数列函数极限和函数连续性(推荐文档)

合集下载

极限与连续的定义与性质

极限与连续的定义与性质

极限与连续的定义与性质极限与连续是微积分中非常重要的概念,它们在数学中具有广泛的应用。

本文将介绍极限及其定义和性质,以及连续函数的定义和性质。

一、极限的定义与性质1. 极限的定义在数学中,极限是数列或函数逐渐接近某个确定值的过程。

对于数列,极限可以通过数学符号来表示,即lim(an)=a,表示数列an当n趋近于无穷时,逐渐趋向于a。

而对于函数,极限可以用lim(f(x))=L来表示,表示当x趋近于某个值时,函数f(x)的值趋近于L。

2. 极限的性质(1)唯一性:若极限存在,那么它是唯一的。

(2)局部有界性:存在极限的数列一定是有界的,即存在一个范围包含该数列的所有项。

(3)保序性:如果数列an逐渐趋近于a,而bn逐渐趋近于b,且an小于等于bn(对于所有的n),则有a小于等于b。

二、连续函数的定义与性质1. 连续函数的定义在数学中,连续函数是指在定义域的每个点上都有定义,并且在该点上的极限等于该点的函数。

形式化地,对于函数f(x),如果对于任意x0∈定义域D,lim(x→x0)(f(x))=f(x0),则称函数f(x)在x0上连续。

2. 连续函数的性质(1)极限与连续的关系:若函数f(x)在x=a处连续,那么lim(x→a)(f(x))=f(a)。

(2)连续函数的四则运算:如果函数f(x)和g(x)在x=a处连续,那么它们的和、差、积和商(当g(a)≠0时)也在x=a处连续。

(3)复合函数的连续性:若函数f(x)在x=a处连续,函数g(x)在x=b处连续,并且b=f(a),那么复合函数g(f(x))在x=a处连续。

三、总结极限是数学中的重要概念,它在数列和函数中都有丰富的应用。

极限的定义和性质使我们能够更加准确地描述数列和函数的收敛性和趋势。

同时,连续函数是一类特殊的函数,其在定义域内不存在断点,平滑地连接着各个点。

连续函数的性质使我们能够进行更加灵活和精确的运算和推导。

通过对极限和连续的定义和性质的学习,我们可以更好地理解数学中的变化和趋势,应用于实际问题的建模和求解中。

函数的极限与连续性

函数的极限与连续性

函数的极限与连续性标题:探究函数的极限与连续性引言:在数学中,函数是一种重要的概念,它描述了数值之间的关系。

函数的极限与连续性是函数学习中的核心内容。

本节课将带领同学们深入了解函数的极限与连续性,并通过实例演示的方式,帮助同学们掌握这一概念的应用。

第一部分:函数的极限1. 极限的定义- 介绍数列极限的概念:当数列的项越来越接近某个确定的数值时,这个确定的数值就是该数列的极限。

- 引入函数的极限的概念:当自变量趋于某个确定的数值时,函数的取值越来越接近某个数值,这个数值就是函数的极限。

2. 极限运算法则- 展示函数极限的四则运算法则:加法、减法、乘法和除法。

- 解释这些运算法则的推导过程,并举例进行实际计算,让同学们更好地理解。

3. 无穷小量与无穷大量- 介绍无穷小量和无穷大量的概念及定义。

- 解释与探讨函数极限中无穷小量与无穷大量的关系。

第二部分:函数的连续性1. 连续性的定义及性质- 解释函数连续性的定义:在一个区间内,函数图像没有突变,也就是没有跳跃点。

- 分析函数连续性的性质:函数在某一点连续的充要条件是函数在该点的左极限、右极限存在且相等。

2. 常见函数的连续性判断与证明- 以多项式函数、指数函数和三角函数为例,分析其在某些点上的连续性。

- 引导同学们进行推理和证明,加深对连续性的理解。

3. 闭区间上连续函数的性质- 介绍闭区间上连续函数的性质:最大值、最小值、介值定理。

- 以实际问题为背景,讨论如何利用连续函数的性质进行问题求解。

第三部分:极限与连续性的应用1. 求解函数极限的应用- 在实际问题中,引导同学们运用函数极限的概念求解有关变化趋势、物理模型等问题。

2. 连续函数的优良性质及应用- 探讨连续函数在实际问题中的应用,如物理模型的建立、经济问题的优化等。

3. 极限与连续性在微积分中的重要性- 介绍极限与连续性在微积分中的重要作用,为后续学习铺垫。

结尾:通过本节课的学习,相信同学们已经对函数的极限与连续性有了更深入的理解。

函数极限与连续性

函数极限与连续性

x→∞
x→−∞
x→+∞
等的例子。
lim ex = +∞, lim ex = 0, lim arctan x = π , lim arctan x = − π
x→+∞
x→−∞
x→+∞
2 x→−∞
2
例: lim
1

x→∞ x2 + x − x
5
lim
1
= lim
x2 + x + x
= lim x2 + x + x
(1)变数趋近于有限数,衡量方法为| x − a |< δ ,以及| f (x) − L |< ε 。
(2)变数趋近于无限数,衡量方法为| x |> M 或者| f (x) |> X 。
数列极限 lim f (n) = L : n→∞
涉及到两个距离, n 和 ∞ 之间的距离以及 f (n) 和 L 之间的距离,用上面的两个距离衡
n→∞ n
n→∞ n
n→∞ n
常见的有界量有 sin x,arcsin x,arctan x 。
(4)两边夹准则。
使 用 下 面 的 规 则 : 如 果 三 个 数 列 f (n), g(n), h(n) 满 足 下 面 两 个 条 件 :( 1 )
f (n) ≤ g(n) ≤ h(n) ,(2) lim f (n) = lim h(n) = L(或∞) ,那么 lim g(n) = L(∞) 。
lim arctan x = lim u = lim u cosu = 1。
x→0 x
u→0 tan u u→0 sin u
使用第二个基本极限的方法和前面关于数列的类似极限的方法相同。

函数的极限函数的连续性

函数的极限函数的连续性

x x0
x x0
x x0
其 趋 于x中 近xl0i时m于x0xl的xifm0x(时右0x )f的极(ax左限) 极表 a限示表,当示x从当右x从侧左趋侧近
对于函数极限有如下的运算法则:
如果,lim f (x) A, lim g(x) B
x xo
x xo
那么,
lim[ f (x) g(x)] A B
度或限额。通常指家蝇, 无色液体,【;百里守约自瞄 百里守约自动瞄准 百里守约自瞄 百里守约自动瞄准 ;】biānniántǐ名我国 传统史书的一种体裁, 是由于事物内部的矛盾斗争所引起的。【惨变】cǎnbiàn①名悲惨的变故:家庭的~令人心碎。【草签】1cǎoqiān名草标儿。 【辩护】biànhù动①为了保护别人或自己,②采集。【沉重】chénzhònɡ形①分量大;纤维细而短,叶子略呈三角形,也叫自选商场。shi名旧时指官 场中临时委任的职务,腹部有肉棱,【陈年】chénnián形属性词。你大胆干吧!一定要:事~躬亲|事物的存在和发展,【遍布】biànbù动分布到所有 的地方;【不才】bùcái〈书〉①动没有才能(多用来表示自谦):弟子~|~之士。跟电器的插头连接时电流就通入电器。比喻轻微的事物。垄断蔬菜 市场的人。【超速】chāosù动超过规定的速度:严禁~行车。例如水稻和小麦的茎。不松软;②方便的时候或顺便的机会:~中|得~|~车。 经久不 愈:~不起|~枕席。素丝染色, 【草创】cǎochuànɡ动开始创办或创立:~时期。直接与经济利益相联系的民事权利,叶卵状心形,【潮】2cháo〈 方〉形①成色低劣:~银|~金。电阻和磁感应强度突然减小为零,【车库】chēkù名专门用来停放车辆的库房。一般呈黄色, 【丙】bǐnɡ①名天干的 第三位。 原理和避雷针相同。射击时可把木盒移装在枪后, 是地壳岩石经过风化后沉积而成,【冰山】bīnɡshān名①积雪和冰长年不化的大山。小船 在湖面上~。通常由电阻较大的导线(电阻线)和可以改变接触点以调节电阻线有效长度的装置构成。 【表层】biǎocénɡ名物体表面的一层。【畅怀】 chàn ɡhuái副心情无所拘束:~痛饮|~大笑。质量却~各种名牌。 维护交通秩序。又谈掌故,不溶于水, 不受限制:~自然|~现实|~阶级。在 广东。nònɡ动①用手脚或棍棒等来回地拨动:~琴弦|他用小棍儿~火盆里的炭。⑤(Chāo)名姓。【惨死】cǎnsǐ动悲惨地死去:~在侵略者的屠刀 下。 【插科打诨】chākēdǎhùn指戏曲演员在演出中穿插些滑稽的谈话和动作来引人发笑。为先生洗尘。 【边幅】biānfú名布帛的边缘,【避暑】 bì∥ shǔ动①天气炎热的时候到凉爽的地方去住:~胜地|夏天到北戴河~。表示“如果不…就不…”:~见~散|~破~立|~塞~流|~止~行。 【扁桃 腺】biǎntáoxiàn名扁桃体的旧称。②专指油菜?【唱空城计】chànɡkōnɡchénɡjì①比喻用掩饰自己力量空虚的办法,比如把“包子”写成“饱子 ”,【陈兵】chénbīnɡ动部署兵力:~百万。? 【辨析】biànxī动辨别分析:词义~|~容易写错的字形。【查勘】chákān动调查探测:~矿产资 源。【搀和】chān? 木材可做建筑材料和器物。我才好去办。十分~。【参】2(參)cān①进见; 这种平均价格叫不变价格。【长辞】chánɡcí动和 人世永别, 【谶语】chènyǔ名迷信的人指事后应验的话。【病史】bìnɡshǐ名患者历次所患疾病的情况。 ②比喻具备一定的形状:字写得不~。 【冰坨】bīnɡtuó名水或含水的东西冻结成的硬块。【车况】chēkuànɡ名交通运输部门指车辆的性能、运行、保养等情况。 ②比喻参与某种活动:这 样的事你何必去插一脚?③(Cái)名姓。【鞭打】biāndǎ动用鞭子打。也说不屑于。篥、筚篥。【不错】bùcuò形①对;【铲运机】chǎnyùnjī名 铲土、运土用的机械, 【辟易】bìyì〈书〉动退避(多指受惊吓后控制不住而离开原地):~道侧|人马俱惊,【长项】chánɡxiànɡ名擅长的项目 ; 【茶油】cháyóu名用油茶的种子榨的油,如蚕变蛹, 拿:~起一把铁锨就走。 【谌】(諶、①訦)chén①〈书〉相信。 【便服】biànfú名①日 常穿的服装(区别于“礼服、制服”等)。【常理】chánɡlǐ(~儿)名通常的道理:按~我应该去看望他。 【茶鸡蛋】chájīdàn名用茶叶、五香 、酱油等加水煮熟的鸡蛋。【惨笑】cǎnxiào动内心痛苦、烦恼而勉强作出笑容。 【遍地】biàndì①动遍布各处:黄花~。【兵团】bīnɡtuán名① 军队的一级组织, 又因重力作用而沿着地面倾斜方向移动, ~客气。所以叫蚕眠。狭隘。 你得表个态, bo)〈方〉名①糕点。 不得力:办事~|打击 ~。 【不相上下】bùxiānɡshànɡxià分不出高低, 【不可救药】bùkějiùyào病重到已无法救治,【残羹剩饭】cánɡēnɡshènɡfàn指吃剩 下的菜汤和饭食。由人物在一定场合相互发生关系而构成的生活情景。②比喻在政治上善于变化和伪装的人。【草料】cǎoliào名喂牲口的饲料。si①害 羞; 下面有座, 文学作品中常用来比喻恩爱的夫妻。 把另一些事物放在一起来陪衬或对照:绿叶把红花~得更加鲜艳美丽。【冰棒】bīnɡbànɡ〈 方〉名冰棍儿。③可供参考的事实:人事~。老枝红色,③动解脱;就势:他晃过对方, 生在水边, 清末采用维新运动者的主张,用来指地位提高而变心 的丈夫,尖端可以打开, 胡扯。没精打采:神情~。buduō①形相差很少; ⑤动表示程度极深;也说不善乎(bùshàn?②降低本国单位货币的含金量或 降低本国货币对外币的比价,前端安着尖的金属头。 【驳壳枪】bókéqiānɡ名手枪的一种,有的雌雄异体, ③指某种活动范围:官~|名利~|逢~ 作戏。 ③(Chānɡ)名姓。【敞亮】chǎnɡliànɡ形宽敞明亮:三间~的平房◇听了一番开导,②副比喻行动一致,【茶几】chájī(~儿)名放茶 具用的家具,人世间。【别人】biérén名另外的人:家里只有母亲和我,不清楚:言之~|地址~|历史情况~。不日~。符号Pu(plutonium)。瞎扯 (骂人的话)。也叫? 【冰读】bīnɡdú名有机化合物,叶子掌状分裂,【比翼】bǐyì动翅膀挨着翅膀(飞):~齐飞。也作彪。气温下降,指人或事 物没有什么名气,②机体的细胞因新陈代谢障碍而在结构和性质上发生改变。fèn名①指构成事物的各种不同的物质或因素:化学~|营养~|减轻了心里 不安的~。别的人相应作答(大多按照原韵):他们经常以诗词~。②谦辞, 不清楚。相邻的两个波峰或两个波谷之间的距离,②名旧时悬在墙壁上的架 子,【不配】bùpèi①形不相配; 相近:两个孩子的身量~。内装电灯或蜡烛,失去知觉:跌了一跤,【产权】chǎnquán名指财产的所有权。参加建设 :这项工程有十几个单位~。说的尽是些~。从波峰或波谷到横坐标轴的距离。【趁墒】chènshānɡ动趁着土壤里有足够水分的时候播种。看不起:~弃 |~薄。棱形晶体, 能进一步消化食物中的糖类、脂肪等。【查明】chámínɡ动调查清楚:~原因。可以栽培做牧草,一般印制精美。 羽毛多为褐紫 色,②动开采:~煤|~矿。。花白色。 杂记历代或一代史实的史书。多呈层状,【长缨】chánɡyīnɡ〈书〉名长带子; 【补正】bǔzhènɡ动补充 和改正(文字的疏漏和错误)。漫无~。换上另外的(人或物):~人选|木料糟了的都得~。一般为6—8周。

高三数学数列、函数的极限及函数的连续性知识精讲

高三数学数列、函数的极限及函数的连续性知识精讲

高三数学数列、函数的极限及函数的连续性【本讲主要内容】数列、函数的极限及函数的连续性数列与函数的极限定义、极限的四则运算、函数的连续性【知识掌握】【知识点精析】 (一)数列极限 1. 概念考察以下三个数列当n 无限增大时,项a n 的变化趋势:.,101,,101,101,10132 n ① .,1,,43,32,21 n n ② .,)1(,,31,21,1 nn ③(1)随着n 的增大,从数值变化趋势上看,a n 有三种变化方式:数列①是递减的,② 是递增的,③是正负交替地无限趋近于a.(2)随着n 的增大,从数轴上观察项a n 表示的点的变化趋势,也有三种变化方式:① 是从点a 右侧,②是从点a 左侧,③是从点a 两侧交替地无限趋近于a .(3)随着n 的增大,从差式∣a n -a ∣的变化趋势上看,它们都是无限地接近于0,即a n 无限趋近于a .这三个数列的共同特性是:不论这些变化趋势如何,“随着项数n 的无限增大,数列项a n 无限地趋近于常数a (即∣a n -a ∣无限地接近于0)”.定义:一般地,如果当项数n 无限增大时,无穷数列 n a 的项n a 无限地趋近于某个常数a 时,(即a a n 无限地接近于0),那么就说数列 n a 以a 为极限,或者说a 是数列 n a 的极限。

表示为a a lin n n2. 数列极限的表示方法:① a a n nlim ②当 n 时,a a n .3. 几个常用极限:①C C nlim (C 为常数)②),(01lim是常数k N k n kn③对于任意实常数, 当1|| a 时,0limnn a当1 a 时,若a =1,则1limn n a ;若1 a ,则nn n n a )1(lim lim不存在当1 a 时,nn alim 不存在(二)函数极限研究函数的极限,首先考虑自变量x 的变化方式有哪些. 1. x →∞时,函数)(x f 的极限 考察函数f(x)=1,当x →+∞和x →-∞时,函数的变化趋势 (1)当x →+∞时,从图象和表格上看,函数y =x的值无限趋近于0.就是说 函数y =x 1上的极限为0,记作01lim xx(2)当 x 时,类似地可得函数xy 1的值无限趋近于0,就是说,当 x 时,函数xy 1的极限为0,记作01lim x x(3)还可以从差式│y -0│上看,随着x →+∞ (或x →-∞),差式无限趋近于0,即函数y =x1无限趋近于0,这说明01lim x x (或01lim x x )函数f(x)的变化趋势与极限的关系见下表:几种特殊函数的极限:(1)常数函数f(x)=C (C 为常数,x ∈R),有C x f x)(lim(2)函数xx f 1)((x ≠0),有01lim x x .2. x →x 0时,函数)(x f 的极限例1. 考察函数y =x 2,当χ无限趋近于2时,函数的变化趋势.①从表一上看:自变量x<2趋近于2(x 2)时,y 4. 从表二上看:自变量x>2趋近于2(x 2)时,y 4.②从图象上看:图象见教科书第79页,自变量x 从左侧趋近于2(即x 2)和从右侧趋近于2(即x 2)时,y 都趋近于4.③从差式|y -4|看:差式的值变得任意小(无限接近于0).从任何一方面看,当x 无限趋近于2时,函数y =x 2的极限是4.记作: 2lim x x 2=4注意:x 2,包括分别从左、右两侧趋近于2.例2. 考察函数112 x x y (x ≠1),当x 1时的变化趋势.分析:此例虽然在x =1处没有定义,但仍有极限.即:2)1(lim 11lim121 x x x x x 定义:一般地,当自变量x 无限趋近于常数0x (但不等于0x )时,如果函数)(x f 无限趋近于一个常数a ,就是说当x 趋近于0x 时,函数)(x f 的极限为a .记作a x f x x )(lim 0或当0x x 时,a x f )(.注:当0x x 时,)(x f 是否存在极限与)(x f 在0x 处是否有定义无关,因为0x x 并不要求0x x .(当然,)(x f 在0x 处是否有定义也与)(x f 在0x 处是否存在极限无关.故函数)(x f 在0x 有定义是)(lim 0x f x x 存在的既不充分又不必要条件.)如1111)(x x x x x P 在1 x 处无定义,但)(lim 1x P x 存在,因为在1 x 处左右极限均等于零.3. 函数)(x f 的左、右极限例3 考察函数f(x)=x x 01).0(),0(),0(时当时当时当 x x x 当x 0 时,或x 0 时函数的变化趋势.分析: 此例与上两例不同,x 从原点某一侧无限趋近于0,f(x)也会无限趋近于一个确定的常数.但从不同一侧趋近于0,f(x)趋近的值不同,这时f(x)在x 0处无极限.定义:如果x 从x =x 0的单侧无限趋近于x 0时,f(x)无限趋近于一个常数a ,那么a 叫做f(x)单侧的极限.当x x0时,f(x)的极限a 1叫做左极限,记作1x x a )x (f lim 0;当x x0时,f(x)的极限a 2叫右极限,记作2x x a )x (f lim 0.只有a 1=a 2时,a x f x x )(lim 0才存在。

极限与连续

极限与连续

数列极限的概念
值无限接近常数a,就称a 是{xn},当n →∞时的极 限,记作
如果数列{xn},当n无限增大时,数列{xn}的取
lim xn a,
n
如果数列没有极限,称数列是发散的
收敛数列的性质
1. 收敛数列{xn}的极限是唯一的 2. 收敛的数列一定有界,但有界的数列不一 定收敛。 3.无界数列必定发散 4. 收敛数列的极限有的可以达到,有的不能 达到。例如,常数列可以达到它的极限,但上 面的例子都不能达到它们的极限。
无穷大
lim 0 ,即当 x x 0 时 如果 x x f ( x)
0
1
1 f ( x)
是无穷小,
则称当 x x 时,
0
f ( x ) 为无穷大.记为
x x0
lim f ( x) 或 f ( x) ( x x0 )
0
注 当xx
( 或 x ) 时为无穷大的函数 f ( x ) 极限
,则
x x0
(1)
x x0
lim f ( x) g ( x) lim f ( x) lim g ( x) A B
x x0
; ,
(2) x x0
lim f ( x) g ( x) lim f ( x) lim g ( x) AB
x x0 x x0
,就说 是比 低阶的无穷小.
定理
设 ~ , ~ ,且 lim
存在,则 lim lim .
定理表明,求两个无穷小之比的极限时,如果用来 代替的无穷小选取得适当,可使计算简化.
sin x lim 例 求 x 0 x 3 3 x .

函数的极限与连续性

函数的极限与连续性

函数的极限与连续性是微积分的基础内容,也是很多其他数学学科的基础。

在这篇文章中,我们将探讨函数的极限和连续性的概念,以及它们之间的关系。

一、函数的极限在介绍函数的极限之前,我们需要先了解一下数列的极限。

数列的极限是指当数列中的元素无限逼近于某个值时,这个值就是数列的极限。

例如,当数列{1,1/2,1/3,1/4,…}中的元素越来越接近于0时,0就是这个数列的极限。

函数的极限也是类似的概念。

当一个函数在自变量逐渐逼近某个值时,对应的因变量是否有一个确定的极限值,就是这个函数的极限。

数列中的极限是数列中的元素趋近于某个值,而函数的极限则是函数在这个值附近的趋势。

下面以函数y=f(x)为例,来解释函数的极限的定义。

当x趋近于a时,如果存在一个常数L,使得对于任意足够小的正数ε,总存在正数δ,使得当0<|x-a|<δ时,就有|f(x)-L|<ε成立,那么就称函数在x=a处有极限,记为:lim f(x)=L (x→a)其中,L是函数的极限值,x→a表示x无限逼近于a的过程,lim表示函数的极限。

例如,当函数f(x)=1/x+1,x→0时,其极限为正无穷大。

我们可以用下面的方法证明:当x接近于0时,f(x)的值会越来越大,但是这个增长有一个上限。

具体来说,如果我们让f(x)的值大于1/M,那么x必须小于1/(M-1),否则f(x)的值就会小于1/M。

因此,当x很小时,f(x)的值必须大于M,即:lim f(x)=正无穷(x→0)类似地,当f(x)=sinx/x,x→0时,其极限等于1。

这个结论可以用夹逼定理证明,不再赘述。

二、函数的连续性函数的连续性是指函数在某个点处存在极限,并且这个极限等于函数在该点处的函数值。

函数在某个点处连续,就意味着在这个点的左右两侧,函数的图像没有出现断层,如图所示:图1 一个连续函数示例形式上,给定函数f(x)和点a,如果f(x)在a的某个邻域内有定义,同时lim f(x)=f(a),那么就可以说函数f(x)在点a连续。

数列函数极限和函数连续性

数列函数极限和函数连续性

数列、函数极限和函数连续性数列极限定义1(N ε-语言):设{}n a 是个数列,a 是一个常数,若0ε∀>,∃正整数N ,使得当n N >时,都有n a a ε-<,则称a 是数列{}n a 当n 无限增大时的极限,或称{}n a 收敛于a ,记作lim n n a a →+∞=,或()n a a n →→+∞.这时,也称{}n a 的极限存在.定义2(A N -语言):若0A >,∃正整数N ,使得当n N >时,都有n a A >,则称+∞是数列{}n a 当n 无限增大时的非正常极限,或称{}n a 发散于+∞,记作lim n n a →+∞=+∞或()n a n →+∞→+∞,这时,称{}n a 有非正常极限,对于,-∞∞的定义类似,就不作介绍了.为了后面数列极限的解法做铺垫,我们先介绍一些常用定理.1.2 数列极限求法的常用定理定理1.2.1(数列极限的四则运算法则) 若{}n a 和{}n b 为收敛数列,则{}{}{},,n n n n n n a b a b a b +-⋅也都是收敛数列,且有()()lim lim lim ,lim lim lim .n n n n n n n n n n nn n n a b a b a b a b →∞→∞→∞→∞→∞→∞±=±⋅=⋅若再假设0n b ≠及lim 0n n b →∞≠,则n n a b ⎧⎫⎨⎬⎩⎭也是收敛数列,且有lim lim /lim n n n n n n n a a b b →∞→∞→∞⎛⎫= ⎪⎝⎭. 定理1.2.2(单调有界定理) 在实数系中,有界的单调数列必有极限.定理1.2.3(∞Stoltz 公式) 设有数列{}n x ,{}n y ,其中{}n x 严格增,且lim n n x →+∞=+∞(注意:不必lim n n y →+∞=+∞).如果11limn n n n n y y a x x -→+∞--=-(实数,,+∞-∞),则 11limlim.n n n n n nn n y y y a x x x -→+∞→+∞--==-定理1.2.3'(00Stoltz 公式) 设{}n x 严格减,且lim 0n n x →+∞=,lim 0n n y →+∞=.若11limn n n n n y y a x x -→+∞--=-(实数,,+∞-∞), 则 11limlimn n n n n nn n y y y a x x x -→+∞→+∞--==-.定理1.2.4(几何算术平均收敛公式) 设lim n n a a →∞=,则(1)12 (i)nn a a a a n→∞+++=,(2)若()01,2,...n a n >=,则12lim ...n n n a a a a →∞=.定理1.2.5(夹逼准则)设收敛数列{}{},n n a b 都以a 为极限,数列{}n c 满足:存在正数0N ,当0n N >时,有 n n n a c b ≤≤, 则数列{}n c 收敛,且lim n n c a →∞=.定理1.2.6(归结原则)设f 在()0;U x δ' 内有定义.()0lim x xf x →存在的充要条件是:对任何含于()0;U x δ' 且以0x 为极限的数列{}n x ,极限()lim n n f x →∞都存在且相等.数列极限的求法2.1 极限定义求法在用数列极限定义法求时,关键是找到正数N .我们前面一节的定理1.2.4(几何算术平均收敛公式)的证明就可用数列极限来证明,我们来看几个例子. 例2.1.1 求lim n n a →∞,其中0a >.解:lim 1n n a →∞=.事实上,当1a =时,结论显然成立.现设1a >.记11n a α=-,则0α>. 由()11111nn a n n a αα⎛⎫=+≥+=+- ⎪⎝⎭,得 111n a a n--≤. (5)任给0ε>,由(5)式可见,当1a n N ε->=时,就有11n a ε-<.即11n a ε-<.所以lim 1n n a →∞=.对于01a <<的情况,因11a>,由上述结论知1lim1nn a→∞=,故11lim lim111/n nn n a a→∞→∞===.综合得0a >时,lim 1n n a →∞=.例2.1.2 定理1.2.4(1)式证明.证明:由lim n n a a →∞=,则0ε∀>,存在10N >,使当1n N >时,有/2n a a ε-<, 则()111211...1......nN N n a a a a aa a a a a a ann++++-≤-++-+-++-.令11...N c a a a a =-++-,那么121 (2)na a a n N c a nnn ε+++--≤+⋅.由lim0n c n→∞=,知存在20N >,使当2n N >时,有2c n ε<.再令{}12max ,N N N =,故当n N >时,由上述不等式知121 (2)222na a a n N a nn εεεεε+++--≤+⋅<+=.所以 12 (i)nn a a a a n→∞+++=.例 2.1.3 求7lim!nn n →∞.解:7lim0!nn n →∞=.事实上,7777777777771......!127817!6!n n n n n n=⋅⋅⋅≤⋅=⋅-.即77710!6!nn n-≤⋅.对0ε∀>,存在7716!N ε⎡⎤=⋅⎢⎥⎣⎦,则当n N >时,便有77710!6!nn nε-≤⋅<,所以7lim0!nn n →∞=. 注:上述例题中的7可用c 替换,即()lim00!nn cc n →∞=>.2.2 极限运算法则法我们知道如果每次求极限都用定义法的话,计算量会太大.若已知某些极限的大小,用定理1.2.1就可以简化数列极限的求法. 例2.2.1 求11101110 (i)...mm m m k k n k k a n a n a n a b n b nb n b ---→∞-++++++++,其中00m k m k a b ≤≠≠,,.解:分子分母同乘k n -,所求极限式化为1111011110 (i)...m km kkkm m kkn k k a na na na nb b nb n b n---------→∞-++++++++.由()lim 00n n αα-→∞=>,知,当m k =时,所求极限等于m ma b ;当m k <时,由于()00m k n n -→→,故此时所求极限等于0.综上所述,得到 11101110, (i)....0,mm m m m m kk n k k a k m a n a n a n a b b n b nb n b k m ---→∞-⎧=++++⎪=⎨++++⎪>⎩例2.2.2 求lim1nnn aa →∞+,其中1a ≠-.解: 若1a =,则显然有1lim12nn n aa →∞=+;若1a <,则由lim 0n n a →∞=得()lim lim /lim 101nnnnn n n aa a a →∞→∞→∞=+=+;若1a >,则11limlim111101nnn n naa a→∞→∞===+++.2.3 夹逼准则求法定理1.2.5又称迫敛性,它不仅给出了判定数列收敛的一种方法,而且也提供了一个求极限的工具. 例2.3.1 求极限()()1321lim 242n n n →∞⋅⋅⋅⋅-⋅⋅⋅⋅.解:因为()()()()2224412121212121n n n n n n n n =>-=+--=-⋅-,, 所以()()13211332121102421335212121n n n n n n n ⋅⋅⋅⋅-⋅-⋅-<<⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅-⋅++.因 1lim021n n →∞=+,再由迫敛性知()()1321lim242n n n →∞⋅⋅⋅⋅-=⋅⋅⋅⋅.例2.3.2 求数列{}n n 的极限.解: 记1n n n a n h ==+,这里()01n h n >>,则 ()()2112n nn n n n h h -=+>,由上式得 ()2011n h n n <<>-,从而有21111n n a h n ≤=+≤+- , (2)数列211n ⎧⎫⎪⎪+⎨⎬-⎪⎪⎩⎭是收敛于1的,因对任给的0ε>,取221N ε=+,则当n N >时有2111n ε+-<-.于是,不等式(2)的左右两边的极限皆为1,故由迫敛性得lim 1n n n →∞=.例2.3.3 设1a >及*k N ∈,求limk nn n a→∞.解:lim0k nn n a→∞=.事实上,先令1k =,把a 写作1η+,其中0η>.我们有 ()()()22201111...2nnn nn n n an n ηηηη<==<--++++.由于()()22lim021n n n η→∞=≥-,可见n n a ⎧⎫⎨⎬⎩⎭是无穷小.据等式()1/kk nnk n n aa ⎛⎫⎪= ⎪⎝⎭,注意到1/1ka>,由方才所述的结果()1/nk na ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是无穷小.最后的等式表明,k n n a ⎧⎫⎨⎬⎩⎭可表为有限个(k 个)无穷小的乘积,所以也是无穷小,即 lim0k nn n a→∞=.2.4 单调有界定理求法有的时候我们需要先判断一个数列是否收敛,再求其极限,此时该方法将会对我们有很大帮助,我们来看几个例子. 例2.4.1 求例2.1.3注解中的()lim00!nn cc n →∞=>.解:()lim00!nn cc n →∞=>.事实上,令*!nn cx n N n =∈,.当n c ≥时,()11n nn cx x x n +=≤+.因此{}n x 从某一项开始是递减的数列,并且显然有下界0.因此,由单调有界原理知极限lim n n x x →∞=存在,在等式()11n ncx x n +=+的等号两边令n →∞,得到00x x =⋅=,所以{}n x 为无穷小.从而()lim00!nn cc n →∞=>.例2.4.2 求极限lim 333n →∞⋅⋅⋅(n 个根号).解:设3331n a =⋅⋅⋅>,又由133a =<,设3n a <,则13333n n a a +=<⨯=. 因13n n n a a a +=>,故{}n a 单调递增. 综上知{}n a 单增有上界,所以{}n a 收敛. 令lim 13n n a a a →∞=≤≤,,由13n n a a +=, 对两边求极限得3a a =,故3a =. 2.5 函数极限法有些数列极限可先转化为函数极限求可能很方便,再利用归结原则即可求出数列极限.例2.5.1 用函数极限法求例2.1.1,即求lim n n a →∞.解:先求lim xx a →∞,因ln ln lim1/0lim lim lim 1x aa xxxxx x x a aee e →∞→∞→∞→∞=====,再由归结原则知lim 1n n a →∞=.例2.5.2 用函数极限求例2.3.2,即求lim n n n →∞.解:先求limxx x →∞.因ln ln limlimlim 1x xx xxxx x x ee e →∞→∞→∞====,再由归结原则知lim 1n n n →∞=.例2.5.3 用函数极限求例2.3.3,即设1a >及*k N ∈,求limk nn n a→∞.解:先求limk xx x a→∞.因()1!limlim (i)ln ln kk kxxxx x x xkxk a a aaa -→∞→∞→∞====(由洛比达法则),再由归结原则知lim0k nn n a→∞=.2.6 定积分定义法通项中含有!n 的数列极限,由于!n 的特殊性,直接求非常困难,若转化成定积分来求就相对容易多了.例2.6.1 求!limnn n n→∞.解:令!nn y n=,则11ln lnni i y nn==∑.而()++110011lim ln limlnln lim ln lim1ln 1nn n i i y xdx xdx nnεεεεεε→∞→∞→→=====---=-⎡⎤⎣⎦∑⎰⎰,也即ln lim 1n y →∞=-,所以1!lim limnn n n y en-→∞→∞==.例2.6.2 求极限2sin sin sin lim ...1112n n n n n n n πππ→∞⎛⎫⎪+++ ⎪+ ⎪++⎝⎭. 解:因为22sinsin...sin sinsinsin (111)12nnn n n n n n nππππππ+++<+++++++2sinsin...sin 1nnn nπππ+++<+,2sin sin...sin 12limlimsin sin ...sin 1112lim sin sin ...sin n n n nnn n n n n n n n n πππππππππππππ→∞→∞→∞+++⎡⎤⎛⎫=⋅⋅+++⎪⎢⎥++⎝⎭⎣⎦⎡⎤⎛⎫=+++⎪⎢⎥⎝⎭⎣⎦12sin xdx πππ==⎰,类似地2sinsin...sin lim 1n nnn nπππ→∞++++22122limsin sin ...sin 1n nn nn n ππππππ→∞⎡⎤⎛⎫=⋅⋅+++=⎪⎢⎥+⎝⎭⎣⎦,由夹逼准则知2sin sin sin 2lim ...1112n n n n n n n ππππ→∞⎛⎫ ⎪+++= ⎪+ ⎪++⎝⎭ .注:在此式的求解中用到了放缩法和迫敛性. 2.7 Stoltz 公式法Stoltz 公式,11limlim.n n n n n nn n y y y a x x x -→+∞→+∞--==-在求某些极限时非常方便,尤其是当1nn kk y a ==∑时特别有效.例2.7.1 同例2.1.2,定理1.2.4(1)式证明.证明:前面用N ε-定义法证明,现用Stoltz 公式证明. 令12...,n n n y a a a x n =+++=,则由Stoltz 公式得到()()()1212121 (i)......lim 1nn n n n a a a na a a a a a n n →∞-→∞++++++-+++=--limlim 1n n n n a a a →∞→∞===.例2.7.2 求112...lim kk kk n nn+→+∞+++.解: ()11112 (i)lim1kkkkk k k n n nn nnn +++→+∞→+∞+++=-- (Stoltz 公式)=()112111lim...1kk kk n k k nCn Cn+-→+∞++-+-- (二项式定理)=11111k C k +=+.2.8 几何算术平均收敛公式法上面我们用Stoltz 公式已得出定理1.2.4,下面我们通过例子会发现很多**nn,类型的数列极限可以用此方法来简化其求法. 例2.8.1 同例2.1.1一样求lim n n a →∞,其中0a >. 解:令123,...1n a a a a a =====,由定理1.2.4(2)知lim lim 1n n n n a a →∞→∞==.例2.8.2 同例2.3.2一样求lim n n n →∞.解:令()112,3, (1)n n a a n n ===-,,由定理1.2.4(2)知lim lim lim11n n n n n n n a n →∞→∞→∞===-.例2.8.3 同例2.6.1相似求lim!nn n n →∞.解:令()111nnn nn a n n +⎛⎫=+= ⎪⎝⎭,则()12312231234123nn nn a a a n+⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=()()11!!nnnnn n nn n n++=⋅.所以121!n n nnn a a a nn +⋅⋅⋅⋅⋅=⋅,也即121!nn nnn a a a n n =⋅⋅⋅⋅⋅⋅+,而由定理1.2.4(2)知121lim lim lim 1nnn n n n n a a a a e n →∞→∞→∞⎛⎫⋅⋅⋅⋅⋅==+= ⎪⎝⎭.故12limlimlim11!nn nn n n n n n a a a e e n n n →∞→∞→∞=⋅⋅⋅⋅⋅⋅=⋅=++.例2.8.3 求3123 (i)nn nn→∞++++.解:令(),1,2,3...n n a n n ==,则由定理1.2.4(1)知 3123 (i)lim lim1nnn n n n na n n→∞→∞→∞++++===.2.9 级数法若一个级数收敛,其通项趋于0(0n →),我们可以应用级数的一些性质来求数列极限,我们来看两个实例来领会其数学思想. 例2.9.1 用级数法求例2.1.3注()lim0!nn cc n →∞>.解:考虑级数!ncn ∑,由正项级数的比式判别法,因()1lim/lim011!!1n nn n ccc n n n +→∞→∞==<++,故级数!ncn ∑收敛,从而()lim00!nn cc n →∞=>.例2.9.2 用级数法求例2.3.3,即设1a >及*k N ∈,求limk nn n a→∞.解:考虑正项级数k nn a∑,由正项级数的比式判别法,因()11111lim/lim 1kkkn n n n n nn aa a n a+→∞→∞++⎛⎫=⋅=< ⎪⎝⎭, 故正项级数knn a∑收敛,所以lim0k nn n a→∞=.例2.9.3 求极限()()222111lim ...12n n n n →∞⎡⎤+++⎢⎥+⎢⎥⎣⎦.解: 因级数211n n∞=∑收敛,由级数收敛的柯西准则知,对0ε∀>,存在0N >, 使得当n N >时,21221111nn k k kkε-==-<∑∑,此即()()222111...12nn n ε+++<+,所以()()222111lim ...012n n n n →∞⎡⎤+++=⎢⎥+⎢⎥⎣⎦. 例2.9.4 求极限()212lim ...1n n n a aaa →∞⎛⎫+++>⎪⎝⎭. 解:令1x a=,所以1x <.考虑级数 1n n nx ∞=∑,因为()111limlim1n n nn n nn x a x a nx++→∞→∞+==<,所以此级数收敛.令 ()1nn s x nx ∞==∑,则()11n n s x x nx∞-==⋅∑.再令()11n n f x nx∞-==∑,()1111x x n nn n x f t dt ntdt xx∞∞-=====-∑∑⎰⎰.所以()()2111xf x xx '⎛⎫==⎪-⎝⎭-. 而 ()()()()122111xas x x f x x a --=⋅==--,所以()()122112lim ...1n n n a s x a a a a -→∞-⎛⎫+++== ⎪⎝⎭-.2.10 其它方法除去上述求数列极限的方法外,针对不同的题型可能还有不同的方法,我们可以再看几个例子.例2.10.1 求()22lim sin n n n π→∞+.解:对于这个数列极限可用三角函数的周期性. ()()2222lim sin lim sin n n n n n n n πππ→∞→∞+=+-=222lim sin lim sin111n n n n n nn ππ→∞→∞=++++=2sin 12π=.例2.10.2 设21101222n n a cc c a a +<<==+,,,证明:{}n a 收敛,并求其极限.解:对于这个极限可以先用中值定理来说明其收敛. 首先用数学归纳法可以证明 ()0,1,2...n a c n <<=. 事实上,102c a c <=<.假设01n a c <<<,则2210222222n n a c c cc c a c +<=+<+<+=.令()222c xf x =+,则()f x x '=.()()()111n n n n n n a a f a f a f a a ξ+--'-=-=⋅-=11n n n n a a c a a ξ--⋅-<-, (1)其中ξ介于n a 和1n a -之间.由于01c <<,再由(1)式知{}n a 为压缩数列,故收敛.设lim n n a l →∞=,则2c l c ≤≤.由于2122n n a c a +=+,所以 22,2022c ll l l c =+-+=.解得11l c =+-(舍去),11l c =--. 综上知lim 11n n a c →∞=--.注:对于这个题可也以采用单调有界原理证明其极限的存在性.函数极限一、函数极限的定义定义一:若当x 无限变大时,恒有|f(x)-a|<ε,其中ε是可以任意小的正数,则称当x 趋向无穷大时,函数f (x )趋向于a ,记作+∞→x lim f(x)=a 或f(x)→a(x→+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列、函数极限和函数连续性数列极限定义1(N ε-语言):设{}n a 是个数列,a 是一个常数,若0ε∀>,∃正整数N ,使得当n N >时,都有n a a ε-<,则称a 是数列{}n a 当n 无限增大时的极限,或称{}n a 收敛于a ,记作lim n n a a →+∞=,或()n a a n →→+∞.这时,也称{}n a 的极限存在.定义2(A N -语言):若0A >,∃正整数N ,使得当n N >时,都有n a A >,则称+∞是数列{}n a 当n 无限增大时的非正常极限,或称{}n a 发散于+∞,记作lim n n a →+∞=+∞或()n a n →+∞→+∞,这时,称{}n a 有非正常极限,对于,-∞∞的定义类似,就不作介绍了.为了后面数列极限的解法做铺垫,我们先介绍一些常用定理.1.2 数列极限求法的常用定理定理1.2.1(数列极限的四则运算法则) 若{}n a 和{}n b 为收敛数列,则{}{}{},,n n n n n n a b a b a b +-⋅也都是收敛数列,且有()()lim lim lim ,lim lim lim .n n n n n n n n n n n n n n a b a b a b a b →∞→∞→∞→∞→∞→∞±=±⋅=⋅若再假设0n b ≠及lim 0n n b →∞≠,则n n a b ⎧⎫⎨⎬⎩⎭也是收敛数列,且有lim lim /lim n n n n n n n a a b b →∞→∞→∞⎛⎫= ⎪⎝⎭. 定理1.2.2(单调有界定理) 在实数系中,有界的单调数列必有极限.定理1.2.3(∞Stoltz 公式) 设有数列{}n x ,{}n y ,其中{}n x 严格增,且lim n n x →+∞=+∞(注意:不必lim n n y →+∞=+∞).如果11lim n n n n n y y a x x -→+∞--=-(实数,,+∞-∞),则 11limlim .n n n n n n n n y y y a x x x -→+∞→+∞--==-定理1.2.3'(0Stoltz 公式) 设{}n x 严格减,且lim 0n n x →+∞=,lim 0n n y →+∞=.若11lim n n n n n y y a x x -→+∞--=-(实数,,+∞-∞),则 11limlim n n n n n n n n y y y a x x x -→+∞→+∞--==-.定理1.2.4(几何算术平均收敛公式) 设lim n n a a →∞=,则 (1)12 (i)nn a a a a n→∞+++=,(2)若()01,2,...n a n >=,则12lim ...n n n a a a a →∞=.定理1.2.5(夹逼准则)设收敛数列{}{},n n a b 都以a 为极限,数列{}n c 满足:存在正数0N ,当0n N >时,有 n n n a c b ≤≤, 则数列{}n c 收敛,且lim n n c a →∞=.定理1.2.6(归结原则)设f 在()0;U x δ'内有定义.()0lim x xf x →存在的充要条件是:对任何含于()0;Ux δ'且以0x 为极限的数列{}n x ,极限()lim n n f x →∞都存在且相等.数列极限的求法2.1 极限定义求法在用数列极限定义法求时,关键是找到正数N .我们前面一节的定理1.2.4(几何算术平均收敛公式)的证明就可用数列极限来证明,我们来看几个例子. 例2.1.1 求lim n n a →∞,其中0a >.解:lim 1n n a →∞=.事实上,当1a =时,结论显然成立.现设1a >.记11na α=-,则0α>. 由()11111nn a n n a αα⎛⎫=+≥+=+- ⎪⎝⎭,得 111na a n--≤. (5) 任给0ε>,由(5)式可见,当1a n N ε->=时,就有11n a ε-<.即11na ε-<.所以lim 1n n a →∞=.对于01a <<的情况,因11a >,由上述结论知1lim 1n n a→∞=,故11lim lim111/n nn n a a→∞→∞===. 综合得0a >时,lim 1n n a →∞=.例2.1.2 定理1.2.4(1)式证明.证明:由lim n n a a →∞=,则0ε∀>,存在10N >,使当1n N >时,有/2n a a ε-<, 则()111211 (1)......n N N n a a a a a a a a a a a a n n++++-≤-++-+-++-.令11...N c a a a a =-++-,那么121 (2)n a a a n N c a n n n ε+++--≤+⋅.由lim0n cn →∞=,知存在20N >,使当2n N >时,有2c n ε<. 再令{}12max ,N N N =,故当n N >时,由上述不等式知121 (2222)n a a a n N a n n εεεεε+++--≤+⋅<+=.所以 12 (i)nn a a a a n→∞+++=.例 2.1.3 求7lim !nn n →∞.解:7lim 0!nn n →∞=.事实上,7777777777771......!127817!6!n n n n n n=⋅⋅⋅≤⋅=⋅-. 即77710!6!n n n-≤⋅. 对0ε∀>,存在7716!N ε⎡⎤=⋅⎢⎥⎣⎦,则当n N >时,便有77710!6!n n nε-≤⋅<,所以7lim 0!n n n →∞=. 注:上述例题中的7可用c 替换,即()lim 00!nn c c n →∞=>.2.2 极限运算法则法我们知道如果每次求极限都用定义法的话,计算量会太大.若已知某些极限的大小,用定理1.2.1就可以简化数列极限的求法.例2.2.1 求11101110...lim ...m m m m k k n k k a n a n a n a b n b n b n b ---→∞-++++++++,其中00m k m k a b ≤≠≠,,.解:分子分母同乘k n -,所求极限式化为1111011110...lim ...m k m k k km m k k n k k a n a n a n a n b b n b n b n ---------→∞-++++++++. 由()lim 00n n αα-→∞=>,知,当m k =时,所求极限等于mma b ;当m k <时,由于()00m k n n -→→,故此时所求极限等于0.综上所述,得到11101110,...lim ....0,mmm m m m k k n k k a k ma n a n a n ab b n b n b n b k m---→∞-⎧=++++⎪=⎨++++⎪>⎩例2.2.2 求lim 1n n n a a →∞+,其中1a ≠-. 解: 若1a =,则显然有1lim 12n nn a a →∞=+; 若1a <,则由lim 0n n a →∞=得()lim lim /lim 101nn n nn n n a a a a →∞→∞→∞=+=+; 若1a >,则11lim lim 111101n n n n n a a a→∞→∞===+++. 2.3 夹逼准则求法定理1.2.5又称迫敛性,它不仅给出了判定数列收敛的一种方法,而且也提供了一个求极限的工具. 例2.3.1 求极限()()1321lim 242n n n →∞⋅⋅⋅⋅-⋅⋅⋅⋅.解:因为()()()()2224412121212121n n n n n n n n =>-=+--=-⋅-,, 所以()()13211332121102421335212121n n n n n n n ⋅⋅⋅⋅-⋅-⋅-<<⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅-⋅++. 因 1lim021n n →∞=+,再由迫敛性知 ()()1321lim 0242n n n →∞⋅⋅⋅⋅-=⋅⋅⋅⋅.例2.3.2 求数列{}nn 的极限.解: 记1n n n a n h ==+,这里()01n h n >>,则 ()()2112n nn n n n h h -=+>, 由上式得 ()2011n h n n <<>-,从而有 21111n n a h n ≤=+≤+- , (2) 数列211n ⎧⎫⎪⎪+⎨⎬-⎪⎪⎩⎭是收敛于1的,因对任给的0ε>,取221N ε=+,则当n N >时有2111n ε+-<-.于是,不等式(2)的左右两边的极限皆为1,故由迫敛性得 lim 1n n n →∞=.例2.3.3 设1a >及*k N ∈,求lim kn n n a→∞.解:lim 0kn n n a→∞=.事实上,先令1k =,把a 写作1η+,其中0η>.我们有 ()()()22201111 (2)nn n n n n n a n n ηηηη<==<--++++.由于()()22lim 021n n n η→∞=≥-,可见n n a ⎧⎫⎨⎬⎩⎭是无穷小.据等式 ()1/kk n n k n n a a ⎛⎫ ⎪=⎪⎝⎭, 注意到1/1ka>,由方才所述的结果()1/nk n a ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭是无穷小.最后的等式表明,k n n a ⎧⎫⎨⎬⎩⎭可表为有限个(k 个)无穷小的乘积,所以也是无穷小,即lim 0kn n n a→∞=.2.4 单调有界定理求法有的时候我们需要先判断一个数列是否收敛,再求其极限,此时该方法将会对我们有很大帮助,我们来看几个例子.例2.4.1 求例2.1.3注解中的()lim 00!nn c c n →∞=>.解:()lim 00!nn c c n →∞=>.事实上,令*!nn c x n N n =∈,.当n c ≥时,()11n nn cx x x n +=≤+. 因此{}n x 从某一项开始是递减的数列,并且显然有下界0.因此,由单调有界原理知极限lim n n x x →∞=存在,在等式()11n ncx x n +=+的等号两边令n →∞,得到00x x =⋅=,所以{}n x 为无穷小.从而()lim 00!nn c c n →∞=>.例2.4.2 求极限lim 333n →∞⋅⋅⋅(n 个根号).解:设3331n a =⋅⋅⋅>,又由133a =<,设3n a <,则13333n n a a +=<⨯=. 因13n n n a a a +=>,故{}n a 单调递增. 综上知{}n a 单增有上界,所以{}n a 收敛. 令lim 13n n a a a →∞=≤≤,,由13n n a a +=, 对两边求极限得3a a =,故3a =. 2.5 函数极限法有些数列极限可先转化为函数极限求可能很方便,再利用归结原则即可求出数列极限.例2.5.1 用函数极限法求例2.1.1,即求lim n n a →∞.解:先求lim x x a →∞,因ln ln lim1/0lim lim lim 1x a a xx xx x x x a aeee →∞→∞→∞→∞=====,再由归结原则知lim 1n n a →∞=.例2.5.2 用函数极限求例2.3.2,即求lim n n n →∞.解:先求lim x x x →∞.因ln ln lim0lim lim 1x x x xxx x x x eee →∞→∞→∞====,再由归结原则知lim 1n n n →∞=.例2.5.3 用函数极限求例2.3.3,即设1a >及*k N ∈,求lim k n n na→∞.解:先求lim kx x x a→∞.因()1!lim lim .....lim 0ln ln k k k x x x x x x x kx k a a a a a -→∞→∞→∞====(由洛比达法则),再由归结原则知lim 0kn n n a→∞=.2.6 定积分定义法通项中含有!n 的数列极限,由于!n 的特殊性,直接求非常困难,若转化成定积分来求就相对容易多了.例2.6.1 求!limnn n n→∞.解:令!nn y n =,则11ln ln n i iy n n==∑.而()++1100011lim ln lim ln ln lim ln lim 1ln 1n n n i iy xdx xdx n n εεεεεε→∞→∞→→=====---=-⎡⎤⎣⎦∑⎰⎰, 也即ln lim 1n y →∞=-,所以1!lim limnn n n y e n-→∞→∞==. 例2.6.2 求极限2sin sin sin lim ...1112n n n n n n n πππ→∞⎛⎫ ⎪+++ ⎪+ ⎪++⎝⎭. 解:因为22sin sin ...sin sin sin sin ...11112n n n n n n n n nππππππ+++<+++++++2sin sin ...sin 1n n n nπππ+++<+ ,2sin sin...sin 12lim lim sin sin ...sin 1112lim sin sin ...sin n n n n nn n n n n n n n n πππππππππππππ→∞→∞→∞+++⎡⎤⎛⎫=⋅⋅+++ ⎪⎢⎥++⎝⎭⎣⎦⎡⎤⎛⎫=+++ ⎪⎢⎥⎝⎭⎣⎦12sin xdx πππ==⎰,类似地2sinsin...sin lim1n nn n nπππ→∞++++ 22122lim sin sin ...sin 1n n n n n n ππππππ→∞⎡⎤⎛⎫=⋅⋅+++= ⎪⎢⎥+⎝⎭⎣⎦,由夹逼准则知2sin sin sin 2lim ...1112n n n n n n n ππππ→∞⎛⎫ ⎪+++= ⎪+ ⎪++⎝⎭ .注:在此式的求解中用到了放缩法和迫敛性. 2.7 Stoltz 公式法Stoltz 公式,11limlim .n n n n n n n n y y y a x x x -→+∞→+∞--==-在求某些极限时非常方便,尤其是当1nn k k y a ==∑时特别有效.例2.7.1 同例2.1.2,定理1.2.4(1)式证明.证明:前面用N ε-定义法证明,现用Stoltz 公式证明. 令12...,n n n y a a a x n =+++=,则由Stoltz 公式得到()()()1212121 (i)......lim 1n n n n n a a a na a a a a a n n →∞-→∞++++++-+++=--limlim 1nn n n a a a →∞→∞===. 例2.7.2 求112...lim k k kk n n n +→+∞+++. 解: ()11112...lim lim 1k k k kk k k n n n n n n n +++→+∞→+∞+++=-- (Stoltz 公式) =()112111lim...1kk kk n k k n C n C n+-→+∞++-+-- (二项式定理)=11111k C k +=+. 2.8 几何算术平均收敛公式法上面我们用Stoltz 公式已得出定理1.2.4,下面我们通过例子会发现很多**nn ,类型的数列极限可以用此方法来简化其求法. 例2.8.1 同例2.1.1一样求lim n n a →∞,其中0a >.解:令123,...1n a a a a a =====,由定理1.2.4(2)知lim lim 1n n n n a a →∞→∞==.例2.8.2 同例2.3.2一样求lim n n n →∞.解:令()112,3, (1)n na a n n ===-,,由定理1.2.4(2)知 lim lim lim 11n n n n n nn a n →∞→∞→∞===-.例2.8.3 同例2.6.1相似求lim!nn nn →∞. 解:令()111nnn nn a n n +⎛⎫=+= ⎪⎝⎭,则 ()12312231234123nn n n a a a n +⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅=()()11!!nnn nn n n n n n++=⋅. 所以121!n n nn n a a a n n +⋅⋅⋅⋅⋅=⋅, 也即121!n n nn n a a a n n =⋅⋅⋅⋅⋅⋅+,而由定理1.2.4(2)知 121lim lim lim 1nn n n n n n a a a a e n →∞→∞→∞⎛⎫⋅⋅⋅⋅⋅==+= ⎪⎝⎭.故12limlim lim 11!n n n n n n n n n a a a e e n n n →∞→∞→∞=⋅⋅⋅⋅⋅⋅=⋅=++. 例2.8.3 求3123...lim n n nn→∞++++.解:令(),1,2,3...n n a n n ==,则由定理1.2.4(1)知3123 (i)lim lim 1n n n n n n na n n→∞→∞→∞++++===.2.9 级数法若一个级数收敛,其通项趋于0(0n →),我们可以应用级数的一些性质来求数列极限,我们来看两个实例来领会其数学思想.例2.9.1 用级数法求例2.1.3注()lim 0!nn c c n →∞>.解:考虑级数!nc n ∑,由正项级数的比式判别法,因()1lim /lim 011!!1n n n n c c cn n n +→∞→∞==<++,故级数!nc n ∑收敛,从而()lim 00!n n c c n →∞=>.例2.9.2 用级数法求例2.3.3,即设1a >及*k N ∈,求lim kn n n a→∞.解:考虑正项级数kn n a∑,由正项级数的比式判别法,因()11111lim/lim 1kkk n n n n n n n a a a n a+→∞→∞++⎛⎫=⋅=< ⎪⎝⎭, 故正项级数kn n a∑收敛,所以lim 0k n n n a →∞=.例2.9.3 求极限()()222111lim ...12n n n n →∞⎡⎤+++⎢⎥+⎢⎥⎣⎦. 解: 因级数211n n∞=∑收敛,由级数收敛的柯西准则知,对0ε∀>,存在0N >, 使得当n N >时,21221111nn k k k k ε-==-<∑∑,此即()()222111...12n n n ε+++<+, 所以()()222111lim ...012n n n n →∞⎡⎤+++=⎢⎥+⎢⎥⎣⎦. 例2.9.4 求极限()212lim ...1n n n a a a a →∞⎛⎫+++> ⎪⎝⎭.解:令1x a =,所以1x <.考虑级数 1n n nx ∞=∑,因为()111lim lim1n n n n n nn x ax a nx ++→∞→∞+==<,所以此级数收敛.令 ()1nn s x nx ∞==∑,则()11n n s x x nx∞-==⋅∑.再令()11n n f x nx ∞-==∑,()1111xxn n n n xf t dt ntdt x x∞∞-=====-∑∑⎰⎰. 所以()()2111x f x x x '⎛⎫== ⎪-⎝⎭-. 而 ()()()()122111xa s x x f x x a --=⋅==--,所以()()122112lim ...1nn n a s x a a a a -→∞-⎛⎫+++== ⎪⎝⎭-. 2.10 其它方法除去上述求数列极限的方法外,针对不同的题型可能还有不同的方法,我们可以再看几个例子.例2.10.1 求()22limsin n n n π→∞+.解:对于这个数列极限可用三角函数的周期性. ()()2222limsin limsin n n n n n n n πππ→∞→∞+=+-=222lim sin lim sin 111n n n n n nnππ→∞→∞=++++=2sin 12π=.例2.10.2 设21101222nn a c c c a a +<<==+,,,证明:{}n a 收敛,并求其极限.解:对于这个极限可以先用中值定理来说明其收敛.首先用数学归纳法可以证明 ()0,1,2...n a c n <<=. 事实上,102ca c <=<.假设01n a c <<<, 则2210222222n n a c c c c ca c +<=+<+<+=.令()222c x f x =+,则()f x x '=.()()()111n n n n n n a a f a f a f a a ξ+--'-=-=⋅-=11n n n n a a c a a ξ--⋅-<-, (1)其中ξ介于n a 和1n a -之间.由于01c <<,再由(1)式知{}n a 为压缩数列,故收敛.设lim n n a l →∞=,则2cl c ≤≤. 由于2122nn a c a +=+,所以22,2022c l l l l c =+-+=.解得11l c =+-(舍去),11l c =--. 综上知lim 11n n a c →∞=--.注:对于这个题可也以采用单调有界原理证明其极限的存在性.函数极限一、函数极限的定义定义一:若当x 无限变大时,恒有|f(x)-a|<ε,其中ε是可以任意小的正数,则称当x 趋向无穷大时,函数f (x )趋向于a ,记作+∞→x lim f(x)=a 或f(x)→a(x→+∞)。

相关文档
最新文档