九年级数学上册第二十五章概率初步25.1随机事件与概率25.1.2概率习题课件新版新人教版

合集下载

九年级数学上册第二十五章概率初步25.1随机事件与概率25.1.2概率ppt作业课件新版新人教版

九年级数学上册第二十五章概率初步25.1随机事件与概率25.1.2概率ppt作业课件新版新人教版

2.(2018·株洲)从-5,-130,- 6,-1,0,2,π这七个数中随机抽取一个
数,恰好为负整数的概率为( A )
A.27 B.37 C.47 D.57
3.(2018·海南)在一个不透明的袋子中装有 n 个小球,这些球除颜色外均相同, 其中红球有 2 个,如果从袋子中随机摸出一个球,这个球是红球的概率为1,那么 n
月中的11日~20日)小张同学要破解其密码: (1)第一个转轮设置的数字是9,第二个转轮设置的数字可能是1或__2______; (2)请你帮小张同学列举出所有可能的密码,并求密码数能被3整除的概率; (3)小张同学是6月份出生,根据(1)(2)的规律,请你推算用小张生日设置的密码的
部分的图形构成一个轴对称图形的概率是( )
A.1 B.1 C.1 D. 1
A
6 4 3 12
10.正方形 ABCD 的边长为 2,以各边为直径在正方形内画半圆,得到如图所示阴
影部分,若随机向正方形 ABCD 内投一粒米,则米粒落在阴影部分的概率为( A )
A.π-2 B.π-2 C.π-2 D.π-2
上面,双方均不得分,重新再转.问这个规则对双方公平吗?
解:不公平.由于在四个等可能结果中,红色占两种情况,白色占一种,所以小
王得分的概率为1,小赵得分的概率为1,所以游戏不公平
2
4
13.一个不透明的袋中装有 5 个黄球,13 个黑球和 22 个红球,它们除颜色外都 相同. (1)求从袋中摸出一个球是黄球的概率; (2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸 出一个球是黄球的概率不小于13.问至少取出了多少个黑球?
解:(1)P(点数为偶数)=12 (2)P(点数大于 3 且小于 6)=13

新人教版九年级数学上册25.1.1随机事件课件

新人教版九年级数学上册25.1.1随机事件课件
解析 答案
2.下列事件中为确定性事件的是( ) A.打雷后会下雨 B.明天是睛天 C.1 h 等于 60 min D.下雨后有彩虹
1
2
3
4
关闭
C
答案
1
2
3
4
3.“抛一枚均匀硬币,落地后正面朝上”这一事件是( ) A.必然事件 B.随机事件 C.确定性事件 D.不可能事件
关闭
抛一枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛一枚均匀
硬币,落地后正面朝上是随机事件.故选 B.
关闭
B
解析 答案
1
2
3
4
4.下列事件中,属于不确定事件的有( )
①太阳从西边升起;②在篮球比赛中,强队战胜弱队;③掷一枚硬币,有国徽
的一面朝下;④小明长大后成为一名宇航员.
A.①②③
B.①③④
C.②③④
D.①②④
①是不可能事件,②③④是不确定事件,故选 C. C
关闭 关闭
解析 答案
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸 面上的话,另一眼睛看到纸的背面。2022年4月12日星期二下午6时51分0秒18:51:0022.4.12
书籍是屹立在时间的汪洋大海中的灯塔。2022年4月下午6时51分22.4.1218:51April 12, 2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022年4月12日星期二6时51分0秒18:51:0012 April 2022 书籍是屹立在时间的汪洋大海中的灯塔。
在一定条件下,可能发生也可能 不发生 的事件,称为随机事件.
3.随机事件发生的可能性大小 要想知道事件发生的可能性大小,首先要确定这个事件是什么事件,一

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案

人教版九年级数学上册第二十五章概率初步《25.1随机事件与概率》第2课时教案一. 教材分析本节课的主要内容是随机事件与概率的初步概念。

学生需要了解随机事件的定义,以及如何用概率来描述事件的可能发生性。

教材通过大量的实例来帮助学生理解概率的概念,并培养学生的实际应用能力。

二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于一些基本的概念和原理能够理解和掌握。

但是,由于概率是一个相对抽象的概念,对于一些学生来说,理解起来可能会有难度。

因此,在教学过程中,需要通过大量的实例和实际操作来帮助学生理解和掌握概率的概念。

三. 教学目标1.了解随机事件的定义,理解必然事件、不可能事件和不确定事件的概念。

2.掌握概率的基本计算方法,能够计算简单事件的概率。

3.能够运用概率的知识解决实际问题。

四. 教学重难点1.随机事件的定义和分类。

2.概率的计算方法。

3.概率在实际问题中的应用。

五. 教学方法1.采用问题驱动的教学方法,通过提出问题,引导学生思考和探索,培养学生的思维能力。

2.使用多媒体教学,通过动画和实例的展示,帮助学生直观地理解概率的概念。

3.采用分组讨论的教学方法,让学生通过合作和交流,共同解决问题,培养学生的团队协作能力。

六. 教学准备1.多媒体教学设备。

2.教学课件和教学素材。

3.分组讨论的准备。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生思考事件的可能发生性,并引入随机事件的定义。

2.呈现(10分钟)介绍必然事件、不可能事件和不确定事件的概念,并通过实例进行解释和展示。

3.操练(10分钟)让学生进行一些简单的概率计算练习,如抛硬币实验的概率计算,以及一些简单的实际问题的概率计算。

4.巩固(10分钟)通过一些实际问题,让学生运用概率的知识进行解决,巩固所学的知识。

5.拓展(10分钟)引导学生思考概率在实际生活中的应用,如彩票、赌博等,让学生了解概率在生活中的重要性。

25.1.2 概率课件 2024-2025学年人教版数学九年级上册

25.1.2 概率课件 2024-2025学年人教版数学九年级上册

随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(2) 掷出的点数是偶数的概率是多少?
解:任意掷一枚质地均匀的骰子,掷出的点数可能是1,2,3,4,
5,6,即所有可能的结果有6种.因为骰子是质地均匀的,所以每种
结果出现的可能性相等.
随堂练习
2. 任意掷一枚质地均匀的骰子.
(1) 掷出的点数大于4的概率是多少?
(1)掷出的点数大于4的结果只有2种,即
掷出的点数分别是5,6.
所以P(掷出的点数大于4)=

= .

随堂练习
2. 任意掷一枚质地均匀的骰子.
(2) 掷出的点数是偶数的概率是多少?
(2)掷出的点数是偶数的结果有3种,即掷
出的点数分别是2,4,6.
所以P(掷出的点数是偶数)=
知识点2 简单随机事件的概率的求法
【例 4】一儿童行走在如图所示的地板上,当他随意停下时,最终停
在地板上阴影部分的概率是( A )
A.

B.


C.


D.


解析:观察这个图可知,阴影区域(3块)的面积占
总面积(9块)的


,故其概率为 .


知识讲解
知识点2 简单随机事件的概率的求法
【例 5】如图所示的是一个可以自由转动的转盘,转盘分成7个大小相
1颗地雷.小王在游戏开始时随机地点击一个方格,点击后出
现如图所示的情况.我们把与标号3的方格相邻的方格记为A区
域(画线部分),A区域外的部分记为B区域.数字3表示在A区域
有3颗地雷.下一步应该点击A区域还是B区域?

第二十五章概率初步知识点(人教版数学九年级上册)

第二十五章概率初步知识点(人教版数学九年级上册)

第二十五章概率初步
一、本章知识结构图
二、本章知识点
25.1随机事件与概率
25.1.1随机事件
1. 必然事件:在一定条件下,必然会发生的事件。

2. 不可能事件:在一定条件下,不可能会发生的事件。

3. 确定性事件:必然事件和不可能事件统称确定性事件。

4. 随机事件:在一定条件下,可能发生也可能不发生的事件。

注:一般地,随机事件发生的可能性是有大小的。

25.1.2概率
1. 概率:
一般地,对于一个随机事件A ,我们吧刻画其发生可能性大小的数值,称为随机事件A 发生的概率(probability ),记为P (A ).
归纳:一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可
能性都相等,事件A 包含其中的m 种结果,那么事件A 发生的概率n
m =)(A P . 随机事件概率:1)(0<<A P .
必然事件概率:1)(=A P .
不可能事件概率:0)(=A P .
25.2用列举法求概率
1. 列举法:
① 列表:不重不漏的列出所有可能的结果,再从中选出符合要求的事件.
②树状图:选择一个元素与其他元素分别组合,依次列出像树枝形式,最末端
的个数就是事件总数.
树状图列举的结果一目了然,当事件要经过三步或三步以上的步骤时,用画树状图法比较有效.
25.3用频率估计概率
1.频率估计概率
大量重复试验时,事件发生的频率会在某个固定值左右摆动.摆动的幅度越小概率越稳定.可以用这个固定值来估计这个事件的概率.(试验次数越多,概率越精确)。

《25.1随机事件与概率——25.1.2 概率》(第1课时)教学设计【初中数学人教版九年级上册】

《25.1随机事件与概率——25.1.2 概率》(第1课时)教学设计【初中数学人教版九年级上册】

第二十五章概率初步25.1 随机事件与概率25.1.2 概率教学设计(第1课时)一、教学目标1.了解概率的意义,渗透随机观念.2.能计算一些简单随机事件的概率.二、教学重点及难点重点:概率的意义.难点:概率的意义,判断试验条件的意识.三、教学用具多媒体课件.四、相关资源《杞人忧天》、《瓮中捉鳖》、《守株待兔》动画,《事情发生可能性与概率的关系》动画.五、教学过程【创设情境,引入新课】学习数学的人应该用数学的眼光看待周围的事物你如何用数学的眼光看待“杞人忧天”“瓮中捉鳖”“守株待兔”这几个成语呢?师生活动:教师提出问题,学生思考,归纳成语故事与数学的联系.设计意图:通过数学人用数学思想的角度,引导学生思考成语故事,让学生觉得新奇有趣,瞬间抓住学生的兴趣点引人入胜,带入数学课堂.【合作探究,形成新知】【知识点解析】概率,微课中系统介绍概率的基础知识及相应练习.问题1从分别标有1,2,3,4,5的五根签中随机地抽取一根,抽到的签号是5.这个事件是随机事件吗?抽到5个号码中任意一个号码的可能性的大小一样吗?师生活动:提问一学生回答,教师根据学生的回答情况总结这个事件是随机事件,抽到5个号码中任意一个号码的可能性的大小一样.问题2抽出的可能的结果一共有多少种?每一种占总数的几分之几?师生活动:小组讨论、交流,教师巡查,关注学生是否真正讨论,指导学困生.归纳总结:这五根签中有五种可能,即1,2,3,4,5.因为签看上去完全一样,又是随机抽取,所以每个数字被抽到的可能性大小相等.我们用15表示每一个数字被抽到的可能性大小.问题3掷一枚质地均匀的骰子,向上的一面的点数有多少种可能?分别是什么?向上的点数是1,2,3,4,5,6的可能性的大小相等吗?它们都是总数的几分之几?师生活动:一学生回答,全班订正.【数学探究】掷一枚质地均匀的骰子,随机出现点数,体现随机事件的基本属实.归纳总结:掷一枚质地均匀的骰子,向上的一面的点数有6种可能,即1,2,3,4,5,6.因为骰子形状规则、质地均匀,又是随机掷出,所以每种点数出现的可能性大小相等.我们用16表示每种点数出现的可能性大小.问题4掷一枚质地均匀的骰子,向上的一面的点数有几种可能?出现向上一面的点数是1的可能性是多少?其它点数呢?师生活动:小组交流,小组代表汇报讨论结果,教师引导学生注意事件的特点.归纳总结:由于骰子形状规则、质地均匀,又是随机掷出,所以出现每种结果的可能性大小相等,都是全部可能结果总数分之一.设计意图:建构主义主张教学应从学生已有的知识体系出发,这样设计有利于引导学生顺利地进入学习情境.通过抽签的方式回答问题,让学生亲身体验,这样容易激发学生的学习兴趣.这样安排一方面复习了必然事件、随机事件和不可能事件的内容,而且还加深了对三种事件的理解;另一方面也为过渡到本节课的教学作了一个很好的铺垫.以问题串的形式创设情境,引起学生的认知冲突,使学生对旧知识设疑,从而激发学生的学习兴趣和求知欲望.通过情境创设,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时把学生带入下一环节.提问概率的定义是什么?问题1至问题4有什么共同特点?师生活动:小组讨论,一同学回答,不足地方其他学生补充,教师引导学生注意概率的共同特点.概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).问题1至问题4的共同特点:(1)每一次试验中,可能出现的结果只有有限个;(2)每一次试验中,各种结果出现的可能性相等.思考1你能类似求“点数是1”的概率的方法,由特殊上升到一般,总结出古典概型的概率的求法吗?师生活动:小组讨论、交流,教师在课件上显示古典概型的概率的求法.概率求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn.思考2你知道m与n之间的大小关系吗?师生活动:师生共同总结m与n的大小关系.归纳总结:在P(A)=mn中,由m和n的含义,可知0≤m≤n,进而有0≤mn≤1.∴0≤P(A)≤1.特别地:当A为必然事件时,P(A)=1;当A为不可能事件时,P(A)=0.易知:事件发生的可能性越大,它的概率越接近1;事件发生的可能性越小,它的概率越接近0.设计意图:通过对具体事件的特征的分析,使学生了解在现实生活中有些事件具备了两个基本特征,我们一般可称为“有限等可能型事件”,而这种随机事件的概率称为“古典概型”.思考1和思考2设置的目的在于帮助学生认识、理解概率的概念,以及分析概率是表示一个随机事件发生的可能性大小的一个比值,概率是一个常数,是一个客观值,结合数轴表示随机事件的概率意义,并形象的体会随着概率的改变,随机事件发生的可能性大小的变化.使数值更形象具体化,更利于理解和记忆.【例题分析,深化提升】例掷一枚质地均匀的骰子,观察向上一面的点数,求下列事件的概率:(1)点数为2;(2)点数为奇数;(3)点数大于2且小于5.师生活动:一学生上黑板板演,全班订正,教师补充.解:掷一枚质地均匀的骰子时,向上一面的点数可能为1,2,3,4,5,6,共6种.这些点数出现的可能性相等.(1)点数为2有1种可能,因此P(点数为2)=16.(2)点数为奇数有3种可能,即点数为1,3,5,因此P(点数为奇数)=36=12;(3)点数大于2且小于5有2种可能,即点数为3,4,因此P(点数大于2且小于5)=36=12.设计意图:数学教学论指出数学概念要明确其内涵和外延(条件、结论、应用范围等),通过对概率的几个重要方面的阐述,使学生的认知结构得到优化,知识体系得到完善,使学生的数学理解又一次突破思维的难点,使学生初步会求随机事件发生的概率,从而解决实际问题,培养学生的应用意识.【练习巩固,综合应用】1.在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为().A.15B.25C.35D.452.风华中学七(2)班的“精英小组”有男生4人,女生3人,若选出一人担任组长,组长是男生的概率为.3.开展整治“六乱”行动以来,我市学生更加自觉遵守交通规则.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为13,遇到黄灯的概率为19,那么他遇到绿灯的概率为( ).A.13B.23C.49D.594.从-1、0、13、π3中随机抽取一数,抽到无理数的概率是.5.掷一个质地均匀的正方体骰子,观察向上一面的点数.(1)求掷得点数为2或4或6的概率;(2)小明在做掷骰子的试验时,前五次都没掷得点数2,求他第六次掷得点数为2的概率.参考答案1.C2.473.D4.255.解:掷一个质地均匀的正方体骰子,向上一面的点数可能为1,2,3,4,5,6,共6种,这些点数出现的可能性相等.(1)掷得点数为2或4或6(记为事件A)有3种结果,因此P(A)=36=12;(2)小明前五次都没掷得点数2,可他第六次掷得点数仍然可能为1,2,3,4,5,6,共6种.他第六次掷得点数为2(记为事件B)有1种结果,因此P(B)=16.设计意图:巩固学生对概率定义的理解和认识,及对概率的计算公式的简单运用技能,以达到及时学习、及时应用,让学生从中找到成功的感觉,从而提高学生学习数学的兴趣.六、课堂小结1.概率的定义:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率.表示方法:事件A的概率表示为P(A).2.概率的求法:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m种结果,那么事件A发生的概率为P(A)=mn.其中0≤P(A)≤1,当A为必然事件时,P(A)=1,当A为不可能事件时,P(A)=0.设计意图:归纳总结不应该仅仅是知识的简单罗列,而应该是优化认知结构,完善知识体系的一种有效手段.为充分发挥学生的主体地位,让学生畅谈本节课的收获,加强学习反思,帮助学生养成系统整理知识的习惯.七、板书设计25.1 随机事件与概率——25.1.2 概率(1)1.概率的定义2.概率的求法。

人教版九年级数学上册《25章 概率初步 25.1 随机事件与概率 解决实际中的概率问题》优质课课件_4

人教版九年级数学上册《25章 概率初步  25.1 随机事件与概率  解决实际中的概率问题》优质课课件_4

点评内容
(一)基础知识探究: 探究点1 探究点2
(二)知识综合应用探究: 探究点1 探究点2
点评小组
2、9组 4、5组
6、8组 1、3、7组
要求:
⑴先点评对错; 再点评思路方法, 应该注意的问题, 力争进行必要的 变形拓展。 ⑵其他同学认真 倾听、积极思考、 记好笔记、大胆 质疑。
总结升华
(一)基础知识探究:
图2 解析指导:由概率公式 P( A) m 即可求出.
n
解:小猫在每个房间均有100种停留方法,都是等可能的.设事件
A=“在卧室里停留在黑色方砖上”,事件B=“在书房里停留在黑色方
砖上”.
则P( A) 80 4 , P(B) 20 1 .所以在卧室里,小猫停留在黑色方砖
100 5
100 5
第二十五章 概率初步
25.1 随机事件与概率
第2课时 概率的意义
初中数学九年级上(人教版)
导入新课
如图1是一个可以自由转动的转盘. 任意转动转盘一次,如果转盘停止后,指针 正好指向红色、黄色、蓝色区域,顾客就可以分
图1
学习这一节课后我们就能解决这类问题.下面我们就来进行有 关探讨.
学习目标
1.了解概率的意义,理解概率范围的意义. 2.在具体情境中了解概率的意义,提高学生解决实际问题的能力. 3.学生经历试验、整理、分析、归纳、确认等数学活动,激情投入
P(A) m . n
【归纳总结】 概率的计算公式是 P(A) m .
n
探究点2:概率的范围
问题:掷一枚骰子,向上的点数有6种可能,即1,2,3,4,5,6.由于骰子
的形状规则,质地均匀,又是随机掷出,所以出现每种结果的可能性
大小相等,都是

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

2024年人教版九年级数学上册教案及教学反思全册第25章 概率初步(教案)25.1.1 随机事件教案

25.1随机事件与概率25.1.1随机事件一、教学目标【知识与技能】1.理解必然发生的事件,不可能发生的事件,随机事件的概念,掌握判断随机事件的方法.2.了解随机事件发生的可能性有大有小,并会对随机事件发生的可能性大小做出判断.【过程与方法】通过本节课的学习,会根据经验判断一个简单事件是属于必然事件,不可能事件还是随机事件.【情感态度与价值观】感受数学与现实生活的联系,积极参与对数学问题的探讨,利用数学的思维方式解决现实问题.二、课型新授课三、课时1课时。

四、教学重难点【教学重点】随机事件的特点,会判断现实生活中的随机事件.【教学难点】判断现实生活中哪些事件是随机事件.五、课前准备课件、图片等.六、教学过程(一)导入新课你能确定明天是什么天气吗?(出示课件2)解决这个问题要研究随机事件.(板书课题)(二)探索新知探究一必然事件、不可能事件和随机事件出示课件4,5:活动1掷骰子掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.请思考以下问题:掷一次骰子,则骰子向上的一面:教师问:可能出现哪些点数?学生答:1点、2点、3点、4点、5点、6点.教师问:出现的点数是7,可能发生吗?学生答:不可能发生.教师问:出现的点数大于0,可能发生吗?学生答:一定会发生.教师问:出现的点数是4,可能发生吗?学生答:可能发生,也可能不发生.出示课件6-8:活动2摸球游戏教师问:小明从盒中任意摸出一球,一定能摸到红球吗?学生答:不一定.教师问:小麦从盒中摸出的球一定是白球吗?学生答:一定.教师问:小米从盒中摸出的球一定是红球吗?学生答:一定.教师问:三人每次都能摸到红球吗?学生答:小明不一定;小麦一定不能;小米一定能.出示课件9:“从如下一堆牌中任意抽一张牌,可以事先知道抽到红牌的发生情况”吗?学生交流,回答问题:第一组一定会发生;第二组一定不会发生;第三组有可能发生,也可能不发生.教师归纳:(出示课件10,11)在一定条件下,有些事件必然会发生,这样的事件称为必然事件.有些事件必然不会发生,这样的事件称为不可能事件.在一定条件下,可能发生也可能不发生的事件称为随机事件.教师强调:事件一般用大写字母A,B,C···表示.出示课件12:例判断下列事件是必然事件、不可能事件和随机事件:(1)乘公交车到十字路口,遇到红灯;(2)把铁块扔进水中,铁块浮起;(3)任选13人,至少有两人的出生月份相同;(4)从上海到北京的D314次动车明天正点到达北京.学生思考交流后,教师抽查学生口答:⑴随机事件;⑵不可能事件;⑶必然事件;⑷随机事件.巩固练习:(出示课件13)下列现象哪些是必然发生的,哪些是不可能发生的?学生独立思考后口答:必然事件;必然事件;不可能事件;不可能事件;必然事件;必然事件;不可能事件;不可能事件.探究二随机事件发生的可能性大小出示课件15-17:活动3:摸球袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球.教师问:这个球是白球还是黑球?学生答:可能是白球也可能是黑球.教师问:如果两种球都有可能被摸出,那么摸出黑球和摸出白球的可能性一样大吗?学生答:摸出黑球的可能性大.由于两种球的数量不等,所以“摸出黑球”和“摸出白球”的可能性的大小是不一样的,且“摸出黑球”的可能性大于“摸出白球”的可能性.教师问:能否通过改变袋子中某种颜色的球的数量,使“摸出黑球”和“摸出白球”的可能性大小相同?学生答:可以.白球个数不变,拿出两个黑球或黑球个数不变,加入2个白球.出示课件18:教师归纳:随机事件的特点:一般地,⑴随机事件发生的可能性是有大小的;⑵不同的随机事件发生的可能性的大小有可能不同.出示课件19:例1有一个转盘(如图所示),被分成6个相等的扇形,颜色分为红、绿、黄三种,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停在指针所指的位置(指针指向两个扇形的交线时,重新转动).下列事件:①指针指向红色;②指针指向绿色;③指针指向黄色;④指针不指向黄色.估计各事件的可能性大小,完成下列问题:(1)可能性最大的事件是_____,可能性最小的事件是_____(填写序号);(2)将这些事件的序号按发生的可能性从小到大的顺序排列:____________.学生观察交流后,师生共同解答.⑴④;②;⑵②<③<①<④.巩固练习:(出示课件20,21)1.随意从一副扑克牌中抽到Q和K的可能性大小是()A.抽到Q的可能性大B.抽到K的可能性大C.抽到Q和K的可能性一样大D.无法确定2.如果一件事情不发生的可能性为99.99%,那么它()A.必然发生B.不可能发生C.很有可能发生D.不太可能发生学生思考后独立解答:1.C解析:因为在一副扑克牌中,Q和K的数量相同,所以它们的可能性相同.2.D解析:一件事情不发生的可能性为99.99%,说明这个事件是随机事件,这个事件发生的可能性不大,即不太可能发生.出示课件22:例2一个不透明的口袋中有7个红球,5个黄球,4个绿球,这些球除颜色外没有其他区别,现从中任意摸出一球,如果要使摸到绿球的可能性最大,需要在这个口袋中至少再放入多少个绿球?请简要说明理由.师生共同解答.解:至少再放入4个绿球.理由:袋中有绿球4个,再至少放入4个绿球后,袋中有不少于8个绿球,即绿球的数量最多,这样摸到绿球的可能性最大.巩固练习:(出示课件23,24)甲口袋中放着22个红球和8个黑球,乙口袋中则放着200个红球、8个黑球和2个白球,这三种球除了颜色以外没有任何区别,两袋中的球都各自搅匀,蒙上眼睛从口袋中取一个球,如果你想取一个红球,你选哪个口袋成功的机会大?小红认为选甲较好,因为里面的球较少,容易摸到红球;小明认为选乙较好,因为里面的球较多,成功的机会越大;小亮认为都一样,因为只摸一次,谁也无法预测会取出什么颜色的球.你觉得他们说的有道理吗?学生交流后口答.解:他们的说法都没有道理.因为摸到一个红球的可能性的大小和袋子中球的总数量没关系,而是取决于红球占总数量的比例.在甲口袋中取一个红球的可能性为2230,在乙口袋中取一个红球的可能性为200 210,即2021,因为2021>2230,所以在乙口袋中取一个红球的可能性大.(三)课堂练习(出示课件25-30)1.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件2.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨3.下列事件是必然事件,不可能事件还是随机事件?(1)太阳从东边升起.(2)篮球明星林书豪投10次篮球,次次命中.(3)打开电视正在播中国新航母舰载机训练的新闻片.(4)一个三角形的内角和为181度.4.如果袋子中有4个黑球和x个白球,从袋子中随机摸出一个,“摸出白球”与“摸出黑球”的可能性相同,则x=______.5.已知地球表面陆地面积与海洋面积的比约为3:7,如果宇宙中飞来一块陨石落在地球上,“落在海洋里”发生的可能性()“落在陆地上”的可能性.A.大于B.等于C.小于D.三种情况都有可能6.桌上扣着背面图案相同的5张扑克牌,其中3张黑桃、2张红桃.从中随机抽取1张扑克牌.(1)能够事先确定抽取的扑克牌的花色吗?(2)你认为抽到哪种花色扑克牌的可能性大?(3)能否通过改变某种花色的扑克牌的数量,使“抽到黑桃”和“抽到红桃”的可能性大小相同?7.你能说出几个与必然事件、随机事件、不可能事件相联系的成语吗?数量不限.参考答案:1.C2.B3.解:⑴必然事件;⑵随机事件;⑶随机事件;⑷不可能事件.4.45.A6.解:⑴不能确定;⑵黑桃;⑶可以,去掉一张黑桃或增加一张红桃.7.解:必然事件:种瓜得瓜,种豆得豆;黑白分明.随机事件:海市蜃楼,守株待兔.不可能事件:海枯石烂,画饼充饥,拔苗助长.(四)课堂小结本节课你学到了哪些数学知识和数学方法?请与同伴交流.(五)课前预习预习下节课(24.2.2第1课时)的相关内容.七、课后作业1.教材129页练习1,2.2.配套练习册内容八、板书设计:九、教学反思:通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档