高考数学一轮专题复习:第2讲 命题及其关系、充分条件与必要条件
高考数学一轮复习全程复习构想数学(文)【统考版】第二节 命题及其关系、充分条件与必要条件(课件)

(二)教材改编 2.[选修2-1·P8习题A组T2改编]命题“若a>b,则a+c>b+c”的否 命题是( ) A.若a≤b,则a+c≤b+c B.若a+c≤b+c,则a≤b C.若a+c>b+c,则a>b D.若a>b,则a+c≤b+c
答案:A
解析:命题的否命题是将原命题的条件、结论都否定,故题中命题的否命题是 “若a≤b,则a+c≤b+c”.
答案:D
解析:根据四种命题的构成可知,选项A,B,C均不正确.故选D.
3.下列命题中为真命题的是( ) A.mx2+2x-1=0是一元二次方程 B.抛物线y=ax2+2x-1与x轴至少有一个交点 C.互相包含的两个集合相等 D.空集是任何集合的真子集
答案:C
解析:A是假命题,当m=0时,mx2+2x-1=0不是一元二次方程;B是假命题, 当a=-2时,抛物线y=ax2+2x-1与x轴无交点;C是真命题,即若A⊆B,B⊆A则 A=B;D是假命题,空集是任何非空集合的真子集.
三、必练4类基础题 (一)判断正误 1.判断下列说法是否正确(请在括号中打“√”或“×”). (1)“x-3>0”是命题.( × ) (2)一个命题非真即假.( √ ) (3)命题“若p,则q”的否命题是“若p,则¬q”.( × ) (4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少 有一个为真.( √ ) (5)当q是p的必要条件时,p是q的充分条件.( √ ) (6) 命 题 “ 若 p 不 成 立 , 则 q 不 成 立 ” 等 价 于 “ 若 q 成 立 , 则 p 成 立”.( √ )
A.逆命题
B.否命题
C.逆否命题
D.否定
答案:B
解析:“正数a的平方不等于0”即“若a是一个正数,则它的平方不等于0”, 其否命题为“若a不是正数,则它的平方等于0”.故选B.
高考数学一轮复习命题及其关系、充分条件与必要条件-教学课件

四种命题的相互关系. 理解充分条件与必要条件的相对性,
3.理解必要条件、充分条 能借助于集合间的包含关系判断充要
件与充要条件的意义.
关系.
1.命题 可以判断_真__假__的陈述句叫做命题;命题就其结构而言分为 __条__件__和_结__论___两部分;就其结果正确与否分为真__命__题__和_假__命__题_.
1.(2011 年福建)若 a∈R,则 a=2 是(a-1)(a-2)=0 的( A) A.充分而不必要条件 B.必要而不充分条件
C.充要条件
D.既不充分又不必要条件
2.“x>1”是“x2>x”A的() A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件
D.既不充分也不必要条件
3.若 a∈R,则“a(a-3)<0”是“关于 x 的方程 x2-ax+a =0 没有实数根”的( A )
例2:①(2011 年天津)设集合 A={x∈R|x-2>0},B={x∈ R|x<0} ,C ={x ∈R|x(x -2)>0} ,则“x ∈A ∪B”是“x ∈C”的
(C ) A.充分而不必要条件 C.充分必要条件
B.必要而不充分条件 D.既不充分也不必要条件
解析:A∪B={x∈R|x<0 或 x>2},
(4) 逆命题:若方程mx2 -x +n =0 有两个不等实数根,则 mn<0(假命题).
否命题:若mn≥0,则方程mx2-x+n=0 没有两个不等实数 根(假命题).
逆否命题:若方程mx2 -x+n=0 没有两个不等实数根,则 mn≥0(真命题).
原命题与其逆否命题等价,逆命题与其否命题等 价,要理解命题之间的等价性,当判断一个命题的真假比较困难 时,可转化为判断它的逆否命题的真假,这就是常说的“正难则 反”.
高考数学专题知识突破:考点2 命题及其关系、充分条件与必要条件

考点二命题及其关系、充分条件与必要条件知识梳理1.命题的概念可以判断真假、用文字或符号表述的语句,叫作命题.其中判断为真的语句叫真命题,判断为假的语句叫假命题.2.四种命题及相互关系(1) 四种命题命题表述形式原命题若p,则q逆命题若q,则p否命题若非p,则非q逆否命题若非q,则非p(2) 四种命题间的逆否关系3.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.4.充分条件与必要条件(1)如果p⇒q,则p是q的充分条件,q是p的必要条件;(2)如果p⇒q,q⇒p,则p是q的充要条件.(3) 如果p q,q p,那么称p是q的充分不必要条件.(4) 如果q p,p q,那么称p是q的必要不充分条件.(5) 如果p q,且q p,那么称p是q的既不充分也不必要条件.典例剖析题型一四种命题及其相互关系例1命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”答案 B解析将原命题的条件与结论互换即得逆命题,故原命题的逆命题为“若一个数的平方是正数,则它是负数”.变式训练命题“若x,y都是偶数,则x+y也是偶数”的逆否命题是()A.若x+y是偶数,则x与y不都是偶数B.若x+y是偶数,则x与y都不是偶数C.若x+y不是偶数,则x与y不都是偶数D.若x+y不是偶数,则x与y都不是偶数答案 C解析由于“x,y都是偶数”的否定表达是“x,y不都是偶数”,“x+y是偶数”的否定表达是“x +y不是偶数”,故原命题的逆否命题为“若x+y不是偶数,则x,y不都是偶数”,故选C.解题要点 1.写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.2.一些常见词语的否定例2有下列几个命题:①“若a>b,则a2>b2”的否命题;②“若x+y=0,则x,y互为相反数”的逆命题;③“若x2<4,则-2<x<2”的逆否命题.其中真命题的序号是________.答案②③解析①原命题的否命题为“若a≤b,则a2≤b2”,错误.②原命题的逆命题为:“若x,y互为相反数,则x+y=0”,正确.③原命题的逆否命题为“若x≥2或x≤-2,则x2≥4”,正确.变式训练下列有关命题的说法正确的是________.(填序号)①命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”;②若一个命题是真命题,则其逆命题也是真命题;③命题“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1<0”;④命题“若x=y,则sin x=sin y”的逆否命题为真命题.答案 ④解析 命题“若x 2=1,则x =1”的否命题为“若x 2≠1,则x ≠1”,所以①不正确;原命题与逆命题不等价,所以②不正确;命题“存在x ∈R ,使得x 2+x +1<0”的否定是“对任意x ∈R ,均有x 2+x +1≥0”,所以③不正确;命题“若x =y ,则sin x =sin y ”是真命题,所以逆否命题为真命题,④正确.解题要点 1.判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.2.根据“原命题与逆否命题是等价的,逆命题与否命题也是等价的”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.题型二 充分条件与必要条件例3 已知p :“a ,b ,c 成等比数列”,q :“b =ac ”,那么p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 D解析 若a ,b ,c 成等比数列,则有b 2=ac ,所以b =±ac ,所以充分性不成立.当a =b =c =0时,b =ac 成立,但此时a ,b ,c 不成等比数列,所以必要性不成立,所以p 是q 的既不充分也不必要条件.变式训练 在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充分必要条件B .充分非必要条件C .必要非充分条件D .非充分非必要条件答案 A解析 由正弦定理,知a ≤b ⇔2R sin A ≤2R sin B (R 为△ABC 外接圆的半径)⇔sin A ≤sinB . 例4 设函数f (x )=log 2x ,则“a >b ”是“f (a )>f (b )”的________(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”)条件.答案 必要不充分解析 因为f (x )=log 2x 在区间(0,+∞)上是增函数,所以当a >b >0时,f (a )>f (b );反之,当f (a )>f (b )时,a >b .故“a >b ”是“f (a )>f (b )”的必要不充分条件.变式训练 设x ∈R ,则“x >1”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 答案 A解析 由不等式220x x +->得(2)(1)0x x +->,即2x <-或1x >,所以由1x >可以得到不等式220x x +->成立,故充分性成立;但由220x x +->不一定得到1x >,所以必要性不成立,即“x >1”是“220x x +->”的充分而不必要条件.解题要点 1.充要条件问题应首先弄清问题中条件是什么,结论是什么,再进一步判断条件与结论的关系,解题过程分为三步:①确定条件是什么,结论是什么;②尝试从条件推结论,从结论推条件;③确定条件和结论是什么关系.2.充要条件的三种判断方法(1) 定义法:根据p q ,q p 进行判断; (2) 集合法:根据p 、q 成立的对象的集合之间的包含关系进行判断;(3) 等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.当堂练习1. 设p :1<x <2,q :2x >1,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.设,a b ∈R , 则 “2()0a b a -<”是“a b <”的 ( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件3.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )A .若α,β垂直于同一平面,则α与β平行B .若m ,n 平行于同一平面,则m 与n 平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m ,n 不平行,则m 与n 不可能垂直于同一平面4.已知i 是虚数单位,a ,b ∈R ,得“a =b =1”是“(a +b i)2=2i ”的 条件.5.U 为全集,A ,B 是集合,则“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅” 条件.课后作业一、 选择题1.下列语句中命题的个数是( )①2<1;②x <1;③若x <2,则x <1;④函数f (x )=x 2是R 上的偶函数.A.0B.1C.2D.32.“x =1”是“x 2-2x +1=0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件3.“1<x <2”是“x <2”成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.设p :x <3,q :-1<x <3,则p 是q 成立的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列结论错误的是( )A .命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”B .“x =4”是“x 2-3x -4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”6.若m ∈R, 命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是( )A .若方程x 2+x -m =0有实根,则m >0B .若方程x 2+x -m =0有实根,则m ≤0C .若方程x 2+x -m =0没有实根,则m >0D .若方程x 2+x -m =0没有实根,则m ≤07.已知命题p :若x =-1,则向量a =(1,x )与b =(x +2,x )共线,则在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为( )A .0B .2C .3D .48.设α,β是两个不同的平面,m 是直线且m ⊂α.“m ∥β”是“α∥β”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件二、填空题9.x ≠3或y ≠5是x +y ≠8的____________条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”)10.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.11.(1)“x >y >0”是“1x <1y”的________条件. (2) 设a ,b ∈R ,则“a >b ”是“a |a |>b |b |”的________条件.12.下列命题:①“若k >0,则方程x 2+2x +k =0有实根”的否命题;②“若1a >1b,则a <b ”的逆命题;③“梯形不是平行四边形”的逆否命题,其中是假命题的是________.13.“m <14”是“一元二次方程x 2+x +m =0有实数解”的____________条件.当堂练习答案1. 答案 A解析 当1<x <2时,2<2x <4,∴p ⇒q ;但由2x >1,得x >0,∴q p ,故选A.2答案 A解析 由(a -b )a 2<0⇒a ≠0且a <b ,∴充分性成立;由a <b ⇒a -b <0,当0=a <b 时 (a -b )·a 2<0,必要性不成立;故选A.3.答案 D解析 对于A ,α,β垂直于同一平面,α,β关系不确定,A 错;对于B ,m ,n 平行于同一平面,m ,n 关系不确定,可平行、相交、异面,故B 错;对于C ,α,β不平行,但α内能找出平行于β的直线,如α中平行于α,β交线的直线平行于β,故C 错;对于D ,若假设m ,n 垂直于同一平面,则m ∥n ,其逆否命题即为D 选项,故D 正确.4.答案 充分不必要条件解析 当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1, 解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i ”的充分不必要条件.5.答案 充要条件解析 若存在集合C 使得A ⊆C ,B ⊆∁U C ,则可以推出A ∩B =∅;若A ∩B =∅,由Venn 图(如图)可知,存在A =C ,同时满足A ⊆C ,B ⊆∁U C .故“存在集合C 使得A ⊆C ,B ⊆∁U C ”是“A ∩B =∅”的充要条件.课后作业答案二、 选择题1.答案 D2.答案 A解析 解x 2-2x +1=0得x =1,所以“x =1”是“x 2-2x +1=0”的充要条件.3.答案 A4.答案 C解析 ∵x <3-1<x <3,但-1<x <3⇒x <3,∴p 是q 的必要不充分条件,故选C.5.答案 C解析 C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 6.答案 D解析 原命题为“若p ,则q ”,则其逆否命题为“若q ,则p ”.∴所求命题为“若方程x 2+x -m =0没有实根,则m ≤0”.7.答案 B解析 向量a ,b 共线⇔x -x (x +2)=0⇔x =0或x =-1,∴命题p 为真,其逆命题为假,故在命题p 的原命题、逆命题、否命题、逆否命题中,真命题的个数为2.8.答案 B解析 m ⊂α,m ∥βα∥β,但m ⊂α,α∥β⇒m ∥β,∴m ∥β是α∥β的必要而不充分条件. 二、填空题9.答案 必要不充分解析 设p :x =3且y =5,q :x +y =8,显然p 是q 的充分不必要条件,∴p 是q 的必要不充分条件,即x ≠3或y ≠5是x +y ≠8的必要不充分条件.10.答案 2解析 其中原命题和逆否命题为真命题,逆命题和否命题为假命题.11.答案 (1)充分不必要 (2)充要解析 (1)1x <1y⇒xy ·(y -x )<0, 即x >y >0或y <x <0或x <0<y .所以x >y >0 ⇒1x <1y ,但反过来1x <1y, 所以是充分不必要条件.(2) 构造函数f (x )=x |x |,则f (x )在定义域R 上为奇函数.因为f (x )=⎩⎪⎨⎪⎧x 2,x ≥0,-x 2,x <0,所以函数f (x )在R 上单调递增,所以a >b ⇔f (a )>f (b )⇔a |a |>b |b |. 所以是充要条件.12.答案 ①②解析 对于①其否命题为“若k ≤0,则方程x 2+2x +k =0无实根”,为假命题;②的逆命题为“若a <b ,则1a >1b”,为假命题;③中原命题为真命题,故其逆否命题也为真命题. 13.答案 充分不必要解析 x 2+x +m =0有实数解等价于Δ=1-4m ≥0,即m ≤14,因为m <14⇒m ≤14,反之不成立. 故“m <14”是“一元二次方程x 2+x +m =0有实数解”的充分不必要条件.。
高三一轮复习 命题及其关系、充分条件与必要条件

第二课时命题及其关系、充分条件与必要条件考纲要求:1.命题的四种形式(A) 2.充分条件、必要条件、充分必要条件(B)知识梳理:1.命题(1)命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.(2)四种命题及相互关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2p⇒q且q pp q且q⇒pp⇔qp q且q p 1.判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x2+2x-3<0”是命题.()(2)“sin 45°=1”是真命题.()(3)命题“若p,则q”的否命题是“若p,则非q”.()(4)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.()(5)当q是p的必要条件时,p是q的充分条件.()(6)当p是q的充要条件时,也可说成q成立当且仅当p成立.()(7)q不是p的必要条件时,成立.()答案:(1)×(2)×(3)×(4)√(5)√(6)√(7)√2.设p,r都是q的充分条件,s是q的充要条件,t是s的必要条件,t是r的充分条件,那么p是t的________条件,r是t的________条件.(用“充分”“必要”“充要”填空)提示:由题知p⇒q⇔s⇒t,又t⇒r,r⇒q,故p是t的充分条件,r是t的充要条件.答案:充分充要3.写出命题“若a,b,c成等比数列,则b2=ac”的逆命题、否命题和逆否命题,并判断其真假性.解:(1)逆命题:若b2=ac,则a,b,c成等比数列,假命题.(2)否命题:若a,b,c不成等比数列,则b2≠ac,假命题.(3)逆否命题:若b2≠ac,则a,b,c不成等比数列,真命题.4.在下列各题中,p是q的什么条件?(1)p:x2=3x+4,q:x=3x+4;(2)p:x-3=0,q:(x-3)(x-4)=0;(3)p:b2-4ac≥0(a≠0),q:ax2+bx+c=0(a≠0)有实根.答案:(1)必要(2)充分(3)充要例题讲解:[典题1](1)命题“若a>b则a-1>b-1”的否命题是________.(2)命题“若x2+y2=0,x,y∈R,则x=y=0”的逆否命题是________.(3)下列命题中为真命题的是________.(填序号)①命题“若x>1,则x2>1”的否命题;②命题“若x>y,则x>|y|”的逆命题;③命题“若x=1,则x2+x-2=0”的否命题;④命题“若x2>1,则x>1”的逆否命题.(4)已知:命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”,则下列结论正确的是________.(填序号)①否命题是“若函数f(x)=e x-mx在(0,+∞)上是减函数,则m>1”,是真命题;②逆命题是“若m≤1,则函数f(x)=e x-mx在(0,+∞)上是增函数”,是假命题;③逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上是减函数”,是真命题;④逆否命题是“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”,是真命题.解析:(1)根据否命题的定义可知,命题“若a>b,则a-1>b-1”的否命题应为“若a≤b,则a-1≤b-1”.(2)将原命题的条件和结论否定,并互换位置即可.由x=y=0知x=0且y=0,其否定是x≠0或y≠0.(3)对于①,命题“若x>1,则x2>1”的否命题为“若x≤1,则x2≤1”,易知当x=-2时,x2=4>1,故①为假命题;对于②,命题“若x>y,则x>|y|”的逆命题为“若x>|y|,则x>y”,分析可知②为真命题;对于③,命题“若x=1,则x2+x-2=0”的否命题为“若x≠1,则x2+x-2≠0”,易知当x=-2时,x2+x-2=0,故③为假命题;对于④,命题“若x2>1,则x>1”的逆否命题为“若x≤1,则x2≤1”,易知当x=-2时,x2=4>1,故④为假命题.(4)由f(x)=e x-mx在(0,+∞)上是增函数,则f′(x)=e x-m≥0恒成立,∴m≤1.∴命题“若函数f(x)=e x-mx在(0,+∞)上是增函数,则m≤1”是真命题,所以其逆否命题“若m>1,则函数f(x)=e x-mx在(0,+∞)上不是增函数”是真命题.答案:(1)若a≤b,则a-1≤b-1(2)若x≠0或y≠0,x,y∈R,则x2+y2≠0(3)②(4)④小结:(1)写一个命题的其他三种命题时,需注意:①对于不是“若p,则q”形式的命题,需先改写;②若命题有大前提,写其他三种命题时需保留大前提.(2)判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例.(3)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.[典题2](1)设x∈R,则“1<x<2”是“|x-2|<1”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)(2)设a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)(3)“a =2” 是“函数f (x )=x 2-2ax -3在区间[2,+∞)上为增函数”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:(1)|x -2|<1⇔1<x <3.由于{x |1<x <2}是{x |1<x <3}的真子集,所以“1<x <2”是“|x -2|<1”的充分不必要条件.(2)∵3a >3b >3,∴a >b >1,此时log a 3<log b 3正确;反之,若log a 3<log b 3,则不一定得到3a >3b >3,例如当a =12,b =13时,log a 3<log b 3成立,但推不出a >b >1.故“3a >3b >3”是“log a 3<log b 3”的充分不必要条件.(3)“a =2”⇒“函数f (x )=x 2-2ax -3在区间[2,+∞)上为增函数”,但反之不成立. 答案:(1)充分不必要 (2)充分不必要 (3)充分不必要小结:充要条件的三种判断方法(1)定义法:根据p ⇒q ,q ⇒p 进行判断.(2)集合法:根据p ,q 成立的对应的集合之间的包含关系进行判断.(3)等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断.这个方法特别适合以否定形式给出的问题,常用的是逆否等价法.①非q 是非p 的充分不必要条件⇔p 是q 的充分不必要条件;②非q 是非p 的必要不充分条件⇔p 是q 的必要不充分条件;③非q 是非p 的充要条件⇔p 是q 的充要条件.练习1.设p :1<x <2,q :2x >1,则p 是q 成立的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:由2x >1,得x >0,所以p ⇒q ,但q ⇒/p ,所以p 是q 的充分不必要条件. 答案:充分不必要2.设{a n }是公比为q 的等比数列,则“q >1”是“{a n }为递增数列”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:当数列{a n }的首项a 1<0时,若q >1,则数列{a n }是递减数列;当数列{a n }的首项a 1<0时,要使数列{a n }为递增数列,则0<q <1,所以“q >1”是“数列{a n }为递增数列”的既不充分也不必要条件.答案:既不充分也不必要[典题3](1)记不等式x 2+x -6<0的解集为集合A ,函数y =lg(x -a )的定义域为集合B .若“x ∈A ”是“x ∈B ”的充分条件,则实数a 的取值范围为________.(2)已知P ={x |x 2-8x -20≤0},非空集合S ={x |1-m ≤x ≤1+m }.若x ∈P 是x ∈S 的必要条件,则m 的取值范围为________.解析:(1)由x 2+x -6<0,得-3<x <2,即A =(-3,2),由x -a >0,得x >a ,即B =(a ,+∞), 若“x ∈A ”是“x ∈B ”的充分条件,则A ⊆B ,即a ≤-3.(2)由x 2-8x -20≤0得-2≤x ≤10,∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P .则⎩⎪⎨⎪⎧ 1-m ≤1+m ,1-m ≥-2,∴0≤m ≤3.1+m ≤10,所以当0≤m ≤3时,x ∈P 是x ∈S 的必要条件,即所求m 的取值范围是[0,3].答案:(1)(-∞,-3] (2)[0,3][探究1] 本例(2)条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件.解:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧ m =3,m =9, 即不存在实数m ,使x ∈P 是x ∈S 的充要条件.[探究2] 本例(2)条件不变,若綈P 是綈S 的必要不充分条件,求实数m 的取值范围. 解:由例题知P ={x |-2≤x ≤10}, ∵綈P 是綈S 的必要不充分条件,∴P ⇒S 且S P .∴[-2,10][1-m,1+m ].∴⎩⎪⎨⎪⎧ 1-m ≤-2,1+m >10或⎩⎪⎨⎪⎧ 1-m <-2,1+m ≥10. ∴m ≥9,即m 的取值范围是[9,+∞).注意:由充分条件、必要条件求参数.解决此类问题常将充分、必要条件问题转化为集合间的子集关系求解.但是,在求解参数的取值范围时,一定要注意区间端点值的验证,不等式中的等号是否能够取得,决定着端点的取值.练习:已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是________. 解析:设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,,因此a ≥1.答案:[1,+∞)总结:1.判断四种命题间关系的方法写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充分、必要条件的判断方法(1)定义法:直接判断“若p 则q ”,“若q 则p ”的真假即可.(2)利用集合间的包含关系判断:设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若AB ,则p 是q 的充分不必要条件,若A =B ,则p 是q的充要条件.注意: 1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p 则q ”的形式.3.要注意“A 是B 的充分不必要条件”与“A 的充分不必要条件是B ”的区别. 课后作业:1.设m ∈R ,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是________. 解析:根据逆否命题的定义,命题“若m >0,则方程x 2+x -m =0有实根”的逆否命题是“若方程x 2+x -m =0没有实根,则m ≤0”.答案:若方程x 2+x -m =0没有实根,则m ≤02.设a ,b 是实数,则“a +b >0”是“ab >0”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0ab >0;当a = -2,b =-1时,ab >0,但a +b <0,所以ab >0a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.答案:既不充分也不必要 3.已知不等式|x -m |<1成立的充分不必要条件是13<x <12,则m 的取值范围是________. 解析:由|x -m |<1得m -1<x <1+m ,又因为|x -m |<1的充分不必要条件是13<x <13,借助数轴,所以⎩⎨⎧m -1≤13,m +1≥12,解得-12≤m ≤43. 答案:⎣⎡⎦⎤-12,43 4.已知a ,b ,c ∈R ,命题“如果a +b +c =3,则a 2+b 2+c 2≥3”的否命题是________. 解析:“a +b +c =3”的否定是“a +b +c ≠3”,“a 2+b 2+c 2≥3”的否定是“a 2+b 2+c 2<3”,故该命题的否命题是:如果a +b +c ≠3,则a 2+b 2+c 2<3.答案:如果a +b +c ≠3,则a 2+b 2+c 2<35.“sin α=cos α”是“cos 2α=0”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立.答案:充分不必要6.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直. 其中,为真命题的是________.(填序号)解析:只有一个平面内的两条相交直线与另一个平面都平行时,这两个平面才相互平行,所以①为假命题;②符合两个平面相互垂直的判定定理,所以②为真命题;垂直于同一直线的两条直线可能平行,也可能相交或异面,所以③为假命题;根据两个平面垂直的性质定理易知④为真命题.答案:②④7.已知α,β的终边在第一象限,则“α>β ”是“sin α>sin β ”的________条件.解析:∵角α,β的终边在第一象限,∴当α=π3+2π,β=π3时,满足α>β,但sin α= sin β,故sin α>sin β不成立,即充分性不成立;当α=π3,β=π6+2π时,满足sin α>sin β,但α>β不成立,即必要性不成立,故“α>β ”是“sin α>sin β ”的既不充分也不必要条件.答案:既不充分也不必要8.在斜三角形ABC 中,命题甲:A =π6,命题乙:cos B ≠12,则甲是乙的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:因为△ABC 为斜三角形,所以若A =π6,则B ≠π3且B ≠π2,所以cos B ≠12且 cos B ≠0;反之,若cos B ≠12,则B ≠π3,不妨取B =π6,A =π4,C =7π12,满足△ABC 为斜三角形.答案:充分不必要9.“a ≥3”是“∀x ∈[1,2],x 2-a ≤0”为真命题的________条件(在“充分不必要”、“必要不充分”、“既不充分也不必要”、“充要”中选择填空).解析:若“∀x ∈[1,2],x 2-a ≤0”为真命题,等价于∀x ∈[1,2],x 2≤a 为真命题,则a ≥4.则“a ≥3”是“a ≥4”的必要不充分条件.答案:必要不充分10.在下列三个结论中,正确的是________.(写出所有正确结论的序号)①若A 是B 的必要不充分条件,则綈B 也是綈A 的必要不充分条件;②“⎩⎪⎨⎪⎧ a >0,Δ=b 2-4ac ≤0”是“一元二次不等式ax 2+bx +c ≥0的解集为R ”的充要条件; ③“x ≠1”是“x 2≠1”的充分不必要条件.解析:易知①②正确.对于③,若x =-1,则x 2=1,充分性不成立,故③错误. 答案:①②11.已知p (x ):x 2+2x -m >0,若p (1)是假命题,p (2)是真命题,则实数m 的取值范围为________.解析:因为p (1)是假命题,所以1+2-m ≤0,解得m ≥3;又p (2)是真命题,所以4+4-m >0,解得m <8.故实数m 的取值范围是[3,8).答案:[3,8)12.有下列几个命题:①“若a >b ,则a 2>b 2”的否命题;②“若x +y =0,则x ,y 互为相反数”的逆命题;③“若x 2<4,则-2<x <2”的逆否命题.其中真命题的序号是________.解析:①原命题的否命题为“若a ≤b ,则a 2≤b 2”,假命题.②原命题的逆命题为:“若x ,y 互为相反数,则x +y =0”,真命题.③原命题的逆否命题为“若x ≥2或x ≤-2,则x 2≥4”,真命题.答案:②③13.设φ∈R ,则“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:若函数f (x )=cos(x +φ)(x ∈R )为偶函数,则φ=k π,k ∈Z ,所以由“φ=0”,可以得到“f (x )=cos(x +φ)(x ∈R )为偶函数”,但由“f (x )=cos(x +φ)(x ∈R )为偶函数”,可以得到φ=k π,k ∈Z ,因此“φ=0”是“f (x )=cos(x +φ)(x ∈R )为偶函数”的充分不必要条件.答案:充分不必要14.使函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x ≤1,log a x ,x >1在(-∞,+∞)上是减函数的一个充分不必要条件是________.(填序号)①17≤a <13;②0<a <13;③17<a <13;④0<a <17. 解析:由f (x )在(-∞,+∞)上是减函数可得3a -1<0,0<a <1,7a -1≥0,即17≤a <13,所求应该是⎣⎡⎭⎫17,13的真子集,故③正确.答案:③ 15.在四边形ABCD 中,“存在λ∈R ,使得,”是“四边形ABCD 为平行四边形”的________条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)解析:若存在λ∈R ,使得,,则AB ∥CD ,AD ∥BC ,故四边形ABCD 为平行四边形.反之,若四边形ABCD 为平行四边形,则存在λ=1满足题意.答案:充要16.已知函数f (x )=13x -1+a (x ≠0),则“f (1)=1”是“函数f (x )为奇函数”的________条件.(用“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”填写)解析:若f (x )=13x -1+a 是奇函数,则f (-x )=-f (x ),即f (-x )+f (x )=0,∴13-x -1+a +13x -1+a =2a +3x 1-3x +13x -1=0,即2a +3x -11-3x =0,∴2a -1=0,即a =12,f (1)=12+12=1.若f (1)=1,即f (1)=12+a =1,解得a =12,代入得,f (-x )=-f (x ),f (x )是奇函数.∴“f (1)=1”是“函数f (x )为奇函数”的充要条件.答案:充要17.若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是________. 解析:方程x 2-mx +2m =0对应二次函数f (x )=x 2-mx +2m ,若方程x 2-mx +2m =0有两根,其中一根大于3一根小于3,则f (3)<0,解得m >9,即方程x 2-mx +2m =0有两根,其中一根大于3一根小于3的充要条件是m >9.答案:m >918.已知p :|x -a |<4;q :(x -2)(3-x )>0,若綈p 是綈q 的充分不必要条件,则a 的取值范围为________.解析:∵綈p 是綈q 的充分不必要条件,∴q 是p 的充分不必要条件.对于p ,|x -a |<4,∴a -4<x <a +4,对于q,2<x <3,∴(2,3)(a -4,a +4),∴⎩⎪⎨⎪⎧ a -4≤2,a +4≥3(等号不能同时取到), ∴-1≤a ≤6.答案:[-1,6]。
高考数学一轮复习考点知识专题讲解2---命题及其关系、充分条件与必要条件

高考数学一轮复习考点知识专题讲解命题及其关系、充分条件与必要条件考点要求1.理解命题的概念.2.了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.3.理解必要条件、充分条件与充要条件的含义.知识梳理1.命题用语言、符号或式子表达的,可以判断真假的陈述句叫做命题,其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.2.四种命题及其相互关系(1)四种命题间的相互关系(2)四种命题的真假关系①两个命题互为逆否命题,它们具有相同的真假性.②两个命题为互逆命题或互否命题,它们的真假性没有关系.3.充分条件、必要条件与充要条件的概念若p⇒q,则p是q的充分条件,q是p的必要条件p是q的充分不必要条件p⇒q且q⇏pp是q的必要不充分条件p⇏q且q⇒pp是q的充要条件p⇔qp是q的既不充分也不必要条件p⇏q且q⇏p常用结论充分、必要条件与对应集合之间的关系设A={x|p(x)},B={x|q(x)}.①若p是q的充分条件,则A⊆B;②若p是q的充分不必要条件,则A B;③若p是q的必要不充分条件,则B A;④若p是q的充要条件,则A=B.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)“x2-2x-3>0”是命题.(×)(2)“x>1”是“x>0”的充分不必要条件.(√)(3)若原命题为真,则这个命题的否命题、逆命题、逆否命题中至少有一个为真.(√)(4)p是q的充分不必要条件等价于q是p的必要不充分条件.(√)教材改编题1.“a>b”是“ac2>bc2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a>b时,若c2=0,则ac2=bc2,所以a>b⇏ac2>bc2,当ac2>bc2时,c2≠0,则a>b,所以ac2>bc2⇒a>b,即“a>b”是“ac2>bc2”的必要不充分条件.2.命题“同位角相等,两直线平行”的逆否命题是____________________________.答案两直线不平行,同位角不相等3.方程x2-ax+a-1=0有一正一负根的充要条件是________.答案a∈(-∞,1)解析依题意得a-1<0,∴a<1.题型一命题及其关系例1(1)(2022·玉林质检)下列四个命题为真命题的个数是()①命题“若x>1,则x2>1”的否命题;②命题“梯形不是平行四边形”的逆否命题;③命题“全等三角形面积相等”的否命题;④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题.A.1B.2C.3D.4答案B解析 ①命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,不正确,例如取x =-2.②命题“梯形不是平行四边形”是真命题,因此其逆否命题也是真命题.③命题“全等三角形面积相等”的否命题“不是全等三角形的面积不相等”是假命题. ④命题“若两条直线没有公共点,则这两条直线是异面直线”的逆命题“若两条直线是异面直线,则这两条直线没有公共点”是真命题.综上可得真命题的个数为2.(2)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________________.答案f (x )=sin x ,x ∈[0,2](答案不唯一)解析设f (x )=sin x ,则f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,在⎣⎢⎡⎦⎥⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.教师备选(2022·合肥模拟)设x ,y ∈R ,命题“若x 2+y 2>2,则x 2>1或y 2>1”的否命题是()A .若x 2+y 2≤2,则x 2≤1或y 2≤1B .若x 2+y 2>2,则x 2≤1或y 2≤1C .若x 2+y 2≤2,则x 2≤1且y 2≤1D .若x 2+y 2>2,则x 2≤1且y 2≤1答案C解析根据否命题的定义可得命题“若x 2+y 2>2,则x 2>1或y 2>1”的否命题是“若x 2+y 2≤2,则x 2≤1且y 2≤1”.思维升华 判断命题真假的策略(1)判断一个命题为真命题,需要推理证明;判断一个命题是假命题,只需举出反例即可.(2)根据“原命题与逆否命题同真同假,逆命题与否命题同真同假”这一性质,当一个命题直接判断不易进行时,可转化为判断其等价命题的真假.跟踪训练1(1)(2022·安顺模拟)命题“若x ,y 都是奇数,则x +y 是偶数”的逆否命题是()A .若x ,y 都是偶数,则x +y 是奇数B .若x ,y 都不是奇数,则x +y 不是偶数C .若x +y 不是偶数,则x ,y 都不是奇数D .若x +y 不是偶数,则x ,y 不都是奇数答案D解析命题“若x ,y 都是奇数,则x +y 是偶数”的逆否命题是“若x +y 不是偶数,则x ,y 不都是奇数”.(2)命题p :若m ≤a -2,则m <-1.若p 的逆否命题为真命题,则a 的取值范围是________. 答案(-∞,1)解析依题意,命题p 的逆否命题为真命题,则命题p 为真命题,即“若m ≤a -2,则m <-1”为真命题,则a -2<-1,解得a <1.题型二 充分、必要条件的判定例2(1)已知p :⎝ ⎛⎭⎪⎫12x <1,q :log 2x <0,则p 是q 的() A .充分不必要条件B .必要不充分条件D .既不充分也不必要条件答案B 解析由⎝ ⎛⎭⎪⎫12x <1知x >0,所以p 对应的x 的范围为(0,+∞), 由log 2x <0知0<x <1,所以q 对应的x 的范围为(0,1),显然(0,1)(0,+∞),所以p 是q 的必要不充分条件.(2)(2021·全国甲卷)等比数列{a n }的公比为q ,前n 项和为S n .设甲:q >0,乙:{S n }是递增数列,则()A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件答案B解析当a 1<0,q >1时,a n =a 1q n -1<0,此时数列{S n }单调递减,所以甲不是乙的充分条件.当数列{S n }单调递增时,有S n +1-S n =a n +1=a 1q n >0,若a 1>0,则q n >0(n ∈N *),即q >0;若a 1<0,则q n <0(n ∈N *),不存在.所以甲是乙的必要条件.教师备选在△ABC 中,“AB 2+BC 2=AC 2”是“△ABC 为直角三角形”的()A .充分不必要条件B .必要不充分条件D.既不充分也不必要条件答案A解析在△ABC中,若AB2+BC2=AC2,则∠B=90°,即△ABC为直角三角形,若△ABC为直角三角形,推不出∠B=90°,所以AB2+BC2=AC2不一定成立,综上,“AB2+BC2=AC2”是“△ABC为直角三角形”的充分不必要条件.思维升华充分条件、必要条件的两种判定方法(1)定义法:根据p⇒q,q⇒p进行判断,适用于定义、定理判断性问题.(2)集合法:根据p,q对应的集合之间的包含关系进行判断,多适用于条件中涉及参数范围的推断问题.跟踪训练2(1)“a>2,b>2”是“a+b>4,ab>4”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析若a>2,b>2,则a+b>4,ab>4.当a=1,b=5时,满足a+b>4,ab>4,但不满足a>2,b>2,所以a+b>4,ab>4⇏a>2,b>2,故“a>2,b>2”是“a+b>4,ab>4”的充分不必要条件.(2)(2022·成都模拟)若a,b为非零向量,则“a⊥b”是“(a+b)2=a2+b2”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案C解析因为a⊥b,所以a·b=0,则(a+b)2=a2+2a·b+b2=a2+b2,所以“a⊥b”是“(a+b)2=a2+b2”的充分条件;反之,由(a+b)2=a2+b2得a·b=0,所以非零向量a,b垂直,“a⊥b”是“(a+b)2=a2+b2”的必要条件.故“a⊥b”是“(a+b)2=a2+b2”的充要条件.题型三充分、必要条件的应用例3已知集合A={x|x2-8x-20≤0},非空集合B={x|1-m≤x≤1+m}.若x∈A是x∈B 的必要条件,求m的取值范围.解由x2-8x-20≤0,得-2≤x≤10,∴A={x|-2≤x≤10}.由x∈A是x∈B的必要条件,知B⊆A.则⎩⎨⎧ 1-m ≤1+m ,1-m ≥-2,∴0≤m ≤3.1+m ≤10,∴当0≤m ≤3时,x ∈A 是x ∈B 的必要条件,即所求m 的取值范围是[0,3].延伸探究本例中,若把“x ∈A 是x ∈B 的必要条件”改为“x ∈A 是x ∈B 的充分不必要条件”,求m 的取值范围.解∵x ∈A 是x ∈B 的充分不必要条件,∴A B ,则⎩⎨⎧ 1-m ≤-2,1+m >10或⎩⎨⎧ 1-m <-2,1+m ≥10,解得m ≥9, 故m 的取值范围是[9,+∞). 教师备选(2022·泰安检测)已知p :x ≥a ,q :|x +2a |<3,且p 是q 的必要不充分条件,则实数a 的取值范围是()A .(-∞,-1]B .(-∞,-1)C .[1,+∞) D.(1,+∞)答案A解析因为q :|x +2a |<3,所以q :-2a -3<x <-2a +3,记A ={x |-2a -3<x <-2a +3},p :x ≥a ,记为B ={x |x ≥a }.因为p 是q 的必要不充分条件,所以AB ,所以a ≤-2a -3,解得a ≤-1.思维升华 求参数问题的解题策略 (1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.跟踪训练3(1)使2x≥1成立的一个充分不必要条件是() A .1<x <3B .0<x <2C .x <2D .0<x ≤2答案B解析由2x≥1得0<x ≤2, 依题意由选项组成的集合是(0,2]的真子集,故选B.(2)若不等式(x -a )2<1成立的充分不必要条件是1<x <2,则实数a 的取值范围是________. 答案[1,2]解析由(x -a )2<1得a -1<x <a +1,因为1<x <2是不等式(x -a )2<1成立的充分不必要条件,所以满足⎩⎨⎧ a -1≤1,a +1≥2且等号不能同时取到,解得1≤a ≤2.课时精练1.(2022·韩城模拟)设p:2<x<3,q:|x-2|<1,那么p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A解析解不等式|x-2|<1得-1<x-2<1,解得1<x<3,因为{x|2<x<3}{x|1<x<3},因此p是q的充分不必要条件.2.(2022·马鞍山模拟)“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是() A.若x,y∈R,x,y全不为0,则x2+y2≠0B.若x,y∈R,x,y不全为0,则x2+y2=0C.若x,y∈R,x,y不全为0,则x2+y2≠0D.若x,y∈R,x,y全为0,则x2+y2≠0答案C解析根据命题“若p,则q”的逆否命题为“若綈q,则綈p”,可以写出“若x,y∈R,x2+y2=0,则x,y全为0”的逆否命题是“若x,y∈R,x,y 不全为0,则x2+y2≠0”.3.(2021·浙江)已知非零向量a,b,c,则“a·c=b·c”是“a=b”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案B解析由a·c=b·c,得到(a-b)·c=0,所以(a-b)⊥c或a=b,所以“a·c=b·c”是“a=b”的必要不充分条件.4.已知a,b,c,d是实数,则“ad=bc”是“a,b,c,d成等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析当a=b=c=d=0时,ad=bc,但a,b,c,d不成等比数列,当a,b,c,d成等比数列时,ad=bc,则“ad=bc”是“a,b,c,d成等比数列”的必要不充分条件.5.(2022·太原模拟)下列四个命题:①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题;②“若ab=0,则a=0”的逆否命题;③“若ac=cb,则a=b”的逆命题;④“若a=b,则a2=b2”的否命题.其中是真命题的为()A.①④B.②③C.①③D.②④答案C解析①“在△ABC中,若AB>AC,则∠C>∠B”的逆命题是“在△ABC中,若∠C>∠B,则AB>AC”,是真命题;②“若ab=0,则a=0”是假命题,所以其逆否命题也是假命题;③“若ac=cb,则a=b”的逆命题是“若a=b,则ac=cb”,是真命题;④“若a=b,则a2=b2”的否命题是“若a≠b,则a2≠b2”,是假命题.6.(2022·青岛模拟)“∀x>0,a≤x+4x+2”的充要条件是()A.a>2B.a≥2 C.a<2D.a≤2答案D解析因为x>0,所以x+4x+2=x+2+4x+2-2≥2(x+2)×4x+2-2=2,当且仅当x+2=4x+2,即x=0时等号成立,因为x>0,所以x+4x+2>2,所以“∀x>0,a≤x+4x+2”的充要条件是a≤2.7.已知命题“若m-1<x<m+1,则1<x<2”的逆命题是真命题,则m的取值范围是() A.(1,2) B.[1,2)C.(1,2] D.[1,2]答案D解析命题的逆命题“若1<x<2,则m-1<x<m+1”成立,则⎩⎨⎧ m +1≥2,m -1≤1,得⎩⎨⎧ m ≥1,m ≤2,得1≤m ≤2,即实数m 的取值范围是[1,2].8.(2022·厦门模拟)已知命题p :x <2m +1,q :x 2-5x +6<0,且p 是q 的必要不充分条件,则实数m 的取值范围为()A .m >12B .m ≥12C .m >1D .m ≥1答案D解析∵命题p :x <2m +1,q :x 2-5x +6<0,即2<x <3,p 是q 的必要不充分条件,∴(2,3)(-∞,2m +1),∴2m +1≥3,解得m ≥1.实数m 的取值范围为m ≥1. 9.(2022·延边模拟)若“方程ax 2-3x +2=0有两个不相等的实数根”是真命题,则a 的取值范围是________.答案a <98且a ≠0 解析由题意知⎩⎨⎧ Δ=(-3)2-8a >0,a ≠0,解得a <98且a ≠0. 10.(2022·衡阳模拟)使得“2x >4x ”成立的一个充分条件是________.答案x<-1(答案不唯一)解析由于4x=22x,故2x>22x等价于x>2x,解得x<0,使得“2x>4x”成立的一个充分条件只需为集合{x|x<0}的子集即可.11.直线y=kx+1与圆x2+y2=a2(a>0)有公共点的充要条件是________.答案a∈[1,+∞)解析直线y=kx+1过定点(0,1),依题意知点(0,1)在圆x2+y2=a2内部(包含边界),∴a2≥1.又a>0,∴a≥1.12.给出下列四个命题:①命题“在△ABC中,sin B>sin C是B>C的充要条件”;②“若数列{a n}是等比数列,则a22=a1a3”的否命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题;④命题“直线l与平面α垂直的充要条件是l与平面α内的两条直线垂直.”其中真命题是________.(填序号)答案①③解析对于①,在△ABC中,由正弦定理得sin B>sin C⇔b>c⇔B>C,①是真命题;②“若数列{a n}是等比数列,则a22=a1a3”的否命题是“若数列{a n}不是等比数列,则a22≠a1a3”,取a n=0,可知②是假命题;③已知a,b是非零向量,“若a·b>0,则a与b的夹角为锐角”的逆命题“若a与b的夹角为锐角,则a ·b >0”为真命题;④直线l 与平面α内的两条直线垂直是直线l 与平面α垂直的必要不充分条件,④是假命题.13.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p 和q 中有且只有一个为真命题,则实数a 的取值范围是()A .0<a <1或a ≥2B.0<a <1或a >2C .1<a ≤2D.1≤a ≤2答案C解析若p 和q 中有且只有一个为真命题,则有p 真q 假或p 假q 真,当p 真q 假时,则⎩⎨⎧ -2-a <1<a ≤2,a >0,解得1<a ≤2;当p 假q 真时,则⎩⎨⎧ 1≤-2-a <2<a ,a >0,无解,综上,1<a ≤2.14.若“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,则实数m 的取值范围为________. 答案m ≥5解析依题意有 x 2-4x +3<0⇒1<x <3,x 2-mx +4<0⇒mx >x 2+4,∵1<x <3,∴m >x +4x,设f (x )=x +4x(1<x <3),则函数f (x )在(1,2)上单调递减,在(2,3)上单调递增, ∴f (1)=5,f (2)=4,f (3)=133, 因此函数f (x )=x +4x(1<x <3)的值域为[4,5), ∵“x 2-4x +3<0”是“x 2-mx +4<0”的充分条件,∴m ≥5.15.若“x >1”是“不等式2x >a -x 成立”的必要不充分条件,则实数a 的取值范围是()A .a >3B .a <3C .a >4D .a <4答案A解析若2x >a -x ,即2x +x >a .设f (x )=2x +x ,则函数f (x )为增函数.由题意知“2x +x >a 成立,即f (x )>a 成立”能得到“x >1”,反之不成立.∵当x >1时,f (x )>3,∴a >3.16.已知r >0,x ,y ∈R ,p :|x |+|y |2≤1,q :x 2+y 2≤r 2,若p 是q 的必要不充分条件,则实数r 的取值范围是________.答案⎝⎛⎦⎥⎤0,255 解析画出|x |+|y |2≤1表示的平面区域(图略),由图可得p 对应的平面区域是一个菱形及其内部,当x >0,y >0时,可得菱形的一边所在的直线的方程为x +y 2=1,即2x +y -2=0.由p 是q 的必要不充分条件,可得圆x 2+y 2=r 2的圆心(0,0)到直线2x +y -2=0的距离d =222+1=255≥r ,又r >0,所以实数r 的取值范围是⎝ ⎛⎦⎥⎤0,255.。
课标通用2025版高考数学大一轮复习第一章2第二节命题及其关系充分条件与必要条件精练理

其次节命题及其关系、充分条件与必要条件1.命题p:“若x2<1,则x<1”的逆命题为q,则p与q的真假性为( )A.p真q真B.p真q假C.p假q真D.p假q假答案 D q:若x<1,则x2<1.由x2<1,解得-1<x<1,∴p假,当x<1时,x2<1不肯定成立,∴q假.故选D.2.“x<0”是“ln(x+1)<0”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B ln(x+1)<0⇔0<x+1<1⇔-1<x<0⇒x<0;而x<0⇒/-1<x<0.故选B.3.“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的( )A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 B 直线ax+y+1=0与直线(a+2)x-3y-2=0垂直,所以a(a+2)+1×(-3)=0,解得a=1或a=-3,故“a=1”是“直线ax+y+1=0与直线(a+2)x-3y-2=0垂直”的充分不必要条件.4.(2024辽宁沈阳质检)命题“若x2+3x-4=0,则x=4”的逆否命题及其真假性为( )A.“若x=4,则x2+3x-4=0”,真命题B.“若x≠4,则x2+3x-4≠0”,真命题C.“若x≠4,则x2+3x-4≠0”,假命题D.“若x=4,则x2+3x-4=0”,假命题答案 C 依据逆否命题的定义可以解除A、D,因为x2+3x-4=0,所以x=-4或1,故原命题为假命题,即逆否命题为假命题.5.(2024江西南昌摸底调研)已知m,n为两个非零向量,则“m·n<0”是“m与n的夹角为钝角”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件<θ<π,则cosθ<0,则m·n<0成立;当θ=π答案 B 设m,n的夹角为θ,若m,n的夹角为钝角,则π2时,m·n=-|m|·|n|<0成立,但m,n的夹角不为钝角.故“m·n<0”是“m与n的夹角为钝角”的必要不充分条件,故选B.6.下列有关命题的说法正确的是( )A.命题“若xy=0,则x=0”的否命题为“若xy=0,则x ≠0”B.命题“若cosx=cosy,则x=y ”的逆否命题为真命题C.命题“a,b 都是有理数”的否定是“a,b 都不是有理数”D.“若x+y=0,则x,y 互为相反数”的逆命题为真命题答案 D A 中,命题的否命题为“若xy ≠0,则x ≠0”,选项A 不正确;B 中,命题“若cosx=cosy,则x=y ”为假命题,因此其逆否命题为假命题;对于C,命题“a,b 都是有理数”的否定是“a,b 不都是有理数”,所以C 错误;D 中命题为真命题.故选D.7.已知命题α:假如x<3,那么x<5;命题β:假如x ≥3,那么x ≥5;命题γ:假如x ≥5,那么x ≥3.关于这三个命题之间的关系,下列说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③B.②C.②③D.①②③答案 A 本题考查命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定然后互换,故①正确,②错误,③正确.8.已知等差数列{a n }的公差为d,前n 项和为S n ,则“d>0”是“S 4+S 6>2S 5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 C 解法一:S 4+S 6>2S 5等价于(S 6-S 5)+(S 4-S 5)>0,等价于a 6-a 5>0,等价于d>0.故选C.解法二:∵S n =na 1+12n(n-1)d,∴S 4+S 6-2S 5=4a 1+6d+6a 1+15d-2(5a 1+10d)=d,则S 4+S 6>2S 5等价于d>0.故选C. 9.设a,b ∈R,则“a>b ”是“a|a|>b|b|”的 条件.答案 充要解析 设f(x)=x|x|,则f(x)={x 2,x ≥0,-x 2,x <0,所以f(x)是R 上的增函数,所以“a>b ”是“a|a|>b|b|”的充要条件.10.原命题“设a 、b 、c ∈R,若a>b,则ac 2>bc 2”以及它的逆命题、否命题、逆否命题中,真命题的个数为 .答案 2解析 由题意可知原命题是假命题,所以其逆否命题是假命题;逆命题为“设a 、b 、c ∈R,若ac 2>bc 2,则a>b ”,该命题是真命题,所以否命题也是真命题.故真命题有2个11.已知p(x):x2+2x-m>0,若p(1)是假命题,p(2)是真命题,则实数m的取值范围是.答案[3,8)解析因为p(1)是假命题,所以1+2-m≤0,解得m≥3,又p(2)是真命题,所以4+4-m>0,解得m<8.故实数m 的取值范围是[3,8).12.(2024安徽合肥模拟)已知条件p:x∈A,且A={x|a-1<x<a+1},条件q:x∈B,且B={x|y=√x2-3x+2}.若p是q的充分条件,则实数a的取值范围是.答案{a|a≤0或a≥3}解析易得B={x|x≤1或x≥2},且A={x|a-1<x<a+1},因为p是q的充分条件,所以A⊆B,所以a+1≤1或a-1≥2,所以a≤0或a≥3.所以实数a的取值范围是{a|a≤0或a≥3}.13.写出命题“已知a,b∈R,若关于x的不等式x2+ax+b≤0有非空解集,则a2≥4b”的逆命题、否命题、逆否命题,并推断它们的真假.解析(1)逆命题:已知a,b∈R,若a2≥4b,则关于x的不等式x2+ax+b≤0有非空解集,为真命题.(2)否命题:已知a,b∈R,若关于x的不等式x2+ax+b≤0无实数解,则a2<4b,为真命题.(3)逆否命题:已知a,b∈R,若a2<4b,则关于x的不等式x2+ax+b≤0无实数解,为真命题.。
高考数学一轮总复习 1.2命题及其关系、充分条件与必要条件课件

②命题“若a=0,则ab=0”的否命题是“若a≠0,则
ab≠0”;
③命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真
命题;
④命题“若a∈M,则b∉M”与命题“若b∈M,则a∉M”等
价.
精选ppt
26
解析
(1)命题“若α=
π 4
,则tanα=1”的逆否命题是“若
tanα≠1,则α≠4π”.
精选ppt
答案 (1)A (2)A
精选ppt
31
【规律方法】 充要条件的判断,重在“从定义出发”,利 用命题“若p,则q”及其逆命题的真假进行区分,在具体解题 中,要注意分清“谁是条件”“谁是结论”.有时还可以通过其 逆否命题的真假加以区分.
精选ppt
32
变式思考 2 (1)设a,b为向量,则“|a·b|=|a||b|”是“a∥ b”的( )
答案 (1)C (2)②④
精选ppt
28
考点二 充分条件与必要条件的判断
【例2】 (1)给定两个命题p,q.若綈p是q的必要而不充分条
件,则p是綈q的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件
精选ppt
29
(2)“φ=π”是“曲线y=sin(2x+φ)过坐标原点的”( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件
27
(2)对于①,若log2a>0=log21,则a>1,所以函数f(x)=logax 在其定义域内是增函数,故①不正确;对于②,依据一个命题的 否命题的定义可知,该说法正确;对于③,原命题的逆命题是 “若x+y是偶数,则x、y都是偶数”,是假命题,如1+3=4是偶 数,但3和1均为奇数,故③不正确;对于④,不难看出,命题 “若a∈M,则b∉M”与命题“若b∈M,则a∉M”互为逆否命 题,因此二者等价,所以④正确.综上可知正确的说法有②④.
高考第一轮复习第二讲命题及其关系、充分条件与必要条件

第二节 命题及其关系、充分条件与必要条件
第一章 集合与常用逻辑用语
1.命题
用 语言、符号 、式子 叫做命题,其中判断为真 的语句叫做假命题.
表达的,可以判断语真句假的 的陈述句叫判做断真为命假题,
第一章 集合与常用逻辑用语
2.四种命题及其关系 (1)四种命题
命题 原命题 逆命题 否命题 逆否命题
第一章 集合与常用逻辑用语
1.下列语句是命题的是( )
①求证x是无理数;
②x2+4x+4≥0;
③你是高一的学生吗?
④一个正数不是素数就是合数;
⑤若x∈R,则x2+4x+7>0.
A.①②③
B.②③④
C.②④⑤
D.③④⑤
【答案】 C
第一章 集合与常用逻辑用语
2.命题“若x2≥1,则x≥1或x≤-1”的逆否命题是( ) A.若x2<1,则-1<x<1 B.若x≥1或x≤-1,则x2≥1 C.若-1≤x≤1,则x2≤1 D.若-1<x<1则x2<1 【答案】 D
表述形式 若p则q 若q则p
若綈p则綈q 若綈q则綈p
第一章 集合与常用逻辑用语 (2)四种命题间的相互关系
(3)四种命题的真假关系 ①两个命题互为逆否命题,它们有相同 的真假性; ②两个命题互为逆命题或互为否命题,它们的真假 性 不确定 .
第一章 集合与常用逻辑用语
3.充分条件与必要条件 (1)“若p,则q”为真命题,记p⇒q,则 p是q成立的充分 条件, q是p成立 的必要条件. (2)如果既有p⇒q,又有q⇒p,记作:p⇔q, 则 p是q成立 的充要条件,q也是p成立的 充要条件 .
第一章 集合与常用逻辑用语
(2)逆命题:若两个三角形全等,则这两个三角形等底等 高.真命题.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学一轮专题复习:第2讲命题及其关系、充分条件与必要条件
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2018高二上·大庆期中) 命题“若x2<1,则-1<x<1”的逆否命题是()
A . 若,则或
B . 若,则
C . 若或,则
D . 若或,则
2. (2分)下列命题中,正确命题的个数是()
①命题“∃x∈R,使得x3+1<0”的否定是““∀x∈R,都有x3+1>0”.
②双曲线(a>0,a>0)中,F为右焦点,A为左顶点,点B(0,b)且=0,则此双曲线的离心率为.
③在△ABC中,若角A、B、C的对边为a、b、c,若cos2B+cosB+cos(A﹣C)=1,则a、c、b成等比数列.
④已知,是夹角为120°的单位向量,则向量λ+与﹣2垂直的充要条件是λ=.
A . 1 个
B . 2 个
C . 3 个
D . 4 个
3. (2分)(2020·上饶模拟) 已知直线平面,则“直线”是“ ”的()
A . 充分但不必要条件
B . 必要但不充分条件
C . 充要条件
D . 既不充分又不必要条件
4. (2分)已知则""是""成立的()
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
5. (2分)命题“若≠,则且”的逆否命题是()
A . 若≠,则≠且≠
B . 若≠,则≠或≠
C . 若且,则≠
D . 若≠或≠,≠
6. (2分) (2019高一上·北京期中) 对于集合,给出如下三个结论:①如果
,那么;②如果,那么;③如果,,那么 .其中正确结论的个数是()
A . 0
B . 1
C . 2
D . 3
7. (2分) (2016高二下·昆明期末) 有下列命题中,正确的是()
A . “若,则”的逆命题
B . 命题“∃x∈R,”的否定
C . “面积相等的三角形全等”的否命题
D . “若A∩B=B,则A⊆B”的逆否命题
8. (2分)(2017·淄博模拟) 下列命题为真命题的是()
A . 若 x>y>0,则 ln x+ln y>0
B . “φ= ”是“函数 y=sin(2x+φ)为偶函数”的充要条件
C . ∃x0∈(﹣∞,0),使 3x0<4x0成立
D . 已知两个平面α,β,若两条异面直线m,n满足m⊂α,n⊂β且m∥β,n∥α,则α∥β
9. (2分)已知不等式ax2+bx+1<0的解集为{x|-1<x<2},则ab=()
A . -1
B . -
C . -
D . 1
10. (2分)已知a,b,c,d是实数,则“a>b且c>d”是“”的()
A . 充分不必要条件
B . 必要不充分条件
C . 充要条件
D . 既不充分也不必要条件
11. (2分) (2018高二上·阜城月考) 命题“对任意,都有”的否定为()
A . 对任意,都有
B . 不存在,都有
C . 存在,使得
D . 存在,使得
12. (2分)下列说法正确的是()
A . 命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B . 命题“∀x≥0,x2+x﹣1<0”的否定是“∃x<0,x2+x﹣1<0”
C . 命题“若x=y,则sinx=siny”的逆否命题为真命题
D . “x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件
二、填空题 (共4题;共8分)
13. (1分) (2016高二上·莆田期中) 命题“若a、b都是偶数,则a+b是偶数”的逆命题是________.
14. (5分)某健康中心研究认为:身高为h(m)的人的其理想体重W(kg),应符合公式W=22h2(kg),且定义体重在理想体重±10%的范围内,称为标准体重;超过10%但不超过20%者,称为微胖;超过20%者,称为肥胖,微胖及肥胖都是过重的现象.对身高h,体重W的人,体重过重的充要条件为W>ch2+dh+e,则(c,d,e)=________ .
15. (1分) (2016高二上·南城期中) ①一个命题的逆命题为真,它的否命题也一定为真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
③ 是的充要条件;
④“am2<bm2”是“a<b”的充分必要条件.
以上说法中,判断错误的有________.
16. (1分) (2016高二上·云龙期中) 命题“若a=0或b=0,则ab=0”的逆否命题是________(填真命题或假命题).
三、解答题 (共6题;共45分)
17. (5分) (2018高三上·定远期中) 已知集合M={x|x<-3,或x>5},P={x|(x-a)·(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.
18. (5分) (2018高二下·鸡泽期末) 设命题:实数满足,其中;命题:实数满足 .
(1)若,且为真,求实数的取值范围;
(2)若是的充分不必要条件,求实数的取值范围.
19. (5分)已知命题和命题.若“ 且”与“非”同时为假命题,求实数
的值.
20. (10分)设函数y=lg(﹣x2+4x﹣3)的定义域为A,函数y=,x∈(0,m)的值域为B.
(1)当m=2时,求A∩B;
(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.
21. (10分) (2016高二上·福田期中) 已知命题p:关于x的方程x2﹣ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围.
22. (10分) m为何值时,关于x的方程8x2﹣(m﹣1)x+(m﹣7)=0的两根,
(1)为正数;
(2)一根大于2,一根小于2.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、答案:略
3-1、
4-1、
5-1、答案:略
6-1、
7-1、
8-1、答案:略
9-1、答案:略
10-1、答案:略
11-1、答案:略
12-1、答案:略
二、填空题 (共4题;共8分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共6题;共45分) 17-1、答案:略
17-2、答案:略
18-1、答案:略
18-2、答案:略
19-1、
20-1、
21-1、答案:略
22-1、答案:略
22-2、答案:略。