单母线三分段接线的备自投实现方式
单母线三分段接线的备自投实现方式

维普资讯
电源 技 术
单母线三分段接线的备 自投实现方式
刘 继 文
( 江海宁市供 电局设计所 ,浙江 海宁 3 4 0 ) 浙 1 4 0
[ 摘要] 根据 实际情况 ,介 绍 了单母 线三 分段接 线方式下备 自 的实施方 法及其 动作原理 ,并提 出 了两种备 自 投
作者 简介 : 刘继文 (9 1 ) 男, 1 8 一 , 主要从 事 电力 系统 1 0 V和 1k
3 k 变 电所 的 电 气设 计 。 5V
电工技术 j0 7j 1 j 0 1 期 3 2
维普资讯
电源技 术
实用型不 间断 电源的研制
4 ,跳 2 F Q ,合 4 F B备 自投 不动 作 。1 主变 失 电时 , Q; } }
图 1三主变变 电所常用的两组单母 线分段 接线
A备 自投 执行 动 作 方 式 3 ,跳 1 F ,合 4 F B备 自投 Q Q; 不动 作 。3} 变 失 电时 , B备 自投 动 作 ,跳 3 F 合 }主 Q , 5F Q ;A备 自投不 动 作 。 方 式 二 : B备 自投 双 向 备 投 , A备 自投 单 向备 投 (}和 3 主变 互为 备 用, 1 主 变 由 2} 变作 为 备用 ) 2} } } } } }主 。 正 常 运 行 时 , 1 、2 F Q 均 在 合 闸位 置 , 4 F QF Q 、3 F Q 、5
变电站备自投装置动作原理及应用场景

变电站备自投装置动作原理及应用场景发布时间:2021-12-30T06:33:23.371Z 来源:《中国科技人才》2021年第25期作者:袁怡[导读] 随着经济社会的不断发展,人们对电力供应的要求越来越高,如果供电可靠性得不到满足,会对人们的日常生活产生重要的影响[1]。
国网绵阳供电公司变电运维中心四川绵阳 621000摘要:本文详细描述了变电站备自投装置动作原理、作用,分析了内桥接线分段备自投、内桥接线进线备自投、内桥接线仅有母联刀闸进线备自投的动作逻辑、启动条件、闭锁原则,并结合具体实例,阐述了不同接线方式的备自投应用场景。
0引言随着经济社会的不断发展,人们对电力供应的要求越来越高,如果供电可靠性得不到满足,会对人们的日常生活产生重要的影响[1]。
为了解决这些问题,引入了备自投装置,它是电力系统中十分重要的自动元器件,当系统主供电源消失时,由备用电源自投装置依靠自身判断做出正确动作,确保用电负荷及用户不失电,保障电网可靠运行。
1 备自投动作原理依据电力系统安全运行要求,备自投典型接线方式分为三种,分别是内桥接线分段备自投、内桥接线进线备自投、内桥接线仅有母联刀闸进线备自投,备自投装置有以下四点要求:(1)应保证工作电源断开后,才投入备用电源。
(2)工作电源上的电压,不论因何原因消失时,自动投入装置均应动作。
(3)应保证只动作一次。
(4)动作具有一定的延时。
备自投动作逻辑的控制条件分为两类:一类为启动条件,另一类为闭锁条件。
当启动条件都满足,闭锁条件都不满足时,备自投动作出口,因此备自投装置动作原理、启动条件、闭锁条件与其能否正确动作密切相关[2]。
1.1内桥接线分段备自投内桥接线分段备自投接线方式如图1所示,正常运行时,分段断路器3QF在分位,进线断路器1QF、2QF在合位,Ⅰ母、Ⅱ母均有压,备自投装置投入开关处于投入位置。
动作过程:1QF、2QF处于合闸位置,3QF在分位,当线路1或线路2失电时,在线路有压的情况下备自投经过一定延时跳开线路1或线路2,合上3QF。
浅谈“备自投”(二)

浅谈“备自投”(二)上一次我们简单了解了“备自投装置”的定义,常用方式及基本运行原则。
在基本运行原则中有提到“备自投装置”应能实现PT断线闭锁功能,合电流闭锁功能,手动跳闸闭锁及保护闭锁功能。
那么我们继续来分享一下“备自投装置”的闭锁原则.为什么要有闭锁备自投呢?因为“备自投装置”应该保证在条件满足下只动作一次,“备自投装置”应该与相关保护配合,当相关保护动作后,给“备自投装置”一个外部闭锁开入信号,避免其它关联动作引起“备自投装置”的再次动作。
备自投必须在设定的运行方式下,满足充电条件,经延时才能达到充电满状态。
只有在充电满状态下,满足备自投启动条件,又无外部闭锁备自投而使备自投放电,备自投才会启动。
无论备自投是否启动还是备自投逻辑执行过程中,一旦出现任一闭锁条件,备自投逻辑应立即终止。
备自投闭锁功能实现方式有以下几种:a. 备自投装置通过采集相关断路器位置、母线电压、线路电压等运行状况,来判断是否满足备自投充电条件,如不满足,备自投装置应放电,备自投动作逻辑将无法启动;b. 在备自投启动以后,通过检测线路电流来闭锁因母线PT断线时引起的备自投误动作;c. 通过断路器操作箱的STJ接点来闭锁因远方遥控分断路器或者就地分断路器导致母线失压引起的备自投误动;d. 通过外部电气元件故障,相应保护装置动作出口来闭锁备自投,避免备用电源再次投入到故障元件中。
“备自投装置”应根据系统的运行方式,再配合二次设计、保护定值整定、动作逻辑设计等因素,选择合理的闭锁方案,才能够保证备自投动作的准确性。
内桥接线示意图此处列举几种备自投常用的闭锁原则:①内桥接线内桥备自投:正常运行时如上图所示1DL合,2DL合,3DL分,1#母、2#母三相有压;当1DL或2DL因故障断开且满足“备自投装置”充电条件时,“备自投装置”动作投入3DL实现备自投功能。
闭锁“备自投装置”条件:任一主变的差动保护、非电量保护、高后备保护及跳主变三侧保护应闭锁备自投,用闭锁压板控制投入,以防止主变内部故障及母线故障时,备自投合3DL于故障。
10kV备自投装置原理及运行分析

10kV备自投装置原理及运行分析摘要:随着电网负荷增长及供电可靠性要求日益提高,10kV备自投重要性凸显。
10kV备自投装置的准确动作,可及时恢复供电或减少停电区域,对电力系统的安全稳定运行起着十分重要的作用。
本文将着重介绍在电力系统中应用最广的10kV备自投原理和功能,探讨相关的动作原理及闭锁条件。
关键词:备自投跳闸闭锁1.引言备自投装置又称为备用电源自动投入装置。
备自投具有在线运行状态监视功能,可观察各输入电气量、开关量、定值等信息,当工作电源因故障断开后,备自投装置能自动而迅速地将备用电源投入到工作或将用户切换到备用电源上去,大大提高供电可靠性。
随着供电可靠性要求越来越高,10kV备自投装置广泛地应用于电力系统中。
2.10kV备自投装置基本原理本文以10kV分段备投为例,主要分析10kV备自投的几种常见运行方式、工作原理和闭锁逻辑。
2.1正常运行条件分段开关3DL处于分位,进线开关1DL、 2DL均处于合位;母线均有电压;备自投功能处于投入位置2.2启动条件●II段备用I段,I段母线无压,1DL进线1无流,II段母线有压●I段备用II段, II段母线无压,2DL进线2无流,I段母线有压2.3动作过程启动条件1:若IDL处于合位,则经延时跳开1DL,确认跳开后合上3DL;若1DL处于分位,则经延时合上3DL启动条件2:若2DL处于合位,则经延时跳开2DL,确认跳开后合上3DL;若2DL处于分位,则经延时合上3DL。
工作母线失压是备自投保护启动的条件,应设置启动延时躲开电压波动。
为防止备自投保护对线路倒送电,不论进线断路器是否断开,备自投延时启动后都应再跳一次该断路器,并将检查该断路器跳位辅助触点作为启动合闸的必要条件。
2.4退出条件3DL处于合位置;备自投一次动作完毕;有备自投闭锁输入信号;备自投投入开关处于退出位置。
2.5备自投保护闭锁条件:(1)手动断开工作电源,备自投不应动作;(2)为防止自投在故障上,内部故障时应闭锁备自投;(3)备自投停运。
备自投简述

一、概括备用电源自动投入装置( 以下简称 BZT 装置 ) 的作用是:当正常供电电源因供电线路故障或电源自己发惹祸故而停电时,它可将负荷自动、快速切换至备用电源,使供电不至中断,进而保证公司生产连续正常运行,把停电造成的经济损失降到最低程度。
备用电源的配置方式好多,形式复杂,一般有明备用和暗备用两种基本方式。
系统正常运行时,备用电源不工作,称为明备用;系统正常运行时,备用电源也投入运行的,称为暗备用,暗备用其实是两个工作电源的互为备用。
主要有低压母线分段断路器备自投、内桥断路器备自投和线路备自投三种方案。
在公司高、低压供电系统中,只有重要的低压变电所和6kV 及以上的高压变电所,才装设了 BZT 装置。
但因供电系统主接线方式大多半为单母线分段接线或桥接线方式,故一般采用母联断路器互为自动投入的BZT装置。
在过去,不管是新建变电所,仍是改造老变电所,设计的BZT装置均由传统的继电器来实现,这类BZT装置因设计不完美或继电器自己存在的问题,而发生的拒动或误动故障率较高,所以有些公司用户供电系统虽已装设了BZT 装置,但考虑到发惹祸故时不扩大停电事故,将其退出,这样 BZT 装置的作用就没有发挥出来。
近年来,跟着微机BZT 装置的不断完美与快速发展,在一些老高压变电所的改扩建及新建高压变电所的设计中,逐渐宽泛采纳分段断路器微机备用电源自动投入装置( 以下简称微机BZT 装置)。
目前,很多公司用户在高压供电系统中为什么要采纳微机BZT 装置呢 ?是因为该装置与传统的 BZT 装置对比较,拥有以下很多特色和长处,因此在工业公司的高压供电系统中获取了宽泛的应用。
(1)装置使用直观简易。
能够在线查察装置所有输入沟通量和开关量,以及所有整定值,预设值、刹时采样数据和大多半事故剖析记录。
装置液晶显示屏状态行还及时显示装置编号、目前工作状态,目前通信状态、备自投“充电”、“放电”状态以及目前可响应的键。
(2)装置测试方便,工作量小。
备自投手跳闭锁的比较分析

备自投手跳闭锁的比较分析摘要:本文在对目前配电网变电站中常用的 RCS9651C、CSC246、WBT822A 三种备用电源自动投切装置(简称:备自投装置)备自投手跳闭锁原理、实现方式进行比较分析的基础上,对备自投装置选型、电网运行操作及保护装置设计提出了建议。
关键字:备自投装置;手跳闭锁概述目前,我国 110kV 及以下变电站中一般采用单母分段或桥断路器接线方式,接线示意图如下:从图 1、图 2 中可以看出,进线 1 和进线 2 是该变电站的主供线路。
正常的运行方式通常有两种方式:方式 1):母线并列运行,进线 1 或进线 2 主供,分段断路器或桥断路器 3DL运行,带 1 号、2 号变压器运行,同时进线 2 或进线 1 处于热备用状态,相应的备自投装置作为进线备自投使用;方式 2):母线分裂运行,进线 1、进线 2 主供,分别带 1 号、2 号变压器运行,同时分段断路器或桥断路器3DL 断开,处于热备用状态,相应的备自投装置作为分段(桥)备自投使用。
采用备用电源自动投切装置能够保证在方式 1) 下,进线 1 或进线2 失电的情况下可靠合上进线 2 或进线 1 断路器 2DL 或 1DL,保证 1号和 2 号变不停电,实现可靠供电;或者在方式 2) 下,可靠合上分段(桥)断路器 3DL,实现可靠供电。
备自投手跳闭锁功能是指在运行人员进行手动跳开进线断路器、分段(桥)断路器时,备自投装置能够可靠识别,同时闭锁备自投动作的功能。
目前变电站常用的备自投装置 RCS9651C、CSC246、WBT822A 三种备自投装置均具有满足上述运行方式的功能。
只是在备自投手跳闭锁功能的原理、实现方式存在很大差异。
一、手跳闭锁备自投功能的实现原理分析1、RCS9651C 手跳闭锁备自投原理RCS9651C 备自投装置在开入回路中要求接入 1DL、2DL、3DL 断路器跳闸位置TWJ 和合后位置 KKJ,通过判断各断路合后位置 KKJ 由1 变 0 来判断是手动/ 遥控跳闸,如果是,则闭锁备自投保护动作,否则,备投将可靠动作。
继电保护--备自投的几种方式

1、基本备投方式:变压器备自投方式桥备自投方式分段备自投方式进线备自投方式2、备用电源自动投入的基本原理备用电源自动投入(以下简称备自投)装置一次接线方式较多,但备自投原理比较简单。
下面介绍几种变电站中典型的备自投方式原理。
对更复杂的备自投方式,都可以看成是这些典型方式的组合。
投入备自投充电过程时:装置上电后,15秒内均满足所有正常运行条件,则备自投充电完毕,备自投功能投入,可以进行启动和动作过程判断;当满足任一退出条件时,备自投立即放电,备自投功能退出。
退出备自投充电过程时:装置上电后,满足启动条件后备自投进行动作过程判断。
在正常运行条件或退出条件下,备自投可靠不动作。
2.1、分段备自投分段备自投接线示意图a)正常运行条件1)分段断路器3DL处于分位置,进线断路器1DL、2DL均处于合位置2)母线均有电压3)备自投投入开关处于投入位置b)启动条件1)II段备用I段:I段母线无压,1DL进线1无流,II段母线有压2)I段备用II段:II段母线无压,2DL进线2无流,I段母线有压c)动作过程1)对启动条件1:若1DL处于合位置,则经延时跳开1DL,确认跳开后合上3DL若1DL处于分位置,则经延时合上3DL2)对启动条件2:若2DL处于合位置,则经延时跳开2DL,确认跳开后合上3DL若2DL处于分位置,则经延时合上3DLd)退出条件1)3DL处于合位置2)备自投一次动作完毕3)有备自投闭锁输入信号4)备自投投入开关处于退出位置2.2 桥备自投桥备自接线投示意图a)正常运行条件1)桥断路器3DL处于分位置,进线断路器1DL、2DL均处于合位置2)进线1、进线2均有电压3)备自投投入开关处于投入位置b)启动条件1)进线2有电压,进线1无电压且无电流2)进线1有电压,进线2无电压且无电c)动作过程1)对启动条件1若1DL处于合位置,则经过延时跳开1DL,确认跳开后,合上3DL若1DL处于分位置,则经延时后合上3DL2)对启动条件2若2DL处于合位置,则经过延时跳开2DL,确认跳开后,合上3DL若2DL处于分位置,则经延时后合上3DLd)退出条件1)3DL处于合位置2)备自投一次动作完毕3)有备自投闭锁输入信号4)备自投投入开关处于退出位置2.3 变压器备自投变压器备自投接线示意图(一台变压器为主变压器,另一台变压器为辅变压器)a)正常运行条件1)主变压器各侧断路器处于合位置,辅变压器各侧断路器处于分位置2)母线有压,辅变压器进线有压3)备自投投入开关处于投入位置b)启动条件主变压器无电流,母线无电压,且辅变压器进线有压c)动作过程当主变压器无电流,母线无电压,且辅变压器进线有压时:若主变压器二次断路器处于合位置,则经延时跳开主变压器各侧断路器,确认跳开后,依次合上辅变压器各侧断路器若主变压器二次断路器处于分位置,则经延时依次合上辅变压器一二次断路器d)退出条件1)备自投一次动作完毕2)3DL、4DL均处于合位置3)有备自投闭锁输入信号4)备自投投入开关处于退出位置2.4 进线备自投进线备自投接线示意图a)正常运行条件1)进线2备用进线1:1DL、3DL处于合位置,2DL处于分位置,两段母线均有电压,备自投投入开关处于投入位置2)进线1备用进线2:2DL、3DL处于合位置,1DL处于分位置,两段母线均有电压,备自投投入开关处于投入位置b)启动条件1)进线2备用进线1:母线无电压,进线1无流,进线2有电压2)进线1备用进线2:母线无电压,进线2无流,进线1有电压c)动作过程:1)对启动条件1,2DL处于分位时若1DL处于合位置,则经延时跳开1DL,确认跳开后合上2DL若1DL处于分位置,则经延时后合上2DL2)对启动条件2,1DL处于分位时若2DL处于合位置,则经延时跳开2DL,确认跳开后合上1DL若2DL处于分位置,则经延时后合上1DLd)退出条件1)备自投一次动作完毕2)1DL、2DL均处于合位置3)有备自投闭锁输入信号4)备自投投入开关处于退出位置。
iPACS-5731备用电源自投装置技术说明书V2.02

同期条件2:线路电压Ux2大于有压定值,Ⅱ母Uab2大于无压合闸定值Uwy,且两者的相角差小于合闸同期角整定值DGhz。
3.2.
方式2过程同方式1。#2线路/变压器运行,1#线路/变压器备用。
充电条件:
1)Ⅰ母、Ⅱ母均三相有压;
2)1DL、2DL在合位,3DL在分位。
经备自投充电时间后充电完成。
方式3--Ⅰ母失压:
放电条件:
1)3DL在合位经短延时;
2)Ⅰ、Ⅱ母均无压(三线电压均小于Uwyqd),延时15S;
3)本装置没有跳闸出口时,手跳1DL或2DL(KKJ1或KKJ2变为0)(本条件可由用户退出,即“手跳不闭锁备自投”控制字整为1);
其它辅助继电器接点容量:
允许长期通过电流5A
切断电流0.2A(DC220V,V/R 1ms)
跳闸出口接点容量:
允许长期通过电流5A
切断电流0.3A(DC220V,V/R 1ms)
3.
装置引入两段母线电压(Uab1、Ubc1、Uca1、Uab2、Ubc2、Uca2),用于有压、无压判别。引入两段进线电压(Ux1、Ux2)作为自投准备及动作的辅助判据,可经控制字选择是否使用。每个进线开关各引入一相电流(I1、I2),是为了防止PT三相断线后造成自投装置误投,也是为了更好的确认进线开关已跳开。
2)保护动作、保护和遥信开入变位等事件SOE记录等;
3)一组断路器遥控分合;
4)Uab1、Ubc1、Uab2、Ubc2、P、Q、COSφ等模拟量的遥测;
5)正/反向有功和无功计算电度。
1.2.3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单母线三分段接线的备自投实现方式
教程来源:北极星电力论文网作者:未知点击:596次时间:2009-9-8 13:52:20
摘要:根据实际情况,介绍了单母线三分段接线方式下备自投的实施方法及其动作原理,并提出了两种备自投间相互配合的关键在于合理整定10kV母分备投的放电延时。
0引言
根据实际情况,介绍了单母线三分段接线方式下备自投的实施方法及其动作原理,并提出了两种备自投间相互配合的关键在于合理整定10kV母分备投的放电延时。
主接线单母线三分段备用电源自投运行方式我局近几年新建的1 1 0kV和35kV变电所的建设规模大多为2条进线、2台主变,高压侧采用内桥接线,1 0kV侧采用单母线分段接线。
为了提高供电的可靠性和连续性,均采用备用电源自投入(以下简称备自投)装置。
近年来,电网负荷急速上升且日益集中化,越来越多的变电所负荷趋于饱和,对部分变电所的增容势在必行。
而对建成变电所采用新增主变的增容方式必然引起电气主接线的调整,可能引起备自投动作方式的调整。
1运行现状
我局35kV皮都变电所2005年竣工投产,35kV主接线采用内桥接线,两回进线;
1 0kV采用单母线开关分段接线。
本次扩建新增3}}进线和3}}主变,线变组接线。
高压侧主接线形式为内桥加线变组方式,这是目前变电所增容中常用的接线方式,运行方式较简单,对建成部分改动较少,不存在备自投的配合问题。
10kV部分采用何种主接线形式我们作了如下考虑。
图1三主变变电所常用的两组单母线分段接线
如果把单母线分段接线改为三主变变电所常用的两组单母线分段接线的方式(如图1),II段母线必须再分段,增加1台隔离柜和2台开关柜,开关柜重新布置,这在实际中无法操作。
如果新建部分采用独立线变组的接线方式,10kV与一期独立,当3}}进线失电或3}}主变保护动作,1 0kV III段母线全部失电,供电可靠性大大降低。
经过综合考虑,10kV主接线采用单母线三分段接线。
为了提高供电的可靠性和连续性,在II/III段母线间增设1台备自投。
2备自投运行方式
由于是3台主变带3段10kV母线,有2台10kV母分开关,采用2台备自投控制5个开关来实现备自投逻辑,2台备自投的动作范围必然出现叠加。
针对单母线三分段接线方式的这一情况,我们考虑了两种备自投的运行方式。
以系统内常用的备自投装置:南瑞继保的RCS一9652为例。
两台备自投分别命名为A和B,均为分段开关自投形式(如图2)。
图2 分段开关自投形式
方式一:A备自投双向备投,B备自投单向备投(1}}和2}}主变互为备用,3}}主变由2}}主变作为备用)。
正常运行时,1 QF、2QF、3QF均在合闸位置,4QF、5QF在分闸位置。
2}}主变失电时,A备自投执行动作方式4,跳2QF,合4QF;B备自投不动作1}}主变失电时,A备自投执行动作方式3,跳1 QF,合4QF;B备自投不动作。
3}}主变失电时,B备自投动作,跳3QF,合5QF;A备自投不动作。
方式二:B备自投双向备投,A备自投单向备投(2}}和3}}主变互为备用,1}}主变由2}}主变作为备用)。
正常运行时,1 QF、2QF、3QF均在合闸位置,4QF、5QF在分闸位置。
2}}主变失电时,B备自投执行动作方式3,跳2QF,合5QF;A备自投不动作。
3}}主变失电时,B备自投执行动作方式4,跳3QF,合5QF;A备自投不动作。
1}}主变失电时,A备自投动作,跳1QF,合4QF;B备自投不动作。
可以看出,以上两种方式在1}}和3}}主变失电时有一致性。
当1}}主变失电,I 段母线失压且开关位置满足启动条件时A备自投动作;当3}}主变失电,III段母线失压且开关位置满足启动条件时B备自投动作。
2台备自投动作方式清晰,互不关联。
方式一和方式二的差别就在于2}}主变失电时,是A备自投动作还是B备自投动作。
由备自投充放电、动作条件(表1)可知,当2}}主变失电时,II段母线无压,2}}主变进线无流;I,III段母线都有压,2台备自投均满足动作条件。
为了避免备投动作的不确定性,我们对备自投的功能进行设置。
表1备自投充、放电条件及动作条件
3备自投功能设置
(1)对备自投的整定控制字进行设置。
在RCS965装置的动作逻辑回路中,自投整定控制字MB允许是备自投动作的必要条件。
如果将B备自投的自投整定控制字MB3设置为不允许,将A备自投的自投整定控制字MB2设置为允许。
当Ⅱ母失压时,B备自投动作方式3逻辑回路被切断,B备自投不动作;A备自投动作方式4逻辑回路接通,A备自投正常动作,这就满足了第一种运行方式。
同样,将A备自投的自投整定控制字MB2设置为不允许,B备自投的自投整定控制字MB3设置为允许,就可以实现第二种备自投方式。
(2)对备自投的动作时间进行整定。
备自投的动作原理决定了备自投在动作条件被满足之后,需要经过延时才跳/合开关。
我们可以通过对其动作延时的整定来实现备自投的运行方式。
我们将A备自投动作方式4的延时整定为6s,考虑到备自投延时动作的误差在O、3s左右,把B备自投动作方式3的延时整定为7s;使2}}主变失电时,2台备自投都满足动作条件,由于B的延时动作时间长于A的延时动作时间,A备自投先于B备自投启动。
当A动作以后,II、III段母线均有压,B动作过程中止,这就满足了第一种运行方式。
同样,将A备自投的动作延时整定为大于B备自投的动作延时,就实现了第二种备自投方式。
以上2种方法都可以实现单母线三分段情况下2台备自投相互配合运行,且满足主变后备保护闭锁备自投、手动闭锁及遥跳闭锁备自投的要求。
参考文献
(1)对备自投的整定控制字进行设置。
在RCS9652 【1】发电厂与变电站自动化技术及其应用.中国电力出版社
相关推荐
∙· 低压分段断路器备自投方式
∙· 互感器在小水电站主接线中的配置
∙· 单母线三分段接线的备自投实现方式。