汽轮机工作原理
汽轮机 工作原理

汽轮机工作原理
汽轮机是利用高速旋转的涡轮叶轮产生动能,以及转换流体内部能量的热机。
其工作原理主要包括以下几个步骤:
1. 压气过程:在汽轮机中,气体(通常为空气或燃气)首先被压缩,提高了气体的压力和温度。
这一步骤通常是通过压缩机来完成,压缩机使用机械或涡轮叶轮将气体压缩。
2. 加热过程:在压缩后,气体进一步加热,提高了其温度和内部能量。
加热通常是通过燃烧燃料来完成的,将燃料喷入到高温高压的燃烧室中,与压缩空气混合并燃烧。
3. 膨胀过程:在加热后,高温高压气体被引导到涡轮叶轮上,涡轮叶轮受到气流的冲击而开始旋转。
这一旋转运动在轴上带动涡轮产生动能,同时也消耗了气体的内部能量。
4. 输出功过程:涡轮带动的轴通过传动装置将旋转动能转变为有用功。
轴可以用来驱动发电机、涡轮泵或其他机械设备。
整个过程中,汽轮机通过将热能转化为机械能或电能,实现了能源转换的目的。
汽轮机的效率通常由其膨胀过程中的能量转化效率来决定,这也是优化设计与运行的关键所在。
汽轮机结构及原理

汽轮机结构及原理一、组成部件:1. 压气机:用于将空气压缩,提高进入燃烧室的压力。
2. 燃烧室:将燃料与压缩空气混合并燃烧,产生高温高压的燃气。
3. 喷气管:用于引导和加速燃气流出燃烧室,产生冲力。
4. 轴:将压气机、涡轮机和发电机等部件连接起来。
5. 涡轮机:通过燃气的冲力驱动,使轴产生旋转运动。
6. 发电机:通过轴的运动,将机械能转化为电能。
二、工作原理:1. 压缩空气:气体由进气口进入压气机,压气机的叶片逐渐减少叶片间的空隙,从而将气体压缩,提高气体的压力和密度。
2. 燃烧过程:压缩后的空气经过燃油喷嘴喷入燃烧室,与燃料混合并点燃。
燃烧产生的高温高压燃气通过喷气管流向后方。
3. 燃气驱动:燃气通过涡轮机,将燃气的高速和高温转化为轴的旋转运动,产生机械能。
4. 电能发电:轴的旋转运动通过发电机,将机械能转化为电能。
发电机的旋转子产生交流,通过定子的线圈而感应电流,最终输出电能。
三、工作过程:1. 进气:外部空气通过进气口进入压气机。
2. 压缩:压气机的叶片将空气逐渐压缩,提高气体的压力和密度。
3. 燃烧:压缩后的空气通过燃油喷嘴喷入燃烧室,与燃料混合并点燃。
4. 转动涡轮:燃烧产生的高温高压燃气通过喷气管流向后方,驱动涡轮机旋转。
5. 转动轴:涡轮机的旋转运动通过轴传递,使轴产生旋转运动。
6. 发电:轴的旋转运动通过发电机,将机械能转化为电能,供应电力负载使用。
7. 排气:燃烧后的废气排出机外,通过喷气管排出。
四、特点和应用:1. 汽轮机具有高效率和大功率输出的优点,广泛应用于发电厂、船舶推进系统、航空器动力装置等领域。
2. 汽轮机结构简单,可靠性高,适应性强,同时可根据实际需求进行多机组联网运行,提高整体系统的可靠性和性能。
3. 由于汽轮机使用燃汽轮机使用化石燃料,其燃烧过程会产生大量的二氧化碳和其他排放物,对环境造成污染。
因此,在环保意识增强的背景下,与其他清洁能源技术相比,汽轮机在未来的发展中面临一定限制和挑战。
汽轮机工作原理

汽轮机工作原理
汽轮机是一种利用蒸汽能量来驱动转子旋转,从而产生功率的热力机械设备。
它是发电厂中最常见的发电装置之一,也被广泛应用于船舶和工业生产中。
汽轮机的工作原理主要包括蒸汽进汽、膨胀工作、排汽和再循环等几个基本过程。
首先,蒸汽进汽。
在汽轮机中,蒸汽由锅炉产生,经过调节阀进入汽轮机的高
压缸。
蒸汽进入高压缸后,通过喷嘴对转子产生冲击,推动转子旋转。
这一过程中,蒸汽的压力和温度都在不断下降,同时转子也在不断受到驱动。
接着是膨胀工作。
在高压缸中完成膨胀工作后的蒸汽,将进入中压缸和低压缸
依次进行膨胀工作,从而驱动汽轮机的转子旋转。
在这个过程中,蒸汽的压力和温度会不断降低,而转子则会不断受到推动。
然后是排汽。
当蒸汽完成了在汽轮机中的膨胀工作后,会被排出汽轮机,进入
凝汽器进行冷凝,最终变成液态水。
在凝汽器中,蒸汽和冷却水进行热交换,使蒸汽凝结成水,然后通过泵送回锅炉中继续循环使用。
最后是再循环。
在汽轮机工作中,为了提高效率和节能,通常会采用再循环系统。
再循环系统是将部分排汽重新加热后送回锅炉,再次转化为高温高压蒸汽,再次进入汽轮机中进行膨胀工作。
这样可以充分利用热能,提高汽轮机的热效率。
综上所述,汽轮机的工作原理是通过蒸汽的膨胀工作驱动转子旋转,从而产生
功率。
蒸汽进汽、膨胀工作、排汽和再循环是汽轮机工作过程中的基本环节。
汽轮机作为一种重要的动力装置,在工业生产和发电领域具有重要的应用价值,对其工作原理的深入理解和掌握,对于提高其效率和性能具有重要意义。
汽轮机的工作原理文档

汽轮机的工作原理一、力的冲动作用原理及反动作用原理1. 冲动作用原理由力学可知,当一个运动物体碰撞到另一个静止或运动速度比它低的物体时,就会因受到阻碍而改变其速度,同时给阻碍它的运动物体一个作用力,这个作用力称为冲动力。
冲动力的大小取决于运动物体的质量和碰撞前后的速度变化值。
物体质量越大,速度变化值越大;速度变化越大,冲动力也越大。
若阻碍运动的物体在此力的作用下,产生了速度变化,则运动物体就做了机械功。
在汽轮机中,蒸汽在喷嘴中产生膨胀,压力降低,速度增加,热能转变为动能。
高速汽流流经动叶片时,由于汽流方向的改变,产生了对动叶片的冲动力,推动叶轮旋转作功,将蒸汽的动能转变为转子旋转的机械能,这种利用冲动力的作功原理,称为冲动作用原理,如图1-1所示。
图1-1 单级冲动式汽轮机示意图1-转子;2-叶轮;3-动叶片;4-喷嘴 图1-2所示为一动叶片的工作示意图,如果用一个直立的平板,让高速汽流冲击到其表面上,平板由于受汽流的冲击作用而发生运动,但因在平板的表面附近产生了很大的扰动和涡流损失,如图1-2(a )所示,使蒸汽中大量的有用能量得不到很好的利用,以致造成浪费。
所以经过大量的实践改进,现代的汽轮机叶片都做成弯曲形。
如要产生最大的作用力,就必须使蒸汽的喷射方向与动叶片的运动方向一致,然后再转一个1800方向流出动叶片,如图1-2(b )所示。
蒸汽图1-2 冲动式汽轮机动叶片的分析图同样,高速蒸汽流冲击汽轮机叶片时,使叶片运动而做功,如图1-3所示。
蒸汽以速度c1流向一圆弧形动叶片,并能沿着平行于汽流的方向移动。
汽流进入由动叶片构成的圆弧形流道后,便沿内弧逐渐改变其流动方向,最后以速度c2流出流道。
当动叶片固定不动时,c2的方向恰与c1方向相反。
由于汽流沿圆弧形叶片壁面不断地改变方向作匀速圆周运动,因此每一个汽流微团都将产生一个离心力作用在叶片上,同时根据牛顿第三定律,动叶片也受到汽流微团给它的一个大小相等,方向相反的反作用力,在这里就是一个离心力。
汽轮机的工作原理

汽轮机的工作原理汽轮机是一种重要的能源转换设备,广泛应用于发电、航空、船舶等领域。
它通过将燃料的热能转换为机械能,再进一步转换为电能或动力。
下面将详细介绍汽轮机的工作原理。
1. 蒸汽产生:汽轮机是以水蒸气作为工作介质的,首先需要产生高温高压的蒸汽。
通常使用锅炉将水加热至高温并产生蒸汽。
锅炉内设有水冷壁,当燃料燃烧时释放热能,通过水冷壁传递给水,使水迅速升温并转化为蒸汽。
2. 压力增加:蒸汽经过锅炉后的压力通常较低,需要通过汽轮机的压缩与扩张过程来增加压力。
压缩过程中,燃气通过多级压缩器,逐级提高压力。
扩张过程中,蒸汽通过汽轮机的转子产生动能,将转子带动旋转,从而提取出热能。
3. 能量转换:汽轮机的核心部件是转子。
转子上装有多个叶片,当蒸汽通过叶片时,会改变叶片上蒸汽的动能和压力。
蒸汽逐渐扩张,动能转化为机械能,驱动转子旋转。
转子将机械能传递给发电机或其他设备,实现能量的转换。
4. 排放与循环:汽轮机在工作过程中会产生废气,其中包含大量的烟尘、二氧化碳等物质。
为了减少环境污染,需要经过处理以达到排放标准。
同时,为了提高能源利用率,汽轮机通常采用循环系统,将一部分废气重新引入锅炉再利用。
5. 效率与性能:汽轮机的工作效率通常由热效率和机械效率两部分组成。
热效率是指输入燃料能量中被转化为有用能量的比例,机械效率是指能量转换过程中传递到负载的比例。
提高汽轮机的效率是研发和设计的重要目标,可以通过改进叶片形状、降低内部损失等手段来实现。
6. 应用领域:汽轮机广泛用于发电厂,特别是火电厂,它们使用燃煤、燃油或其他能源来产生高温高压的蒸汽,驱动汽轮机发电。
此外,汽轮机也被用于航空领域,作为飞机的动力源。
船舶也使用汽轮机作为主要动力设备,提供推进力。
7. 发展趋势:随着科技的进步和对环境保护的要求,汽轮机在结构和材料上都在不断改进。
新型材料而例如高温合金的应用可以提高汽轮机的工作温度和效率。
另外,燃料技术的创新也为汽轮机的发展创造了更多可能,如采用天然气、生物质等作为燃料,减少对传统化石燃料的依赖。
汽轮机工作原理 结构

汽轮机工作原理和结构1 汽轮机工作原理汽轮机是将蒸汽的热能转换成机械能的蜗轮式机械。
在汽轮机中,蒸汽在喷嘴中发生膨胀,压力降低,速度增加,热能转变为动能。
如图1所示。
高速汽流流经动叶片3时,由于汽流方向改变,产生了对叶片的冲动力,推动叶轮2旋转做功,将蒸汽的动能变成轴旋转的机械能。
图1 冲动式汽轮机工作原理图1-轴;2-叶轮;3-动叶片;4-喷嘴2 汽轮机结构汽轮机主要由转动部分(转子)和固定部分(静体或静子)组成。
转动部分包括叶栅、叶轮或转子、主轴和联轴器及紧固件等旋转部件。
固定部件包括气缸、蒸汽室、喷嘴室、隔板、隔板套(或静叶持环)、汽封、轴承、轴承座、机座、滑销系统以及有关紧固零件等。
套装转子的结构如图2所示。
套装转子的叶轮、轴封套、联轴器等部件和主轴是分别制造的,然后将它们热套(过盈配合)在主轴上,并用键传递力矩。
图2 套装转子结构1-油封环2-油封套3-轴4-动叶槽5-叶轮6-平衡槽汽轮机主要用途是在热力发电厂中做带动发电机的原动机。
为了保证汽轮机正常工作,需配置必要的附属设备,如管道、阀门、凝汽器等,汽轮机及其附属设备的组合称为汽轮机设备。
图3为汽轮机设备组成图。
来自蒸汽发生器的高温高压蒸汽经主汽阀、调节阀进入汽轮机。
由于汽轮机排汽口的压力大大低于进汽压力,蒸汽在这个压差作用下向排汽口流动,其压力和温度逐渐降低,部分热能转换为汽轮机转子旋转的机械能。
做完功的蒸汽称为乏汽,从排汽口排入凝汽器,在较低的温度下凝结成水,此凝结水由凝结水泵抽出送经蒸汽发生器构成封闭的热力循环。
为了吸收乏汽在凝汽器放出的凝结热,并保护较低的凝结温度,必须用循环水泵不断地向凝汽器供应冷却水。
由于汽轮机的尾部和凝汽器不能绝对密封,其内部压力又低于外界大气压,因而会有空气漏入,最终进入凝汽器的壳侧。
若任空气在凝汽器内积累,凝汽器内压力必然会升高,导致乏汽压力升高,减少蒸汽对汽轮机做的有用功,同时积累的空气还会带来乏汽凝结放热的恶化,这两者都会导致热循环效率的下降,因而必须将凝汽器壳侧的空气抽出。
汽轮机工作原理及用途

汽轮机工作原理及用途
汽轮机是一种利用高速流体动能转化为机械能的热力发动机。
其工作原理是通过循环流体(通常是蒸汽)在叶片上产生动力,并驱动轴传递机械能。
汽轮机的工作原理如下:
1. 气流进入汽轮机,并通过进气管道进入叶轮机组。
2. 叶轮机组由一组叶片构成,当气流通过叶片时,受到了力的作用,使得叶轮旋转。
3. 旋转的叶轮通过轴传递机械能,从而驱动其他设备,如发电机或涡轮泵。
4. 排出气流的废气经过排气管道排出汽轮机。
汽轮机具有多种用途,主要包括以下几个方面:
1. 发电:汽轮机是发电厂中常见的发电设备,通过与发电机联动,将机械能转化为电能,用于供应电力。
2. 动力:汽轮机用于推动各种类型的机械设备,如船舶、飞机和工业设备等。
3. 热能回收:汽轮机可以利用废热,如锅炉排出的高温废气,来驱动它们,从而提高能源利用效率。
4. 石油工业:汽轮机在石油加工过程中被广泛应用,在炼油厂中用于驱动压缩机和泵等设备。
5. 化工工业:汽轮机可用于化工厂中的各种过程,如提供压缩空气、提供动力等。
总之,汽轮机作为一种高效节能的发动机,被广泛应用于发电、动力和工业领域,为各种设备提供动力和能源。
汽轮机基础知识

汽轮机基础知识一、工作原理:汽轮机工作原理,简单的讲就是利用具有一定压力、温度的蒸汽进人汽轮机,驱动汽轮机旋转,输出轴功;在此过程中,将蒸汽的热能转化成机械转动的动能。
热能转化的多少,与蒸汽的焓值大小有关,即一定压力、温度的蒸汽,其焓值是一定的,单位是KJ/Kg,具体数值可查工程热力学焓值表或焓熵图,所以当汽轮机进汽、排汽参数一定时,进汽与排汽的焓值差既是每千克蒸汽的能量输出量,再乘以进汽量、汽轮机效率、机械效率,既是汽轮机的输出轴功率。
蒸汽焓值的大小,与其压力、温度有关,在目前使用的汽轮机参数范围内,压力或温度升高,其焓值也增加,所以当汽轮机输出功率一定时,进汽参数升高或排汽参数降低,汽轮机进汽量要减少;反之亦然。
若进汽、排汽参数一定,则进汽量增加意味着汽轮机输出功率增加;对于发电型机组,由于其运行转速是恒定的,进汽量增加,发电机输出功率也增加;而对于拖动型机组,进汽量增加时,会引起机组转速的增加,从理论上讲,若不考虑能量损失等因素,转速(n)的变化与其拖动设备的扬程(H)、流量(Q)、功率(N)有如下关系:n1/n2=H1/H2;(n1/n2)**2=Q1/Q2;(n1/n2)**3=N1/N2;对于拖动型机组,其设备及管道系统在设计时已基本定型,当设备负荷发生变化时,其流量变化必然引起系统压力的变化,而压力的变化是现场最易直接观测到的,系统压力的变化又引起汽轮机转速的变化,所以此时应及时调整汽轮机进汽量来维持转速,保持系统压力的稳定,故只要能够满足所驱动设备的负荷要求,汽轮机并不一定在额定转速下运行;汽轮机的设计在额定转速下运行其效率最佳,所以在机组选型时,应使所拖动的设备负荷近可能接近汽轮机设计功率,以提高系统的运转效率。
二、分类:汽轮机分类方式有多种,一般按热力系统方式分为凝汽式(N)、背压式(B)、抽凝式(C)、抽背式(CB),凝汽式机组一般用于发电厂进行发电,当用户具备固定的热用户和热负荷时,可根据热负荷的参数及负荷量选择背压式(B)、抽凝式(C)或抽背式(CB)机组。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
任课教师:张丁旺 联系电话:021-54748084 13501860320 E-mail:zdw@
1 2014-8-21
第一章 汽轮机工作原理
概述
汽轮机——一种将蒸汽的热能转变为机械功的旋转式原动机
•优点 —— 单机功率大,热经济性高,运行平稳可靠,使 用寿命长,单位功率造价低,能使用各种廉价燃料等。 •缺点 —— 体积庞大、变负荷能力差,必须配套有锅炉、 凝汽器、水泵、给水处理等大型设备以及给水回热等复杂 的热力系统。因而机动性差,不便用于移动式装备中。 •用途: 现代火力发电厂和核电厂的主要原动机 可作为大型船舶及军舰的推进动力 冶金、化工等部门用以驱动各种大型工作机 供热式汽轮机还可满足生产和生活用汽、用热的需要, 实现高效益的热电联合生产。
表明了稳定流动中通流截面与汽流速度及蒸汽比容之间的变化关系
式中负号说明在无损失的流动过程中,压力和速度的变化方向相反
5 2014-8-21
4. 能量方程式 对于稳定流动,进入系统的能量必然等于离开系统的能量。若忽 略汽流进出系统的势能变化,则系统的能量方程可写为: 2 2 c0 c12 c0 c12 h0 gz0 q h1 gz1 wi h0 h1 wi 2 2 2 2 5. 音速与马赫数M 研究气体的流动经常用到临界概念,因此必须首先给出音速表达 式。音速实际上就是压力波的传播速度。根据小压力扰动理论,音 速a可以表示为: dp a d dp d 将等熵过程微分方程式 k 0 代入上式得 p p 音速标志了工质可压缩性的大小, a k kpv kRT 是流体的一个状态参数 对理想气体,k =cp/cv只是温度的函数,故音速也只是温度的函数 流体的速度c与当地音速a的比值叫作马赫数M。即 M c a M=1 时的气流状态称为临界状态,此时气流速度 c 称为临界速度 ccr,参数都称为临界参数,如pcr,vcr等。
6 2014-8-21
1.1.2 促使流动变化的条件
然降低,如果压力升高,则流速必然降低。
1. 力学条件(速度变化与压力变化之关系) 由运动方程式 vdp cdc 知:在气体流动中,如果流速是增加的,则压力必 2. 几何条件(截面变化与流速之间的关系) dp dv k 0有 将运动方程式 vdp cdc 代入等熵过程分方程式
13 2014-8-21
•三种级的比较
14
2014-8-21
1.2.2.2 按结构分
单列级与双列复速级
双列复速级简称复速级,由美国工程师寇蒂 斯 (Curtis) 于 1900 年前后创造。实际上是冲动级 的一种延伸。 作功能力比单列冲动级的大; 常用于单级汽轮机或中小型汽轮机的第一级; 以利用蒸汽的速度为主,也称其为速度级; 为提高级效率,通常选取(510%)的反动度。
p v dv 1 dp cdc c 2 dc 2 dc 代入连续性方程有 2 M v k p kpv a c c 可见,c↑时A应扩大还是缩小取决于M dA dc dc dA dc M2 0 ( M 2 1) ⋛ 1? A c c A c
①当 M<1( 亚音速 ), 即 c<a 时, dA与 dc 符号相反。膨胀 (c↑): 面积应渐缩 . 扩压(p↑c↓):面积应渐扩。 ②当 M>1( 超音速 ), 即 c>a 时, dA 与 dc 符号相同。膨胀 (c↑): 面积应渐扩 . 扩压(p↑c↓):面积应渐缩。 可见,若要使汽流从亚音速变为超 音速 ( 膨胀加速 ) ,管道 ( 喷管 ) 的形状 应先渐缩 — 再渐扩 [ 称为缩放喷嘴或 拉伐尔(De laval)喷嘴]。 ③当M=1,即c=a时,称为临界。 dA=0,最小截面。 因此,速度的变化需两个条件:①压差—力学条件;②通道形状变化 —2014-8-21 几何条件 7
按照 Ωm=0.5 的条件设计的级叫作 反动级。在反动级中,蒸汽的热能 转变为动能的过程,不仅发生在喷 嘴叶栅中,也发生在动叶栅中,而 且这种转变在喷嘴和动叶中大约各 完成一半。 反动级的特点是: * Ωm=0.5 * p1 p2 * * h h 0 . 5 h * b n t * 喷嘴通道及动叶通道都为渐缩 型动、静叶片型状相同,反向安装
16 2014-8-21
1.3 汽轮机的分类及型号
1.3.1 汽轮机的分类 •按工作原理: •按热力过程:
•按用途:
①冲动式汽轮机;②反动式汽轮机 ①凝汽式汽轮机;②背压式汽轮机;③调节抽汽式汽轮机 ④抽汽背压式汽轮机;⑤多压式汽轮机等
•按新汽压力:
①电站汽轮机;②工业汽轮机;③船用汽轮机等
①低压汽轮机(1.5MPa) ②中压汽轮机(24MPa,我国定型产品为3.43MPa) ③高压汽轮机(610MPa,我国定型产品为8.83MPa) ④超高压汽轮机(1214MPa,我国定型12.75及13.24MPa) ⑤亚临界压力汽轮机(1618MPa,我国定型16.18及16.67MPa) ⑥超临界压力汽轮机(22.6MPa)
•按结构特点:
•还可按功率大小、汽流方向等进行划分
•纯冲动级:按照Ωm=0的条件设计的 级叫作纯冲动级。在纯冲动级中, 热能到动能的转换在喷嘴中进行, 而在动叶中只有动能到(机械能)轮周 功的转换。
纯冲动级的特点是: * Ωm=0 * p1 p2 * * hb 0 ht* hn * 动叶通流截面沿流道不变11Biblioteka 2014-8-21•反动级
2 2014-8-21
汽轮机发展史
第一台轴流式汽轮机由瑞典工程师拉伐尔(De Laval)1883年创造
冲动式,容量3.7kW,转速26000r/min,轮周速度475m/s。拉伐尔解决了等强 度轮盘,挠性轴和缩放喷嘴等较复杂的技术问题。
第一台多级反动式汽轮机由英国工程师查尔斯 · 帕森斯 (Charles Parsons) 1884年设计 1903年至1907年间,出现了热能电能联合生产的汽轮机,即背压 式及调节抽汽式汽轮机;1920年左右,出现了给水回热式汽轮机; 1925年,生产出第一台中间再热式汽轮机 20世纪70年代,美国生产了最大单机功率为 1300MW的双轴汽轮 机,1980年前苏联制造的 1200MW五缸六排汽一次中间再热超临界 单轴汽轮机投入运行 1955年,上汽厂制造了中国第一台功率为6MW的汽轮机,此后我 国 分 别 设 计 制 造 出 了 50MW 、 100MW 、 125MW 、 200MW 和 300MW 等容量的凝汽式汽轮机及不同容量和型式的供热式汽轮机。 80年代,我国引进消化技术,自行制造出了 300MW及600MW亚临 界凝汽式机组。目前我国已具备生产百万级机组的能力。 上汽厂、哈汽厂和东方厂——北重、青汽和武——杭汽、南汽等 美国的通用电气公司 (GE) ,西屋电气公司 (WH) 。瑞士 ABB 、法 国的阿尔斯通 —— 大西洋公司 (AA) 。俄罗斯的列宁格勒金属工厂 (ЛМ3)。日本的三大企业:日立、东芝及三菱等。 3 2014-8-21
1.2.2.3 其他分类
按级的工作特性将其分为调节级和压力级 采用喷嘴调节汽轮机的通流面积随负荷变化 而变化的第一级称为调节级 中小容量机组的调节级一般采用复速级 末级与中间级 孤立级 调节级及末级的余速动能通常不能被利用
15 2014-8-21
1.2.3 叶栅几何特性
汽轮机叶栅是由许多 相同叶片以同样的间距 和安装角度排列在某一 几何面上而形成的栅型 汽流通道。 叶片高度 ℓ( 喷嘴高度 ℓn 及动叶高度ℓb) 平均直径dm(dn及db) 叶 片 的 横 截 面 形 状 称 为叶型,其周线称为型线 若 叶 片 型 线 沿 叶 高 不 变,则称为等截面叶片 , 若叶片型线沿叶高变化 , 则为变截面叶片。
冲动作用原理的特点是汽流在动叶汽道中不膨胀加速而只改变方 向;反动作用原理的特点是汽流在动叶汽道内不仅改变方向,而且 还进行膨胀加速。
9 2014-8-21
1.2.1.2 级的反动度Ωm 定义 : 蒸汽在动叶汽道内膨胀时
的理想焓降∆hb与整个级的滞止理想 焓降∆ht*之比
m
Δhb Δhb * Δht* Δhn Δhb
1.1 预备知识
1.1.1 热力学及流体力学的一些基本公式 1. 状态及过程方程式 pv RT 理想气体的状态方程 k c R 理想气体的定压比热 p k 1 式中 k—等熵指数。对于过热蒸汽k=1.3;对干饱和蒸汽k=1.135; 对湿蒸汽k=1.035+0.1x,x表示膨胀过程初态蒸汽干度 R—气体常数。R=R/=8410/[J/(kg∙K)] R为通用气体常数=8410J/(kmol∙K),为气体分子量。 对水蒸汽=18.016,R=461.26[J/(kg∙K)]。 k k h cpT RT pv 理想气体的焓 k 1 k 1 pvk p / k 常数 等熵膨胀过程方程
12 2014-8-21
•带反动度的冲动级
纯冲动级的作功能力大,而反动 级的效率高。因此实际中的冲动级 将 反 动 度 选 在 00.5 之 间 , 一 般 取 Ωm=0.05~0.20 。习 惯 上讲这 种级 称 为冲动级。 这种级的特点是:蒸汽的膨胀大 部分发生在喷嘴叶栅中,只有小部 分在动叶栅中发生,故其动叶通道 也稍有收缩。 这种级具有纯冲动级及反动级的 共同优点 现代大型汽轮机中,为了获得尽 可能高的效率,更普遍地采用了反 动级。
dp dv k 0 p v
dp d k 0 p
4 2014-8-21
2. 连续性方程 Ac q 常数 即质量平衡方程: m v A1c1 A2c2 或 v1 v2 dA dc dv 连续性方程的微分形式: 0 A c v 3. 运动方程式 ——蒸汽流动变化与作用于流体上的力 的关系式 微元段上的力:压力p及阻力dR,重力垂 直流动方向,在运动方向上的分量为零 dp dc Ap ( p )dA ( p dp )( A dA) dR dm 2 dt dc Adp dR dm dt dm Adx / v R dR dm ⇒ vdp Rdx cdc 对等熵流动,R =0,则 vdp cdc