最新浙教版九年级数学下册1.2锐角三角函数的计算公开课优质PPT课件(12)

合集下载

新浙教版九年级数学下册第一章《锐角三角函数的计算》精品课件.ppt

新浙教版九年级数学下册第一章《锐角三角函数的计算》精品课件.ppt

w2 一辆汽车沿着一山坡行驶了100m,
34
2
5
其铅直高度上升了50m.求山坡与水平
6
面所成的锐角的大小.
7
w3. 图中的螺旋形由一系列直角三角形组
成.每个三角形都不得是以点O为一顶点.
w(1)求∠A0OA1,∠A1OA2,∠A2OA3,的大小. w(2)已知∠An-1OAn,是一个小于200的角,求 n的值.tanA7O8A 180.353, 6∴∠A7OA8=19.470.∴n=8.
sinABC101. AC 40 4
w那么A是多少 度呢? w要解决这问题,我们可以借助科学计算器.
w请与同伴交流你是怎么做的?
做一做 3
知识在于积累
w已知三角函数值求角度,要用到三个键, sin cos tan 和第二功能键Sin-1 cos-1 tan-1 和2ndf .
w例如,
SinA=0.9816 CosA=0.8607 tanA=0.1890
∴V型角的大小约550.
学化
呀!
随堂练习 7
真知在00m,其铅直高度 上升了50m.求山坡与水平面所成的锐角的大小.
咋办
?
w老师期望: w你具有成功的把握.
例题欣赏 5
行家看“门道”
w例2 如图,一名患者体内某重要器官后面有一肿瘤.
在接受放射性治疗时,为了最大限度地保证疗效,并且
tanA=56.78
按键的顺序 2ndf Sin-1 0 . 9 8 1 6 = 2ndf cos-1 0 . 8 6 0 7 = 2ndf tan-1 0 . 1 8 9 0 = 2ndf tan-1 5 6 . 7 8 =
显示结果
Sin-1=0.9816 =78.99184039 coS-1=0.8607 =30.60473007 tan-1=0.1890 =10.70265749

(课件)1.2 锐角三角函数的计算

(课件)1.2 锐角三角函数的计算
A.asin40°米 B.acos40°米
C.atan40°米 D.tan4a0°米
,第5题图)
6. 如图,根据图中已知数据,求
A
△ABC其余各边的长,各角的 a
度数和△ABC的面积.

β
C
2模型:
7. 如图,根据图中已知
A
数据,求AD.
你能得到作为“模型”的它给你
α
Ba
β
C
┌ D
带来的成功.
a
0.25×0.6249=0.156225,∵10秒钟电梯上升了20级,
∴小明上升的高度为:20×0.156225≈3.12米.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
谢谢观赏
You made my day!
我们,还在路上……
B 45° A
30° C
30° 45°┌
体会这两个图形的 B 4cm C D “模型”作用.将会助 你登上希望的峰顶.
这节课你收获了什么?
1.(4分)利用计算器求sin30°时,依次按键 sin 3 0 = ,则计 算器上显示的结果是 (A )

浙教版九年级下册锐角三角函数的计算(第2课时)课件

浙教版九年级下册锐角三角函数的计算(第2课时)课件
的天桥两端修建40m长的斜道。请问这条斜道的倾斜角是
多少?(如下图所示)
在Rt△ABC中,
sinA=
∠A是多少度呢?
前面我们学习了特殊角30°,45°,60°的三角函
数值,一些非特殊角(如17°56°89°等)的三角函数
值又怎么求呢?
这一节课我们就学习借助计算器来完成这个任务.
获取新知
一起探究
已知三角函数值求角度,要用到sin,cos,tan的
第1章 解直角三角形
1.2 第2课时 锐角三角函数的计算(2)
特殊角三角函数值
三角函数
角 度

3 0° 45 ° 6 0° 9 0°
sinα
0
1
2
2
2
3
2
1
cosα
1
3
2
2
2
1
2
0
tanα
0
3
3
1
3
不存在
cotα
不存在
3
1
3
3
0
随着人民生活水平的提高,私家小轿车越来越多,为
了交通安全及方便行人推车过天桥,某市政府要在10 m高
∴∠AOC=5044’21.01”∴∠AOB≈11.480
⌒ 11.48×1000π
≈200.3(m).
∴AB=
180
答:弯道长约为200.3m.
随堂演练
20020'4"
1.(1)sinA=0.3475 ,则A=
(精确到1")
(2)cosA=0.4273,则A= 64042'13"
(精确到1")
3
(1)sinβ=0.4511.(2)cosβ=0.7875. (3)

浙教版数学九年级下册1.2《锐角三角函数的计算(2)》教学课件 (共12张PPT)

浙教版数学九年级下册1.2《锐角三角函数的计算(2)》教学课件 (共12张PPT)

归纳总结
注意: 1、计算过程中应保留至少比结果精确度多1位的中间值。 2、度分秒是60进制,如果数值≥30则进1,否则省略。
返回(点我)
1.2 锐角三角函数的计算
——第2课时
学习目标
ቤተ መጻሕፍቲ ባይዱ
1、掌握使用计算器进行由已知三角函数值求对
应的锐角的计算; 2、应用上述计算解决简单的实际问题。
自学指导
结合思考题自学P(13)--(14)课内练习前内容,并完成:
课内练习
显示题目(点我)
1、要使用第二功能键必须先按哪个键? 2、例2中的题目如果要求改为精确到1°,答案是多少? 3、你觉得直角三角形内知道几个条件就可以求出所有边、角值?

浙教版数学九年级下册 1.1 锐角三角函数 课件(共25张PPT)

浙教版数学九年级下册  1.1 锐角三角函数 课件(共25张PPT)

观察以上计算结果,你发现了什么?
sinA=cosB ,cosA=sinB (∠A+∠B=90)
tanA·tanB=1
(∠A+∠B=90)
B
c
a

A
b
C
sin A a cos A b tan A a
c
c
b
sin B b cos B a
c
c
tan B b a
如图,在△ABC中,若AB=5,BC=3,则下列结论正确
锐角A,A′的余弦值的关系为( ) A
A.cosA=cosA′ B.cosA=3cosA′ C.3cosA=cosA′ D.不能确定 2.如图,已知P是射线OB上的任意一点,PM⊥OA于M,
且PM:OM=3:4,则cosα的值等于( C)
3 A.4
4 B.3
C.4 5
3
D.
5
3.在△ABC中,∠C=90°,∠A,∠B,∠C的对边分别是a,
是关于锐角α的三角函数。
AB AB AC
B
A
C
锐角α的正弦,余弦和正切统称∠α的三角函数.
比值 BC 叫做∠α的正弦(sine),记做sinα.
AB
BC
比值 AC
即sinα= AB
叫做∠α的余弦(cosine) ,记做cosα.
AB
即cosα= AC
AB 比值 叫做∠α的正切(tangent) ,记做tanα.
b,c,则下列各项中正确的是( ) B
A.a=c·sinB B.a=c·cosB C.a=c·tanB D.以上均不正确
4.在Rt△ABC中,∠C=90°,cosA= 2 ,则tanB等于( )
C

1.2 锐角三角函数的计算(课件)九年级数学下册(浙教版)

1.2 锐角三角函数的计算(课件)九年级数学下册(浙教版)
确的是( A )
A.计算已知正弦值的对应角度
B.计算已知余弦值的对应角度
C.计算一个角的正弦值
D.计算一个角的余弦值
当堂检测
3. 利用计算器求值:
(1) sin40°≈ 0.6428 (精确到0.0001);
(2) sin15°30′≈ 0.2672 (精确到 0.0001);
(3) 若sinα = 0.5225,则 α ≈ 31.5 (精确到 0.1°);
=
④ sin60°____2sin30°cos30°;
=
⑤ sin80°____2sin40°cos40°.
=
猜想:
已知0°<α<45°,则sin2α___2sinαcosα.
=
讲授新课
(2) 如图,在△ABC中,AB=AC=1,∠BAC=2α,请利用面积方法验证
(1) 中的结论.
1
1
证明:∵ S△ABC = AB ·sin2α ·AC = sin2α,

在Rt△ACD中,AC=DC·tan 37°≈15×0.75=11.25(m),
∴AB=AC-BC≈11.25-8.65=2.6(m).
答:广告牌AB的高度为2.6 m.
当堂检测
8.如图所示,电视塔高AB为610米,远处有一栋大楼,某人在楼底C处测得
塔顶B的仰角为45°,在楼顶D处测得塔顶B的仰角为39°.
数学(浙教版)
九年级 下册
第1章 解直角三角形
1.2 锐角三角函数的计算
学习目标
1.会使用科学计算器求锐角的三角函数值;
2.会根据锐角的三角函数值,借助科学计算器求锐角的大小;
3、熟练运用计算器解决锐角三角函数中的问题
温故知新

最新浙教版九年级数学下册教学课件全册

最新浙教版九年级数学下册教学课件全册
最新浙教版九年级数学下册 教学课件全册
第1章 解直角三角形 1.1 锐角三角函数
1.1 锐角三角函数(1)
锐角三角函数的定义
直角三角形ABC可以简记为Rt△ABC,你能 说出各条边的名称吗?
B
斜边 c
对边 a
┓┓
A
C
邻边 b
实际问题
某商场有一自动扶梯,其倾斜角为30°,高为7m, 扶梯的长度是多少?
作业
1.计算:(1)tan450-sin300; (2)cos600+sin450-tan300;
36 tan2 300 3 sin 600 2 cos 450.
2.如图,河岸AD,BC互相平行,桥AB垂直 于两岸.桥长12m,在C处看桥两端A,B,夹 角∠BCA=600. 求B,C间的距离(结果精确到1m).
提示
1.sinA,cosA,tanA 是在直角三角形中定义的, ∠A是锐角(注意数形结合,构造直角三角形).
2.sinA, cosA,tanA 是一个比值(数值). 3.sinA, cosA, tanA 的大小只与∠A的大小有 关,而与直角三角形的边长无关.
小练习
1、如图1,在Rt△MNP中,∠N=90゜. ∠P的对边是_________,∠P的邻边是___________; ∠M的对边是________,∠M的邻边是___________;
1 2
(C) 小于 3
2
(B)大于
1 2
(D)大于 3
2
☆ 应用练习 1.已知角,求值 2.已知值,求角 3. 确定值的范围 4. 确定角的范围
确定角的范围
3. 当∠A为锐角,且tan A的 值大于 3 时,∠A( B )
3
(A)小于30° (B)大于30°

新浙教版九年级数学下册第一章《三角函数(2)》公开课课件

新浙教版九年级数学下册第一章《三角函数(2)》公开课课件

c a
tanA= a tanB= b
A
b
a

b
C
锐角A的正弦、余弦、和正切统称∠A的三角函数
w如图,观察一副三角板: w它们其中有几个锐角?分别是多少度?
w(1)sin300等于多少?
450
w(2)cos300等于多少? w(3)tan300等于多少?
450 ┌
300600 ┌来自w请与同伴交流你是怎么想的?又是怎么做的?
重新认识和评价.
w根据上面的计算,完成下表:<特殊角的三角函数值表>
做一做
B
2
1
45°
A
C
1
Sin45 ° = 2
2
cos45°= 2
2
tan45°= 1
cot45°= 1
做一做
B
2
3
60°
A
C
1
sin60°= 3
2
cos60°= 1 2
tan60°= 3
cot60°= 3
3
特殊角的三角函数值表
1.1锐角三角函数(2)
n 300,450,600角的三角函数值
脑中有“图”,心中有 “式”
w直角三角形中边与角的关系:锐角三角函数.
w在直角三角形中,若一个锐角确定,那么这个角的对边,
邻边和斜边之间的比值也随之确定.
sin A a , cos A b ,
c
c
B
sin B b , c
cosB a , c
w要能记 住有多 好
三角函数 锐角α
正弦sinα
余弦cosα
正切tanα
300
1
2
3
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档