飞机主要参数的选择(精)
飞机翼型的主要几何参数

飞机翼型的主要几何参数
1.翼展:翼展是指飞机两个翼端之间的距离。
它决定了翼的长度和形状,是飞机的重要尺寸参数之一、翼展直接影响了飞机的机动性和操纵性能。
2.翼弦:翼弦是指垂直于机身的尺寸,在飞机翼的前缘和后缘之间的距离。
翼弦的变化会影响翼型的厚度和剖面以及气动性能。
3.翼展梢长:翼展梢长是指翼的后缘从翼根到梢端的长度。
翼展梢长的变化会影响飞机的升力分布和阻力特性,对行驶和进近时的操纵性能具有重要影响。
4.翼面积:翼面积是指飞机翼的总表面积。
它是计算飞机升力的重要参数,也直接影响飞机的起飞和降落性能以及滑行阻力。
5.翼厚:翼厚是指飞机高度方向上翼的厚度。
翼厚对飞机的升力和阻力产生影响。
较厚的翼厚能够提供更大的升力,但也会增加阻力。
6.剖面:飞机翼的剖面是指飞机翼在垂直于翼弦方向上的形状。
这个形状通常由一系列的气动和几何特性参数描述,如前缘、后缘、最大厚度位置等。
剖面的形状决定了飞机在飞行过程中的气动性能和阻力特征。
除了以上主要的几何参数,还有一些次要的几何参数也对飞机翼型的设计和性能产生影响,如后掠角、前掠角、扭曲角等。
这些参数描述了翼的倾斜和变形情况,对飞机的操纵性、稳定性和阻力特性产生影响。
总结起来,飞机翼型的主要几何参数包括翼展、翼弦、翼展梢长、翼面积、翼厚和剖面等。
这些参数共同决定了飞机的机动性、升力和阻力特性,对飞机设计和性能有着重要的影响。
飞机基本参数数据

飞机基本参数数据引言概述:飞机作为一种重要的交通工具,其基本参数数据对于飞行安全和性能分析至关重要。
飞机的基本参数数据包括飞行速度、起飞重量、翼展等多个方面,这些数据对于设计、制造和操作飞机都有着重要的指导意义。
本文将从飞行速度、起飞重量、翼展、航程和燃油容量这五个方面,详细介绍飞机的基本参数数据。
一、飞行速度1.1 最大巡航速度:飞机在巡航阶段能够达到的最高速度,通常以马赫数(Mach)表示。
1.2 失速速度:飞机在特定重量和配置下的最低速度,低于该速度会导致失去升力而失速。
1.3 着陆速度:飞机在着陆时的最低速度,通常由机型和着陆重量决定。
二、起飞重量2.1 最大起飞重量:飞机在起飞时所能承受的最大重量,包括飞机本身的重量和载荷。
2.2 空机重量:飞机在没有任何载荷的情况下的重量,包括机身、发动机、燃油等。
2.3 载荷能力:飞机能够携带的最大重量,即起飞重量减去空机重量。
三、翼展3.1 翼展:飞机两个翼面(主翼)之间的距离,通常以米(m)表示。
3.2 翼展对比:不同机型的翼展对比分析,可以评估飞机的机动性和稳定性。
3.3 翼展与机场限制:翼展对于机场的限制也是一个重要的考虑因素,比如狭小的跑道可能无法容纳翼展较大的飞机。
四、航程4.1 最大航程:飞机在满载燃油状态下能够飞行的最大距离。
4.2 经济航程:飞机在经济速度下能够飞行的最大距离,通常是指在燃油效率最佳的速度下飞行。
4.3 航程与载荷的关系:飞机的航程与载荷有一定的关系,较大的载荷可能会影响飞机的航程。
五、燃油容量5.1 最大燃油容量:飞机能够携带的最大燃油量。
5.2 燃油效率:飞机在不同速度下的燃油消耗率,通常以每小时消耗的燃油量(升/小时)表示。
5.3 燃油容量与航程的关系:飞机的燃油容量直接影响其航程,较大的燃油容量能够支持较长的飞行距离。
结论:飞机的基本参数数据对于飞行安全和性能分析至关重要。
飞行速度、起飞重量、翼展、航程和燃油容量等参数直接影响飞机的飞行能力和航程。
飞机主要参数的选择

升阻比
17.6 18.6 16.2 15.1 17.4 17.1 18.1 15.0 17.6
机型
L1011-100 DC-3 DC-7C DC-10-30 MD-80 MD-11
升阻比
16.0 15.3 18.5 17.2 15.6 18.2
Laerjet 湾流GⅢ
13.0 15.6
关于发动机耗油率
Wto
1.142
算例:单通道客机重量估算
燃油系数的计算
算例:单通道客机重量估算
算例:单通道客机重量估算
算例:单通道客机重量估算
算例:单通道客机重量估算
最终求得的重量数据:
计算燃油系数的简化方法
燃油系数公式:
ln WFuel Wto
ESAR
a C
M
L D
ESAR为当量无风航程: ESAR 568 1.063 Range
单通道客机的重量统计数据
重量关系图
重量估算的实质:假设的重量不仅要满足任务载荷和燃油 重量,而且要满足最大起飞重量与使用空重的统计关系。
公务机的重量统计数据
公务机的重量统计关系
Weight Trend Data - Business Jet
双通道客机的重量统计数据
双通道客机的重量统计数据拟合
TC0
( Mg )0
(CD )C CLUS
0
0.71( )C0
(CD )C0 / CLUS
当飞机发动机个数为2台发动机时,上式的α = 2.74, γ = 0.020。
其中: ( )C0 (CD )C0(KV )0 由爬升时升阻极曲线特性确定:CD (CD )C0 (KV )0 CL2 需用推力TC0 和海平面静推力T0 的关系式为:TC0 T0C0
飞机主要参数的选择(精)

第五章飞机主要参数的选择选定飞机的设计参数,是飞机总体设计过程中最主要的工作。
所谓飞机的总体设计,简言之,即已知设计要求,求解设计参数,定出飞机总体方案的过程。
飞机的设计参数是确定飞机方案的设计变量。
确定一个总体方案, 需要定出一组设计参数, 包括飞机及其各组成部分的质量;机翼和尾翼的面积、展弦比、后掠角、机身的最大直径和长度等几何参数;以及发动机的推力等等。
在总体设计的初期,如果想一下子就把各项参数都选好,是很困难的,而往往需要用原准统计法进行粗略的初步选择。
所谓原准统计法,即参照原准机和有关的统计资料, 凭设计者的经验和判断, 初步选出飞机的设计参数。
如果所设计的飞机是某现役飞机的后继机, 性能指标差别不是很大, 或仅在某一两点上有较大的差别,则可以将原来的飞机做为原准机, 这样在设计上和生产上可能有良好的继承性, 这是很有利的。
但是, 如果在性能指标上有量级的突变, 则不宜再将原机种做为新机设计的原准机了。
如果选用外国的飞机做为原准机, 则应特别注意我国自己的设计风格及科研和生产水平,应尽量多搜集一些统计资料, 以便对比分析。
对各种统计数据均应注意其来源、附加条件和可靠程度,这种方法简单方便,但用这种方法时,一是原准机选得要合适,二是统计资料工作要做好。
另一类选择飞机参数的方法是统计分析法,即利用统计资料或科学研究实验结果作为原始数据,建立分析计算的数学模型, 并利用计算机进行反复迭代的分析计算, 求解出合理的设计参数。
不论是哪一种方法都要求深入地了解飞机主要的设计参数与飞机飞行性能之间的关系,以及在进行参数选择时的决策原则。
在众多的飞机设计参数当中,最主要的有三个:1.飞机的正常起飞质量 (kg ;0m 2.动力装置的海平面静推力 (dan; 0P 3.机翼面积 (mS 2。
这三个参数对飞机的总体方案具有决定性的全局性影响,这三个参数一改变,飞机的总体方案就要大变,所以称之为飞机的主要参数。
飞机总体设计-5第五讲_主要参数选择_大飞机

4
5.1.2 飞机设计参数选择要点
推重比的物理意义是:为了实现飞机的某种性能,单位飞 机重量所需的推力。 翼载的物理意义是:为了实现飞机的某种性能,单位机翼 面积所需承载的飞机重量。
5
5.1.2 飞机设计参数选择要点
飞机设计参数估算的任务——为了达到设计要求 (有用载荷、飞行性能参数以及所用设计规范规 定的各种要求),去寻求那些能够很好地满足设 计要求的设计参数值。
1 T W cr L D cr
T T Wcr W W TO W cr TO
Tcr TTO
10
5.1.3 推重比
巡航状态的推重比换算到起飞状态的推重比 一般有
• 对于螺旋桨飞机 (L/D)cr=(L/D)max 。 • 对于喷气飞机 (L/D)cr=0.866(L/D)max 。
26
5.1.4 翼载
3. 按着陆要求选参数 飞机的着陆距离取决于如下因素:
1、着陆重量WL 2、着陆速度VA 3、接地后的减速方法 4、飞机的飞行品质 5、飞行员的技术
对于喷气式旅客机,飞机最大着陆重量WL应近于起飞重量, 平均着陆重量应为WTO的0.84倍。 对军用机,应以起飞重量减去50%的燃油重量做为着陆重量。
16
5.1.4 翼载
17
5.1.4 翼载
例如,对螺旋桨式飞机规定: VStall ≯93KM/h(襟翼全放下) VStall ﹤111KM/h(收起襟翼)
18
5.1.4 翼载
W 1 2 Vstall CL max S 2 1.225kg / m3 0.125kg s 2 / m 4 W 0.5 0.125kg s 2 / m 4 25.832 m 2 / s 2 2.0 S 2 83.4kg / m W 2 2 0.5 0.125 30.83 1.6 95.1kg / m S
飞机主要参数的确定

机型 单发螺旋浆 双发螺旋浆 战斗机 喷气运输机 喷气公务机
CL,max 1.3 - 1.9 1.2 - 1.8 1.2 - 1.8 1.2 - 1.8 1.4 – 1.8
CL,max,TO 1.3 - 1.9 1.2 - 2.0 1.4 - 2.0 1.6 – 2.2 1.6 – 2.2
CL,max,L 1.6 - 2.3 1.6 - 2.5 1.6 - 2.6 1.8 – 2.8 1.6 – 2.6
注:CL,max,TO和CL,max,L与襟翼的类型有关, CL,max,TO(或CL,max,L)越大,襟翼越复杂
15
航空宇航学院
• 标准大气的参数
参数:大气压,温度,密度
H=0时: P0 = 101.325( Kpa), T0 = 15oC, ρ0 = 1.225 kg/m3
H < 11000 (m):
Aircraft Type
T/W
Twin
0.3
Tri-jet
0.25
4-Engine
0.2
Twin Exec. Jet
0.4
SST
0.4
22
航空宇航学院
对比分析法
1. 求出在飞行过程中的相对燃油消耗量 m油
L = 1020 KM 巡 ⋅ m油 Ce平均 1 − m油
(km)
其中:L和M巡航由设计要求给定,K和Ce平均由统计数据得出。
• 最大升限
对于喷气式发动机: H < 11000(M) 时
H max = 57.82 ⋅{1− 0.996[K maxξ (T /W )]−0.205}
(km)
H > 11000(M) 时 H max = 57.82 ⋅{1− 0.965[Kmaxξ (T /W )]−0.174}
飞机主要参数的选择

ε=3.36% rb=0.041cm 翼根 NACA65A005.5 翼尖 NACA65A003.7 NACA0004-65 (修)弯前缘 翼根 NACA0006.4-64 翼尖 NACA0003-64
最大速度
战斗机
1070km/h F5A
M1.3
F-8E
M1.85
F-111A
M1.25
F-14A
M2.35
对于低速飞机诱导阻力在机翼阻力中占一定的比例,不可忽视。 Cxi 与 λ 成反比,增大机
翼的展弦比可以降低诱导阻力和增大升阻比,这对提高飞机的升限和加大飞机的航程都是有利
的。
· 76 ·
机翼的面积— S
机翼的展长— l
l /2
展弦比 λ = l 2 / S
根梢比η
后掠角 χ
图 6.7 机翼平面形状的几何参数定义
高速飞机的阻力中,波阻占很大的比例。减小机翼的展弦比,可使阻力系数明显降低。
Cx ~ M 曲线随 λ 的变化如图 6.8 所示。 因此,对于超音速飞机,应采用较小的展弦比。这主要是因为,减小 λ 可以使临界 M 数提
高,延缓激波的产生,减弱激波的强度,从而使波阻降低。
λ 对机翼升力系数曲线的斜率 Cαy
基本翼 NACA64A204
ЦАГИ层流翼型翼根 C-12C 翼尖 C-7C
飞机基本参数数据

飞机基本参数数据引言概述:飞机是一种重要的交通工具,其性能参数对飞行安全和效率起着至关重要的作用。
飞机基本参数数据是描述飞机性能和特性的重要指标,包括飞机的尺寸、重量、动力系统等方面的数据。
本文将从飞机基本参数数据的定义、分类、重要性、获取方法和应用等方面进行详细介绍。
一、飞机基本参数数据的定义1.1 飞机基本参数数据的概念飞机基本参数数据是指描述飞机结构、性能和特性的数据,是飞机设计、制造、运行和维护的重要依据。
这些数据包括飞机的尺寸、重量、动力系统、气动特性等方面的信息。
1.2 飞机基本参数数据的分类飞机基本参数数据可以按照不同的分类标准进行分类,如按照用途可分为民航飞机、军用飞机等;按照机型可分为客机、货机、直升机等;按照尺寸可分为机身长度、翼展等。
1.3 飞机基本参数数据的重要性飞机基本参数数据是飞机设计、制造、运行和维护的基础,对飞机的性能、安全和经济性起着决定性的作用。
只有准确获取和应用飞机基本参数数据,才能确保飞机的正常运行和安全飞行。
二、飞机基本参数数据的获取方法2.1 飞机设计阶段获取方法在飞机设计阶段,可以通过计算、仿真和试验等方法获取飞机基本参数数据,以确保飞机设计满足性能要求。
2.2 飞机制造阶段获取方法在飞机制造阶段,可以通过检测、测试和验证等方法获取飞机基本参数数据,以确保飞机的质量和性能符合要求。
2.3 飞机运行阶段获取方法在飞机运行阶段,可以通过监测、记录和分析等方法获取飞机基本参数数据,以评估飞机的运行状态和性能表现。
三、飞机基本参数数据的应用3.1 飞机设计应用飞机基本参数数据在飞机设计中起着至关重要的作用,可以指导设计师进行合理设计,确保飞机性能满足要求。
3.2 飞机制造应用飞机基本参数数据在飞机制造中也是必不可少的,可以帮助生产工艺和工艺控制,确保飞机的质量和性能。
3.3 飞机运行应用飞机基本参数数据在飞机运行中也具有重要意义,可以帮助飞行员掌握飞机状态,确保飞行安全和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章飞机主要参数的选择
选定飞机的设计参数,是飞机总体设计过程中最主要的工作。
所谓飞机的总体
设计,简言之,即已知设计要求,求解设计参数,定出飞机总体方案的过程。
飞机的设
计参数是确定飞机方案的设计变量。
确定一个总体方案, 需要定出一组设计参数, 包括飞机及其各组成部分的质量;机翼和尾翼的面积、展弦比、后掠角、机身的最大直径和长度等几何参数;以及发动机的推力等等。
在总体设计的初期,如果想一下子就把各项参数都选好,是很困难的,而往往需要用原准统计法进行粗略的初步选择。
所谓原准统计法,即参照原准机和有关的统计资料, 凭设计者的经验和判断, 初步选出飞机的设计参数。
如果所设计的飞机是某
现役飞机的后继机, 性能指标差别不是很大, 或仅在某一两点上有较大的差别,则可以将原来的飞机做为原准机, 这样在设计上和生产上可能有良好的继承性, 这是很
有利的。
但是, 如果在性能指标上有量级的突变, 则不宜再将原机种做为新机设计
的原准机了。
如果选用外国的飞机做为原准机, 则应特别注意我国自己的设计风格及科研和生产水平,应尽量多搜集一些统计资料, 以便对比分析。
对各种统计数据
均应注意其来源、附加条件和可靠程度,这种方法简单方便,但用这种方法时,一是原准机选得要合适,二是统计资料工作要做好。
另一类选择飞机参数的方法是统计分析法,即利用统计资料或科学研究实验结
果作为原始数据,建立分析计算的数学模型, 并利用计算机进行反复迭代的分析计算, 求解出合理的设计参数。
不论是哪一种方法都要求深入地了解飞机主要的设计参
数与飞机飞行性能之间的关系,以及在进行参数选择时的决策原则。
在众多的飞机设计参数当中,最主要的有三个:
1.飞机的正常起飞质量 (kg ;
0m 2.动力装置的海平面静推力 (dan
; 0P 3.机翼面积 (mS 2。
这三个参数对飞机的总体方案具有决定性的全局性影响,这三个参数一改变,飞机的总体方案就要大变,所以称之为飞机的主要参数。
它们的相对参数是:
1. 起飞翼载荷
0p S
g m p 1000=
(dan/m2 2.起飞推重比 0P /(1000g m P P =
§5.1 飞机主要设计参数与飞行性能的关系
这一节,回顾过去在飞行力学等课程中所学的一些简单的计算飞机性能的公式,以便对
· 55 ·
飞机主要参数与飞行性能之间的关系进行研究和分析。
一、最大平飞速度
max v 从飞机在某一高度(H上等速平飞时,推力等于阻力的基本方程:
S v C P H x
H 22
1ρ= (5.1 可以得出的计算公式为: max v ∆
=x H C p P v 55. 14max (5.2 其中:的单位为“km/h”
, ∆——H高度处的空气相对密度; max v H P ——H高度处的推重比; ——H高度处的翼载荷,单位为“dan/mH p 2
”。
涡轮喷气发动机的推力与飞行速度和高度有关,超音速时,其关系如下:
当 H<11000m时, 085. 0P P H ∆=ξ (5.3 当 H>11000m时, 02. 1P P H ∆=ξ (5.4 其中系数和85. 0∆∆2. 1是考虑推力随高度的变化;速度特性系数0/==v v P P ξ是考虑推力随飞行速度的变化。
将(5.3和(5.4式代入(5.2式得到:
当 H<11000m时, 15. 00max 55
. 14∆
=x C P p v ξ (5.5 当H≥11000m 时, x
H C P p v ξ0max 94. 15= (5.6 由此可知飞机的最大平飞速度与其推重比及翼载荷的 1/2次方成正比。
max v 二、静升限
静 H 静升限是指飞机能继续维持平飞时的最大飞行高度,可以用该高度处的空气相对密度值来表示。
由平飞时“升力等于重量”和“阻力等于推力”的关系式,可以得出。
根据极曲线的表达式。
可得, 10/(max K mg P =200y x x C D C C +=0
0max max 21x x y C D C C K =⎟⎟⎠⎞⎜⎜⎝⎛=代入上式,则可以 · 56 ·
导出,
00067. 1P C D x ξ=
∆升限 (5.7 对于亚音速飞机, 00 /(67
. 1P C e x ξπλ=∆升限 (5.8 对于超音速飞机, 0201。