300001311021011λM M M A ,则 (1) 求对应的齐次线性方程组0=Ax 的一个基础解系;(2) λ取何值时,方程组b Ax =有解?并求出通解.八、方阵的特征值与特征向量1. 已知⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=10000002 ,10100002y x B A ,若方阵A 与B 相似,求x 、y 的值.2. 设方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=210010000010010y A 的一个特征值为3,求y 的值.3. 已知三阶方阵A 的特征值为1、2、3-,求行列式E A A 231++-的值.4. 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值与对应的特征向量.5. 设⎪⎪⎪⎭⎫ ⎝⎛--=011101110A ,求可逆矩阵P ,使得AP P 1-为对角矩阵.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A ,求正交矩阵P ,使得AP P 1-为对角矩阵.7. 已知矩阵110430102-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A , 判断是否存在一个正交矩阵P , 使得1-=P AP Λ为对角矩阵.8. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛----=342432220A 的特征值为1、1、8-,求正交矩阵P ,使得AP P 1-为对角阵.九、二次型1. 当t 取何值时,32312123222132142244),,(x x x x x tx x x x x x x f +-+++=为正定二次型?2. 求一个正交变换把二次型123122331(,,)222f x x x x x x x x x =++化成标准形.十、证明题1. 已知向量组r ααα ..., , ,21线性无关,而r r αααβααβαβ+++=+==... ..., , ,2121211,证明:向量组r βββ ..., , ,21线性无关.2. 设A 、B 都是n 阶对称阵,证明:AB 是对称阵的充要条件是AB = BA .3. 已知方阵A 满足O E A A =--1032,证明:A 与E A 4-都是可逆矩阵,并求出它们的逆矩阵.4. 设A 、B 为n 阶对称阵,且B 是可逆矩阵,证明:A B AB 11--+是对称阵.5. 设n 阶方阵A 的伴随矩阵为*A ,证明:1*-=n AA .6. 已知向量b 可由向量组321 , ,a a a 线性表示且表达式唯一,证明:321 , ,a a a 线性无关.7. 设321 , ,ααα是n 阶方阵A 的三个特征向量,它们的特征值互不相等,记321αααβ++=,证明:β不是A 的特征向量.8. 已知向量组321 , ,a a a 线性无关,3133222114 ,3 ,2a a b a a b a a b +=+=+=,证明:向量组321 , ,b b b 线性无关.9. 设0η是非齐次线性方程组b Ax =的一个特解,21 ,ξξ是对应的线性方程组0=Ax 的一个基础解系,证明:(1) 101202, ==++ηηξηηξ都是b Ax =的解;(2) 210 , ,ηηη线性无关.10. 已知A 是n 阶方阵,E 是n 阶单位阵,E A +可逆,且1))(()(-+-=A E A E A f ,证明:(1) E A E A E 2)))(((=++f ;(2) A A =))((f f .11. 设方阵A 与B 相似,证明:T A 与T B 相似.12. 已知方阵A 、B 都是正定阵,证明:B A +也是正定阵.13. 设n 阶行列式n D 的元素满足n j i a a ji ij ..., ,2 ,1 , ,=-=,证明:当n 为奇数时0=n D .14. 已知A 为正交阵,k 为实数,证明:若A k 也是正交阵,则1±=k .15. 设A 、B 均为n 阶正交矩阵,证明:(1) 矩阵AB 是正交阵;(2) 矩阵1-AB 是正交阵.16. 若A 是n 阶方阵,且T =AA E ,| A | =-1,这里E 为单位阵. 证明:| A +E | = 0.。
线性代数复习题

,
2 )T 3
,= α 2
(
2 3
,
1 3
,
−
2 )T 3
,α=3
( 2 , − 2 , 1)T 是 R3 的一组标准正 3 33
交基,则向量 β = (1,1,1)T 在这组基下的坐标为
.
28.设矩阵 A 的特征多项式 λE − A = (λ + 1)(λ + 5)(λ + 7) ,则 A−1 = __ _ .
A.
r
(α1
,
α
2
,
,
α
r)≥
r(β1,
β
2
,
,
βs )
B. r ≥ s
C. r(α1,α2 ,,αr)≤ r(β1, β2 ,, βs )
D. r ≤ s
14.设α1 , α2 是非齐次线性方程组 AX = b 的两个解,则下列仍为线性方程组 AX = b 的解的
(
).
A. α1 + α2 B. α1 − α2
3.
已知向量组 α1
=
−421,α
2
=
3 1 2
,α
3
=
−5 3 6
,
α
4
=
−2 2 0
,α
5
=
−8611,
.求向量组的秩
和一个极大线性无关组;将其余向量用所求的极大线性无关组线性表示.
x1 + x2 + x3 + x4 + x5 = a
4.
已知线性方程组
3x1
+2 x2
− 1
1
β1 = 1 , β 2 = 1 ,则 AX = b 的全部解可表示为
(完整版)线性代数复习——选择题.doc

《线性代数》复习一:选择题a11 a12 a13 2a11 2a12 2a131.如果a21 a22 a23 = M,则2a21 2a22 2a23 = ()a31 a32 a33 2a31 2a32 2a33A. 8MB. 2MC. MD.6M2. 若 A,B 都是方阵,且 |A|=2, |B|=-1,则 |A -1B|= ()A. -2B.2C. 1/2D. –1/23. 已知可逆方阵 A 1 3 7则 A ()1 2A. 2 7B.2 7C.3 7D.3 7 1 3 1 3 1 2 1 24. 如果 n 阶方阵 A 的行列式 |A| 0 则下列正确的是()A.AOB. r(A)> 0C. r(A)< nD. r( A) 05. 设 A B 均为 n 阶矩阵 A O 且 AB O 则下列结论必成立的是()A. BA OB. B OC. (A B)( A B) A2 B2D. (A B)2 A2 BA B26. 下列各向量组线性相关的是()A. 1 (1 0 0) 2 (0 1 0) 3 (0 0 1)B. 1 (1 2 3) 2 (4 5 6) 3 (2 1 0)C. 1 (1 2 3) 2 (2 4 5)D. 1 (1 2 2) 2 (2 1 2) 3 (2 2 1)7. 设 AX b 是一非齐次线性方程组 1 2 是其任意 2 个解则下列结论错误的是()A. 1 2是 AX O 的一个解 B. 1 12是 AX b 的一个解+ 2 1 2C. 1 2是AX O 的一个解D.2 1 2是AX b 的一个解8. 设 A为 3阶方阵 A的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 3 6 9C.12 3D. 1 1/2 1/39. 设 A 是 n 阶方阵且 |A| 2 A*是 A 的伴随矩阵则 |A*| ()A. 1B. 2nC. 1D. 2n 12 2 n 11 y 210. 若 x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案 :1.A 2.D 3. B 4. C 5. D 6. B 7. A 8. B 9. D 10. C1. 设30 ,则取值为()2 1A. λ=0 或λ=-1/3B. λ=3C. λ≠0 且λ≠ -3D. λ≠02. 若 A 是 3 阶方阵,且 |A|=2, A* 是 A 的伴随矩阵,则 |A A* |=()A. -8B.2C.8D. 1/23. 在下列矩阵中可逆的是()0 0 01 1 0 1 1 0 1 0 0 A. 0 1 0B.2 2 0 C. 0 1 1D. 1 1 10 0 10 0 1 1 2 11 0 14. 设 n 阶矩阵 A 满足 A 2 2A+3E O 则 A 1 ( )A. EB. 1C. 2A 3ED. A(2E A)31 a a a5. 设 Aa 1 a aa a 1 a ,若 r(A) 1, 则 a ( )aaa 1A.1B.3C.2D.46.x 1 x 2 x 3 0,若齐次线性方程组x 1 x 2x 3 0, 有非零解则常数( )x 1 x 2 x 3 0A.1B.4C.2D.1 7. 设 A B 均为 n 阶矩阵则下列结论正确的是( )A. BA ABB.(A B)2 A 2BA ABB 2C. (A B)(A B) A 2B 2D. (A B)2A 22 AB B 28. 已知 1(10 0) 2(200)3 (0 0 3) 则下列向量中可以由123 线性表示的是()A. (1 2 3)B.(12 0)C. (0 2 3)D. (3 0 5)9. n 阶方阵 A 可对角化的充分条件是()A. A 有 n 个不同的特征值B.A 的不同特征值的个数小于 nC. A 有 n 个不同的特征向量D. A 有 n 个线性相关的特征向量10. 设二次型的标准形为fy 12y 223 y 32 ,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案 : 1.A 2. C 3. D 4. B 5. A 6. A 7. B 8. D 9. A 10. A1. 设A 是4 阶方阵,且 |A|=2,则 |-2A |=( )A. 16B. -4C. -32D. 32 2. 3 4 6行列式 k 5 7 中元素 k 的余子式和代数余子式值分别为()1 2 8A. 20, -20B.20,20C. -20,20D. -20,-203. 已知可逆方阵 A2 7则 A1)1 3 (A.2 7B.2 7C.3 7 D.371 31 31 2 124. 如果 n 阶方阵 A 的行列式 |A | 0则下列正确的是()A.AOB. r (A )> 0C. r(A)< nD. r(A ) 05. 设 A B 均为 n 阶矩阵 则下列结论中正确的是()A. (A B)(A B) A2 B 2B. (AB )k A k B kC. |kAB | k|A | |B |D. |(AB )k| |A |k |B|k6. 设矩阵 A n n的秩 r(A ) n 则非齐次线性方程组 AX b()A. 无解B. 可能有解C. 有唯一解D. 有无穷多个解7. 设 A 为 n 阶方阵 A 的秩 r(A) r n 那么在 A 的 n 个列向量中()A.必有 r 个列向量线性无关B.任意 r 个列向量线性无关C. 任意 r 个列向量都构成最大线性无关组D. 任何一个列向量都可以由其它r 个列向量线性表出8.已知矩阵 A4 4的四个特征值为 4, 2, 3, 1,则 A =()A.2B.3C.4D.249. n 阶方阵 A 可对角化的充分必要条件是()A. A 有 n 个不同的特征值B. A 为实对称矩阵C. A 有 n 个不同的特征向量D. A 有 n 个线性无关的特征向量10. n 阶对称矩阵 A 为正定矩阵的充要条件是()A. A 的秩为 nB. |A| 0C. A 的特征值都不等于零D. A 的特征值都大于零参考答案 : 1.D 2. A 3. D 4.C 5.D 6.C 7.A 8.D 9.D 10.D3 4 61. 行列式 2 5 7 中元素y的余子式和代数余子式值分别为()y x 8A. 2,-2B. –2, 2C. 2,2D. -2, -22. 设 A B 均为 n(n 2)阶方阵则下列成立是()A. |A+B| |A |+|B|B. AB BAC. |AB | |BA |D. (A+B) 1 B 1+A 13. 设 n 阶矩阵 A 满足 A2 2A E 则(A-2E ) 1 ()A. AB. 2 AC. A+2ED. A-2E4. 矩阵A 1 1 1 12 2 2 2 的秩为()3 3 3 3A.1B.3C.2D.45. 设 n 元齐次线性方程组AX O 的系数矩阵 A 的秩为 r 则方程组 AX 0 的基础解系中向量个数为()A. rB. n- rC. nD. 不确定6. 若线性方程组x1 x2 2x3 1无解则等于()x1 x2 x3 2A.2B.1C.0D. 17. n 阶实方阵 A 的 n 个行向量构成一组标准正交向量组,则 A 是()A. 对称矩阵B. 正交矩阵C. 反对称矩阵D.| A |= n8. n 阶矩阵 A 是可逆矩阵的充要条件是()A. A 的秩小于 nB. A 的特征值至少有一个等于零C. A 的特征值都等于零D. A 的特征值都不等于零9. 设 1 2 是非齐次线性方程组Ax=b 的任意 2 个解则下列结论错误的是()A.1+ 2 是 Ax =0 的一个解 B. 1 η1η2 1 2 2是 Ax =b 的一个解C.12 是 Ax =0 的一个解D. 2 1 2 是Ax=b的一个解10.设二次型的标准形为f y12y223y32,则二次型的秩为()A.2B.-1C.1D.3参考答案 : 1. D 2.C 3.A 4.A 5.B 6.A 7.B 8.D 9.A10.D1.a b 0设 D b a 0 0 ,则 a, b 取值为()1 0 1A. a=0, b≠ 0B. a=b=0C. a≠ 0, b=0D. a≠0, b≠ 02. 若 A 、B 为 n 阶方阵且AB=O 则下列正确的是()A. BA OB. |B | 0 或|A| 0C.B O或A OD. (A B)2 A2 B23. 设A是3 阶方阵,且 | A | 2,则|A 1|等于()A. 2B. 1C.2D.1 2 24. 设矩阵 A B C满足AB AC 则 B C 成立的一个充分条件是()A. A 为方阵B. A 为非零矩阵C. A 为可逆方阵D. A 为对角阵5. 如果 n 阶方阵 A O 且行列式 |A| 0 则下列正确的是()A. 0<r( A) < nB. 0 r(A) nC. r(A )= nD. r(A) 07 x1 8x2 9x3 06. 若方程组x2 2 x3 0 存在非零解则常数 b ()2 x2 bx3 0A.2B.4C.-2D.-47. 设 A 为 n 阶方阵且 |A| 0 则()A.A 中必有两行 (列 )的元素对应成比例B.A 中任意一行 (列 )向量是其余各行 (列) 向量的线性组合C.A 中必有一行 (列 )向量是其余各行 (列 )向量的线性组合D.A 中至少有一行 (列 ) 的元素全为零8. 设A为 3阶方阵 A 的特征值为 1 2 3 则 3A 的特征值为()A. 1/6 1/3 1/2B. 369C.123D. 1 1/2 1/39. 如果 3阶矩阵 A 的特征值为 -1,1,2 ,则下列命题正确的是()A. A 不能对角化B. A 0C. A 的特征向量线性相关D. A 可对角化10. 设二次型的标准形为 f y12 y22 3 y32,则二次型的正惯性指标为()A.2B.-1C.1D.3参考答案:1.B 2.B 3. B 4. C 5.A 6.D 7.C 8.B 9.D10.Ca11 a12a13 4a a a a11 11 12 131. 如果 a21 a22a23 =M,则 4a21 a21 a22 a23 =()a31 a32a33 4a31a31a32a33A. -4MB. 0C. -2 MD. M2. 设 A ij 是 n 阶行列式 D |a ij |中元素 a ij的代数余子式则下列各式中正确的是()nB. n nD.nA. a ij A ij 0 a ij A ij 0 C. a ij A ij D a i1A i 2 Di 1 j 1 j 1 i 11 0 02 0 03. 已知A 0 1 0 ,B 2 2 1 ,则 |AB |=()3 0 1 3 3 3A.18B.12C.6D.364. 方阵 A 可逆的充要条件是()A.AOB. |A| 0C. A* OD. |A| 15. 若 A 、B 为 n 阶方阵 A 为可逆矩阵且 AB O 则()A. B O 但 r( B) nB. B O 但 r(A) n, r (B ) nC. B OD. B O 但 r(A) n, r(B) n6. 设 1 2 是非齐次线性方程组AX b 的两个解则下列向量中仍为方程组解的是()A. 1 2B. 1 2C. 1D.+2(β1 2β2)7. n 维向量组 1 2 s线性无关为一 n 维向量则()A. 12 s 线性相关B. 一定能被12C. 一定不能被12 s 线性表出D. 当 s n 时一定能被8. 设 A 为三阶矩阵 A 的特征值为 2 1 2 则A 2E 的特征值为(3β2β1 25s线性表出12s 线性表出)A. 212B.-4-10C.124D.41-49.若向量α=( 1, -2,1)与β=( 2, 3, t)正交,则 t=()A.-2B.0C.2D.41 y 210. 若x z 3 正定则 x y z 的关系为()0 0 1A. x+y zB. xy zC. z xyD. z x+y参考答案:1.A 2.C 3.C 4.B 5.C 6.D 7.D 8.B 9.D 10.C3 4 6中元素 x 的余子式和代数余子式值分别为(1. 行列式 2 5 7 )y x 8A. –9, -9B. –9,9C. 9, -9D. 9,91 1 1 12.2 3 4 53 3 3 3 =( )4 3 4 4A.2B.4C.0D.1 3. 设A 为4 阶矩阵 |A | 3 则其伴随矩阵A *的行列式 |A *| ()A.3B.81C.27D.9 4. 设 A B 均为 n 阶可逆矩阵则下列各式中不正确的是()A. (A+B)T A T +B TB.(A +B) 1 A 1+B 1C.(AB)1B 1A 1D. (AB )T B T A T 5. 设 n 阶矩阵 A 满足 A 2 +A +EO 则(A+E ) 1( )A. AB. -(A+E )C. –AD. -(A 2+A )6. 设 n 阶方阵 A B 则下列不正确的是( )A. r(AB )r(A)B. r(AB )r(B)C. r( AB ) min{ r(A ), r(B )}D. r(AB )>r (A )7. 已知方程组 AX b 对应的齐次方程组为 AX O , 则下列命题正确的是()A. 若AX O 只有零解 则 AX b 有无穷多个解B. 若AX O 有非零解 则 AX b 一定有无穷多个解C. 若AX b 有无穷解 则 AX O 一定有非零解D. 若AXb 有无穷解 则 AXO 一定只有零解8.10 1已知矩阵 A 02 0 的一个特征值是 0 则 x ( )1 0 xA.1B.2C.0D.31 09.与A02 1 相似的对角阵是()0 1 21111A.Λ1B.Λ2C. Λ1 D. Λ 1 333 410. 设 A 为 3 阶方阵 A 的特征值为 1 0 3则A 是()A. 正定B.半正定C.负定D. 半负定参考答案 : 1. C 2. C3. C4. B5. C6. D7. C8.A 9.A 10.B1. 设 A B 都是 n 阶方阵A. 若|A| 0 则A Ok 是一个数 B. |kA|则下列(|k| |A |)是正确的。
线性代数期末复习题

线性代数复习题一、判断题 (正确在括号里打√,错误打×)1. 把三阶行列式的第一列减去第二列,同时把第二列减去第一列,这样得到的新行列式与原行列式相等,亦即333332222211111333222111------=c a b b a c a b b a c a b b a c b a c b a c b a . ( ) 2. 假设一个行列式等于零,则它必有一行〔列〕元素全为零,或有两行〔列〕完全一样,或有两行〔列〕元素成比例. () 3. 假设行列式D 中每个元素都大于零,则D > 0. () 4. 设C B A ,,都是n 阶矩阵,且E ABC =,则E CAB =. () 5. 假设矩阵A 的秩为r ,则A 的r -1阶子式不会全为零. () 6. 假设矩阵A 与矩阵B 等价,则矩阵的秩R (A )=R (B ). () 7. 零向量一定可以表示成任意一组向量的线性组合. () 8. 假设向量组s ααα,...,,21线性相关,则1α一定可由s αα,...,2线性表示. () 9. 向量组s ααα,...,,21中,假设1α与s α对应分量成比例,则向量组s ααα,...,,21线性相关. () 10. )3(,...,,21≥s s ααα线性无关的充要条件是:该向量组中任意两个向量都线性无关. () 11. 当齐次线性方程组的方程个数少于未知量个数时,此齐次线性方程一定有非零解. () 12. 齐次线性方程组一定有解. ()13. 假设λ为可逆矩阵A 的特征值,则1-λ为1-A 的特征值. () 14. 方程组()A λ-=E x 0的解向量都是矩阵A 的属于特征值λ的特征向量. () 15. n 阶方阵A 有n 个不同特征值是A 可以相似于对角矩阵的充分条件. () 16. 假设矩阵A 与矩阵B 相似,则R R =A B ()(). () 二、单项选择题 1.设行列式,,2123121322211211n a a a a m a a a a ==则行列式=++232221131211a a a a a a ()2. 行列式701215683的元素21a 的代数余子式21A 的值为 ( )3.四阶行列式111111111111101-------x 中*的一次项系数为 ( )4. 设,..................... ,......... (112)11,12,11,12122122221112111nnn n n nn n n nnn n n n a a a a a a a a a D a a a a a a a a a D ---==则D 2与D 1的关系是 ( )5.n 阶行列式a b b a bab a D n 0000000000=的值为 ( )6. ,1002103211⎪⎪⎪⎭⎫ ⎝⎛=-A 则=*A ( )7. 设A 是n 阶方阵且5=A ,则=-1T )5(A ( )8. 设A 是n m ⨯矩阵,B 是m n ⨯矩阵)(n m ≠,则以下运算结果是m 阶方阵的是 ( ) 9. A 和B 均为n 阶方阵,且2222)(B AB A B A ++=+,则必有 ( )10. 设A 、B 均为n 阶方阵,满足等式O AB =,则必有 ( ) 11. 设A 是方阵,假设有矩阵关系式AC AB =,则必有 ( ) 12. 方阵⎪⎪⎪⎭⎫⎝⎛+++=⎪⎪⎪⎭⎫⎝⎛=133312321131131211232221333231232221131211,a a a a a a a a a a a a a a a a a a a a a B A ,以及初等变换矩阵⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=101010001 ,10000101021P P ,则有 ( )13. 设A 、B 为n 阶对称阵且B 可逆,则以下矩阵中为对称阵的是 ( ) 14. 设A 、B 均为n 阶方阵,下面结论正确的选项是 ( )(A) 假设A 、B 均可逆,则A +B 可逆 (B) 假设A 、B 均可逆,则AB 可逆 (C) 假设A+B 均可逆,则A -B 可逆 (D) 假设A +B 可逆,则A 、B 均可逆15. 以下结论正确的选项是 ( )(A) 降秩矩阵经过假设干次初等变换可以化为满秩矩阵 (B) 满秩矩阵经过假设干次初等变换可以化为降秩矩阵 (C) 非奇异阵等价于单位阵 (D) 奇异阵等价于单位阵16. 设矩阵A 的秩为r ,则A 中 ( )(A) 所有r -1阶子式都不为0 (B) 所有r -1阶子式全为0 (C) 至少有一个r 阶子式不为0(D) 所有r 阶子式都不为017. 设A 、B 、C 均为n 阶矩阵,且ABC = E ,以下式子(1) BCA = E , (2) BAC = E , (3) CAB = E , (4) CBA = E 中,一定成立的是 ( ) (A) (1) (3)(B) (2) (3)(C) (1) (4)(D) (2) (4)18. 设A 是n 阶方阵,且O A =s (s 为正整数),则1)(--A E 等于 ( )19. 矩阵⎪⎪⎪⎭⎫⎝⎛---=412101213A ,*A 是A 的伴随矩阵,则*A 中位于(1, 2)的元素是 ( ) (A) -6 (B) 6 (C) 2 (D) -220. A 为三阶方阵,R (A ) = 1,则 ( )21. 43⨯矩阵A 的行向量组线性无关,则矩阵A T的秩等于 ( )(A) 1(B) 2(C) 3(D) 422. 设两个向量组s ααα ..., , ,21和s βββ ..., , ,21均线性无关,则 ( )(A) 存在不全为0的数s λλλ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββλλλ (2211)(B) 存在不全为0的数s λλλ ..., , ,21使得 (C) 存在不全为0的数s λλλ ..., , ,21使得(D) 存在不全为0的数s λλλ ..., , ,21和不全为0的数s μμμ ..., , ,21使得0=+++s s αααλλλ... 2211和0=+++s s βββμμμ (2211)23. 设有4维向量组621 ..., , ,ααα,则 ( )(A) 621 ..., , ,ααα中至少有两个向量能由其余向量线性表示 (B) 621 ..., , ,ααα线性无关 (C) 621 ..., , ,ααα的秩为4 (D) 上述说法都不对24. 设321 , ,ααα线性无关,则下面向量组一定线性无关的是 ( ) 25. n 维向量组)3( ..., , ,21n s s ≤≤ααα线性无关的充要条件是 ( )(A) s ααα ..., , ,21中任意两个向量都线性无关(B) s ααα ..., , ,21中存在一个向量不能用其余向量线性表示(C) s ααα ..., , ,21中任一个向量都不能用其余向量线性表示 (D) s ααα ..., , ,21中不含零向量 26. 以下命题中正确的选项是 ( )(A) 任意n 个n +1维向量线性相关 (B) 任意n 个n +1维向量线性无关 (C) 任意n +1个n 维向量线性相关(D) 任意n +1个n 维向量线性无关27. 线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++0......0...0...221122221211212111n nn n n nn n n x a x a x a x a x a x a x a x a x a 的系数行列式D =0,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解28. 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++nn nn n n n n n n b x a x a x a b x a x a x a b x a x a x a (22112)222212111212111的系数行列式D =0,把D 的第一列换成常数项得到的行列式01≠D ,则此方程组 ( )(A) 一定有唯一解 (B) 一定有无穷多解 (C) 一定无解(D) 不能确定是否有解29. A 为n m ⨯矩阵,齐次方程组0=Ax 仅有零解的充要条件是 ( )(A) A 的列向量线性无关 (B) A 的列向量线性相关 (C) A 的行向量线性无关(D) A 的行向量线性相关30. A 为n m ⨯矩阵,且方程组b Ax =有唯一解,则必有 ( ) 31. n 阶方阵A 不可逆,则必有 ( )n R <)( )A (A 1)( )B (-=n R A 0=A )C ((D) 方程组0=Ax 只有零解32. n 元非齐次线性方程组b Ax =的增广矩阵的秩为n +1,则此方程组 ( )(A) 有唯一解(B) 有无穷多解(C) 无解(D) 不能确定其解的数量33. 21 ,ηη是非齐次线性方程组b Ax =的任意两个解,则以下结论错误的选项是 ( )(A) 21ηη+是0=Ax 的一个解 (B) )(2121ηη+是b Ax =的一个解(C) 21ηη-是0=Ax 的一个解(D) 212ηη-是b Ax =的一个解34. 假设4321 , , ,v v v v 是线性方程组0=Ax 的根底解系,则4321v v v v +++是该方程组的 ( )(A) 解向量(B) 根底解系(C) 通解(D) A 的行向量35. 假设η是线性方程组b Ax =的解,ξ是方程0=Ax 的解,则以下选项中是方程b Ax =的解的是 ( ) (C 为任意常数)36. n m ⨯矩阵A 的秩为1-n ,21 ,αα是齐次线性方程组0=Ax 的任意两个不同的解,k 为任意常数,则方程组0=Ax 的通解为 ( ) 37. n 阶方阵A 为奇异矩阵的充要条件是 ( )(A) A 的秩小于n 0 )B (≠A (C) A 的特征值都等于零(D)A 的特征值都不等于零38. A 为三阶方阵,E 为三阶单位阵,A 的三个特征值分别为3 ,2 ,1-,则以下矩阵中是可逆矩阵的是 ( )39. 21 ,λλ是n 阶方阵A 的两个不同特征值,对应的特征向量分别为21 ,ξξ,则 ( )(A) 1ξ和2ξ线性相关 (B) 1ξ和2ξ线性无关 (C) 1ξ和2ξ正交(D) 1ξ和2ξ的积等于零40. A 是一个)3( ≥n 阶方阵,以下表达中正确的选项是 ( )(A) 假设存在数λ和向量α使得αA αλ=,则α是A 的属于特征值λ的特征值 (B) 假设存在数λ和非零向量α使得0=-αA E )(λ,则λ是A 的特征值 (C) A 的两个不同特征值可以有同一个特征向量(D) 假设321 , ,λλλ是A 的三个互不一样的特征值,321 , ,ααα分别是相应的特征向量,则 321 , ,ααα有可能线性相关41. 0λ是矩阵A 的特征方程的三重根,A 的属于0λ的线性无关的特征向量的个数为k ,则必有 ( )42. 矩阵A 与B 相似,则以下说法不正确的选项是 ( )(A) R (A ) = R (B ) (B) A = BB A = )C ((D) A 与B 有一样的特征值43. n 阶方阵A 具有n 个线性无关的特征向量是A 与对角阵相似的 ( )(A) 充分条件(B) 必要条件(C) 充要条件(D) 既不充分也不必要条件44. n 阶方阵A 是正交矩阵的充要条件是 ( )(A) A 相似于单位矩阵E (B) A 的n 个列向量都是单位向量 (C) 1T -=A A(D)A 的n 个列向量是一个正交向量组45. A 是正交矩阵,则以下结论错误的选项是 ( )1 )A (2=A A )B (必为1T 1 )C (A A =-(D) A 的行(列)向量组是单位正交组46. n 阶方阵A 是实对称矩阵,则 ( )(A) A 相似于单位矩阵E (B) A 相似于对角矩阵T 1 )C (A A =-(D) A 的n 个列向量是一个正交向量组47. A 是实对称矩阵,C 是实可逆矩阵,AC C B T =,则 ( )(A) A 与B 相似(B) A 与B 不等价 (C) A 与B 有一样的特征值(D) A 与B 合同三、填空题1. 44513231a a a a a k i 是五阶行列式中的一项且带正号,则i = ,k = .2. 三阶行列式987654321=D ,ij A 表示元素ij a 对应的代数余子式,则与232221cA bA aA ++ 对应的三阶行列式为.3. 022150131=---x ,则* = . 4. A ,B 均为n 阶方阵,且0 ,0≠=≠=b a B A ,则=T )2(B A ,=-121AB . 5. A 是四阶方阵,且31=A ,则=-1A ,=--1*43A A . 6. 三阶矩阵A 的三个特征值分别为123-,,,则=---*134A A . 7. 设矩阵⎪⎪⎭⎫⎝⎛=232221131211a a aa a a A ,B 是方阵,且AB 有意义,则B 是阶矩阵,AB 是行 列矩阵.8. 矩阵n s ij c ⨯=)( , ,C B A ,满足CB AC =,则A 与B 分别是,阶矩阵. 9. 可逆矩阵A 满足O E A A =--22,则=-1A .10. T 3T 2T 1)2 ,3 ,1( ,) ,0 ,( ,)1 ,1 ,1(===αααy x ,假设321 , ,ααα线性相关,则*,y 满足关系式.11. 矩阵⎪⎪⎪⎭⎫⎝⎛=323122211211a a a a a a A 的行向量组线性关. 12. 一个非齐次线性方程组的增广矩阵的秩比系数矩阵的秩最多大.13. 设A 是43⨯矩阵,3)(=A R ,假设21 ,ηη为非齐次线性方程组b Ax =的两个不同的解,则该方程的通解为.14. A 是n m ⨯矩阵,)( )(n r R <=A ,则齐次线性方程组0=Ax 的一个根底解系中含有解的个数为.15. 方程组⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-+32121232121321x x x a a 无解,则a =.16. 假设齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0003213213211x x x x x x x x x λλ只有零解,则λ需要满足.17. 矩阵⎪⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化,则* =.18. 向量α、β的长度依次为2和3,则向量积[, ]+-=αβαβ. 19. 向量⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=324 ,201b a ,c 与a 正交,且c a b +=λ,则=λ,c =.20. ⎪⎪⎪⎭⎫ ⎝⎛-=111x 为⎪⎪⎪⎭⎫ ⎝⎛---=2135212b aA 的特征向量,则a =,b =. 21. 三阶矩阵A 的行列式8=A ,且有两个特征值1-和4,则第三个特征值为.22. 设实二次型),,,,(54321x x x x x f 的秩为4,正惯性指数为3,则其规形),,,,(54321z z z z z f 为.23. 二次型233221321342),,(x x x x x x x x f +-=的矩阵为.24. 二次型),,(z y x f 的矩阵为⎪⎪⎪⎭⎫ ⎝⎛--050532021,则此二次型=),,(z y x f .25. 二次型31212322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 要满足. 四、行列式计算1. A ,B 为三阶方阵,2 ,1-==B A ,求行列式A AB 1*)2(-.2. 行列式219221612132402-----=D ,求4131211145A A A A ++-.3. 计算n 阶行列式2...010 (201) (02)=n D ,其中主对角线上的元素都是2,另外两个角落的元素是1,其它元素都是0.4. 计算n 阶行列式xaa a xa a ax D n .........=.5. 计算n 阶行列式21...00000 (2100)0 (1)2100...012 =n D .6. 计算行列式dx c b ad c x b a d c b x a d c b ax ++++.7. 计算行列式yy x xD -+-+=1111111111111111.8. 计算行列式3......3 (32)12121+++=n n n n x x x x x x x x x D .五、矩阵计算1. 设⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-=042132 ,121043021B A ,求 (1)T AB ;(2)14-A .2. ⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛---=115202 ,212241222B A ,且X B AX +=,求*.3. 设⎪⎪⎪⎭⎫ ⎝⎛-=101020102A ,B 均为三阶方阵,E 为三阶单位阵,且B A E AB +=+2,求B .4. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=2000120031204312 ,1000110001100011C B ,E 为四阶单位阵,且矩阵*满足关系式E B C X =-T )(,求*.5. ⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛=310021 ,110162031B A ,且B XA =,求*.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ,问:当k 取何值时,有 (1)1)(=A R ;(2)2)(=A R ;(3)3)(=A R .六、向量组的线性相关性及计算1. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1325 ,3214 ,2143 ,21114321αααα,求向量组4321 , , ,αααα的秩和一个最大线性无关向量组,并判断4321 , , ,αααα是线性相关还是线性无关.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=77103 ,1301 ,3192 ,01414321αααα,求此向量组的秩和一个最大无关组,并将其余向量用该最大无关组线性表示.3. 当a 取何值时,向量组⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=a a a 2121 ,2121 ,2121321ααα线性相关?4. 将向量组⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-=014 ,131 ,121321ααα规正交化.七、线性方程组的解1. 给定向量组⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=9410 ,1203 ,4231 ,30124321αααα,试判断4α是否为321 , ,ααα的线性组合;假设是,则求出线性表达式.2. 求解非齐次线性方程组⎪⎩⎪⎨⎧=+=+-=-+8311102322421321321x x x x x x x x .3. 求解非齐次线性方程组⎪⎩⎪⎨⎧=--+=+--=--+0895443313432143214321x x x x x x x x x x x x .4. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=++=++-=++022232212321321x k x x k kx x x kx x x 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.5. 当k 满足什么条件时,线性方程组⎪⎩⎪⎨⎧=+-+=++=+-+2)1(2221)1(321321321kx x k kx x kx kx x x k kx 有唯一解,无解,有无穷多解?并在有无穷多解时求出通解.6. 非齐次线性方程组b Ax =为⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++bx x x x x x x x x a x x x x x x x x x x 543215432543215432133453622 3232,问:当a 、b 取何值时,方程组b Ax =有无穷多个解?并求出该方程组的通解.7. 设方程组⎪⎩⎪⎨⎧=++=++=++040203221321321x a x x ax x x x x x 与方程12321-=++a x x x 有公共解,求a 的值.8. 设四元非齐次线性方程组b Ax =的系数矩阵A 的秩为3,321 , ,ηηη是它的三个解向量,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=54321η,⎪⎪⎪⎪⎪⎭⎫⎝⎛=+432132ηη,求该方程组的通解.9. 设非齐次线性方程组b Ax =的增广矩阵()b A A =,A 经过初等行变换为⎪⎪⎪⎭⎫ ⎝⎛---→300001311021011λA ,则 (1) 求对应的齐次线性方程组0=Ax 的一个根底解系; (2) λ取何值时,方程组b Ax =有解?并求出通解.八、方阵的特征值与特征向量1. ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=10000002 ,10100002y x B A ,假设方阵A 与B 相似,求*、y 的值.2. 设方阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=210010000010010y A 的一个特征值为3,求y 的值. 3. 三阶方阵A 的特征值为1、2、3-,求行列式E A A 231++-的值.4. 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=314020112A 的特征值与对应的特征向量.5. 设⎪⎪⎪⎭⎫ ⎝⎛--=011101110A ,求可逆矩阵P ,使得AP P 1-为对角矩阵.6. 设⎪⎪⎪⎭⎫ ⎝⎛----=020212022A ,求正交矩阵P ,使得AP P 1-为对角矩阵.7. 矩阵110430102-⎛⎫ ⎪=- ⎪ ⎪⎝⎭A , 判断是否存在一个正交矩阵P , 使得1-=P AP Λ为对角矩阵. 8. 矩阵⎪⎪⎪⎭⎫ ⎝⎛----=342432220A 的特征值为1、1、8-,求正交矩阵P ,使得AP P 1-为对角阵. 九、二次型1. 当t 取何值时,32312123222132142244),,(x x x x x tx x x x x x x f +-+++=为正定二次型? 2. 求一个正交变换把二次型123122331(,,)222f x x x x x x x x x =++化成标准形.十、证明题1. 向量组r ααα ..., , ,21线性无关,而r r αααβααβαβ+++=+==... ..., , ,2121211,证明:向量组r βββ ..., , ,21线性无关.2. 设A 、B 都是n 阶对称阵,证明:AB 是对称阵的充要条件是AB = BA .3. 方阵A 满足O E A A =--1032,证明:A 与E A 4-都是可逆矩阵,并求出它们的逆矩阵.4. 设A 、B 为n 阶对称阵,且B 是可逆矩阵,证明:A B AB 11--+是对称阵.5. 设n 阶方阵A 的伴随矩阵为*A ,证明:1*-=n A A .6. 向量b 可由向量组321 , ,a a a 线性表示且表达式唯一,证明:321 , ,a a a 线性无关.7. 设321 , ,ααα是n 阶方阵A 的三个特征向量,它们的特征值互不相等,记321αααβ++=,证明:β不是A 的特征向量.8. 向量组321 , ,a a a 线性无关,3133222114 ,3 ,2a a b a a b a a b +=+=+=,证明:向量组321 , ,b b b线性无关.9. 设0η是非齐次线性方程组b Ax =的一个特解,21 ,ξξ是对应的线性方程组0=Ax 的一个根底解系,证明:(1) 101202, ==++ηηξηηξ都是b Ax =的解;(2) 210 , ,ηηη线性无关.10. A 是n 阶方阵,E 是n 阶单位阵,E A +可逆,且1))(()(-+-=A E A E A f ,证明:(1) E A E A E 2)))(((=++f ;(2) A A =))((f f .11. 设方阵A 与B 相似,证明:T A 与T B 相似.12. 方阵A 、B 都是正定阵,证明:B A +也是正定阵.13. 设n 阶行列式n D 的元素满足n j i a a ji ij ..., ,2 ,1 , ,=-=,证明:当n 为奇数时0=n D .14. A 为正交阵,k 为实数,证明:假设A k 也是正交阵,则1±=k .15. 设A 、B 均为n 阶正交矩阵,证明:(1) 矩阵AB 是正交阵;(2) 矩阵1-AB 是正交阵.16. 假设A 是n 阶方阵,且T =AA E ,| A | =-1,这里E 为单位阵. 证明:| A +E | = 0.。
线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数
一. 单项选择题
1.设A 、B 均为n 阶方阵,则下列结论正确的是 。
(a)若A 和B 都是对称矩阵,则AB 也是对称矩阵 (b)若A ≠0且B ≠0,则AB ≠0
(c)若AB 是奇异矩阵,则A 和B 都是奇异矩阵 (d)若AB 是可逆矩阵,则A 和B 都是可逆矩阵
2. 设A 、B 是两个n 阶可逆方阵,则()1-⎥⎦
⎤⎢⎣⎡'AB 等于( ) (a )()1-'A ()1-'B (b) ()1-'B ()1-'A (c )()
'-1B )(1'-A (d )()
'
-1B ()1-'A
3.n m ⨯型线性方程组AX=b,当r(A)=m 时,则方程组 . (a) 可能无解 (b)有唯一解 (c)有无穷多解 (d)有解
4.矩阵A 与对角阵相似的充要条件是 . (a)A 可逆 (b)A 有n 个特征值
(c) A 的特征多项式无重根 (d) A 有n 个线性无关特征向量 5.A 为n 阶方阵,若02
=A ,则以下说法正确的是 .
(a) A 可逆 (b) A 合同于单位矩阵 (c) A =0 (d) 0=AX 有无穷多解
6.设A ,B ,C 都是n 阶矩阵,且满足关系式ABC E =,其中E 是n 阶单位矩阵, 则必有( )
(A )ACB E = (B )CBA E = (C )BAC E = (D )
BCA E =
7.若233
32
31
232221
131211
==a a a a a a a a a D ,则=------=33
32
3131
2322
212113
1211111434343a a a a a a a a a a a a D ( ) (A )6- (B )6 (C )24 (D )24- 二、填空题
1.A 为n 阶矩阵,|A|=3,则|AA '|= ,| 1
2A A -*
-|= .
2.设⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=300120211A ,则A 的伴随矩阵=*A ; 3.设A =⎥
⎦
⎤⎢
⎣⎡--1112,则1
-A = 。
4.3R 中的向量()()12
3,222αβ''==,γβα22=-,则=γ ,|α|= .
5. 设3阶矩阵A 的行列式8||=A ,已知A 有2个特征值-1和4,则另一特征值为
6.二次型32212
3222143214422),,,(x x x x x x x x x x x f ---+=对应的矩阵是 .
7.已知三维向量空间的一组基为:]1,1,0[],1,0,1[],0,1,1[321===ααα,则向量]0,0,2[=α在这组基下的坐标为: 。
8. 如果二次型31212
322213212232),,(x x x x tx x x x x x f ++++=是正定的,则t 的取值范围
是 。
三、解答题
1. 设X B AX =+,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101111010A ,⎥⎥
⎥⎦
⎤⎢⎢⎢⎣⎡--=350211B ,求X
2. 计算
d
b
d
b c a c a 0
0000000
3.求向量组⎪⎪⎪
⎭
⎫
⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛-=93916,131,143,1524321αααα的一个极大线性无关组,并将其
他向量用该极大线性无关组线性表出.
4.设线性方程组⎪⎩⎪
⎨⎧=-+=+-=-+0
302022321
321321x x x x x x x x x λ, 问λ取何值时方程组有非零解?并求通解,写出其基
础解系.
5. 已知方程组⎪⎩⎪
⎨⎧=++--=+-=++2
321
321321424
k x kx x x x x kx x x
(1)k 为何值时,方程组有唯一解?无穷多解?无解? (2)在有无穷多解时,求出方程组的通解。
6.已知二次型323121321222),,(x x x x x x x x x f ++=,利用正交变换化f 为标准形,并写出相应的正交矩阵. 四、证明题
若2240A A E --=,证明A E +可逆,并求1
()A E -+.
答案
一、(1) d (2)a (3) d (4) d (5) d (6)d (7)d
二、(1) 9 ; 1
3-n (2) ⎥⎥
⎥⎦⎤⎢⎢⎢⎣⎡---200130336 (3) ⎥⎦⎤
⎢⎣⎡2111 (4) ⎪
⎪⎪⎭
⎫
⎝⎛210 ;14 (5) -2 (6) ⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡----220222021 (7)]1,1,1[- (8)35t >
三、(1) 由X B AX =+得:()A E X B -=-
因为 110101102A E -⎡⎤
⎢⎥-=-⎢⎥⎢⎥--⎣⎦
, 30A E -=-≠,所以A E -可逆 。
1210332
1()13311033A E -⎡⎤
--⎢⎥⎢
⎥⎢⎥-=-
-⎢⎥
⎢
⎥⎢⎥
-⎢⎥⎣
⎦
,故131()2011X A E B --⎡⎤⎢⎥=-=-⎢⎥⎢⎥-⎣⎦ (2) 2)(bc ad -
(3) 321,,ααα ;
32143
8
32317αααα-+-
= (4) 1=λ时有非零解 ; ()T
k X 110= k 取任意数 ()T
110为基础解系
(5) )4)(1(1
1
211
11
-+=--=k k k
k A
(1) 当1-≠k 且4≠k 时,方程组有唯一解;
(2) 当1-=k 时, []→⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡-----=111142114111 b A ⎥⎥⎥⎦
⎤
⎢⎢⎢⎣⎡---300083204111 )(])([A r b A r ≠ ,方程组无解;
(3)当4=k 时,[]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=1614142114411 b A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000041100301
32)(])([<==A r b A r ,方程组有无穷多解,
通解为: ⎥⎥
⎥⎦⎤
⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0401133321x x x x ,(3x 为任意常数)
(6) 2
322212y y y f +--= ; ⎪⎪⎪⎪⎪
⎪⎪⎭⎫
⎝
⎛--
-
=31620316121316121
P 四、 因为I I A I A =-⋅+)3()( 所以 I A I A 3)(1
-=+-。