求双曲线离心率范围的八种方法
求离心率取值范围的八种方法-求离心率的方法总结

为 , 焦点 到相 应 准 线 的 距 离 不 小 于 1 则 该 椭 圆 的 离 .
心 率 的 取值 范 围是 (
A.( , ) 1
)
B ( ) . 0,
解 析 : z一 2 C
解 析 :设 F一目 由 I — l :2 l , PF1 l PF2 1 a, PF】 一 l
・
5 ・ 4
数 学教 育研 究
21 0 1年第 4 期
4j PF
得I 警 l 警. 目 :F= ' l ' 一 P P 一 . F 2 一s
1 7 9
焦 点 F作 双 曲线 在 第 一 , 象 限 的渐 近 线 的垂 线 z若 z 三 . 与 曲 线 C的 两 支 各 有 一 个 交 点 . 双 曲 线 离 心 率 的 取 求 值范围.
2 1 年 第 4期 01
数 学 教 育 研 究
・ 3 5 ・
求 离 心率 取值 范 围的八 种方 法
方 海 兵 ( 安徽省太和县第八中学 260) 360
离 , 是 圆 锥 曲 线 的 一 个 重 要 性 质 , 近 几 年 高 l f 率 在
. ・ .
考 中频 繁 出现 , 求 离 心 率 的 取 值 范 围 又 是 较 为 复 杂 而 的 一种 , 面 介 绍 八 种 求 离 心 率 的 方 法 , 大 家 参 考 . 下 供
<2
.
’ . .
2 e< 5 . √ 。 P . < 。 ‘ <√ . l < ‘ 选 B .故 .
,
又 ・ . ・
一 1 .a - C ≥ ・ 2 ・ ≥ 2 2 .b ≥ .
双曲线离心率如何求——从一道高考真题谈起

双曲线离心率如何求从一道高考真题谈起ʏ河南省禹州市第一高级中学 冯会远求双曲线的离心率,是高考常考题型㊂那么双曲线的离心率该如何求呢?让我们从一道高考真题谈起㊂题目:(2023年高考新课标Ⅰ卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1㊁F 2,点A 在双曲线C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则双曲线C 的离心率为㊂分析:方法1:利用双曲线的定义与向量数量积的几何意义得到|A F 2|,|B F 2|,|B F 1|,|A F 1|关于a ,m 的表达式,从而利用勾股定理求得a =m ,最后利用余弦定理得到a ,c 的齐次方程,进行得解㊂方法2:依题意设出各点坐标,从而由向量坐标运算求得x 0=53c ,y 0=-23t ,t 2=4c 2,将点A 代入双曲线C 的方程得到关于a ,b ,c 的齐次方程,最后得解㊂图1解析:(方法1)依题意,如图1,设|A F 2|=2m ,则|B F 2|=3m =|B F 1|,|A F 1|=2a +2m ㊂在R t әA B F 1中,9m 2+(2a +2m )2=25m 2,则(a +3m )(a -m )=0,故a =m 或a =-3m(舍去)㊂所以|A F 1|=4a ,|A F 2|=2a ,|B F 2|=|B F 1|=3a ,则|A B |=5a ㊂故c o s øF 1A F 2=|A F 1||A B |=4a 5a =45㊂所以在әA F 1F 2中,c o søF 1A F 2=16a 2+4a 2-4c 22ˑ4a ˑ2a=45,整理得5c 2=9a 2㊂故e =c a =355㊂(方法2)依题意,得F 1(-c ,0),F 2(c ,0),令A (x 0,y 0),B (0,t )㊂因为F 2Aң=-23F 2B ң,所以(x 0-c ,y 0)=-23(-c ,t ),则x 0=53c ,y 0=-23t ㊂又F 1A ңʅF 1B ң,所以F 1A ң㊃F 1B ң=83c ,-23t㊃(c ,t )=83c 2-23t 2=0,则t 2=4c 2㊂又点A 在双曲线C 上,则259c 2a 2-49t 2b2=1,整理得25c 29a 2-4t 29b 2=1,即25c 29a 2-16c29b2=1㊂所以25c 2b 2-16c 2a 2=9a 2b 2,即25c 2(c 2-a 2)-16a 2c 2=9a 2(c 2-a 2)㊂整理得25c 4-50a 2c 2+9a 4=0㊂则(5c 2-9a 2)(5c 2-a 2)=0,解得5c 2=9a 2或5c 2=a 2㊂又e >1,所以e =355或e =55(舍去)㊂故e =355㊂点评:解决过双曲线焦点的三角形的关键是充分利用双曲线的定义,结合勾股定理与余弦定理得到关于a ,b ,c 的齐次方程,从而得解㊂从这道高考真题的解法可以看出,双曲线离心率的求法主要有两种方法:定义法和方程法㊂我们再来看几个变式题㊂变式1:过双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左焦点F ,作x 2+y 2=a 2的一条切线,设切点为T ,该切线与双曲线E 在第一象限交于点A ,若F A ң=3F T ң,则双曲线E 的离心率为( )㊂A.3 B .5C .132 D .152分析:取线段A T 中点,根据给定条件,结03 解题篇 经典题突破方法 高二数学 2023年12月合双曲线定义及勾股定理解答㊂图2解析:如图2,令双曲线E 的右焦点为F ',半焦距为c ,取线段A T 中点M ,连接O T ,A F ',F 'M ㊂因为F A 切圆x 2+y2=a 2于T ,所以O T ʅF A ,|F T |=|O F |2-|O T |2=c 2-a 2=b ㊂因为F A ң=3F T ң,所以|A M |=|M T |=|F T |=b ,|A F '|=|A F |-2a =3b -2a ㊂而O 为F F '的中点,于是F 'M ʊO T ,即F 'M ʅA F ,|F 'M |=2|O T |=2a ㊂在R t әA F 'M 中,(2a )2+b 2=(3b -2a )2,整理得b a =32㊂所以双曲线E 的离心率e =ca=1+b 2a2=132,选C ㊂点评:本题采用了定义法,关键是应用双曲线的定义和几何图形的性质,求出a 与b 的关系式,进而再通过a 2+b 2=c 2,来求a 与c 的关系式,即双曲线的离心率㊂变式2:已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1㊁F 2,点M 在双曲线E 上,әF 1M F 2为直角三角形,O 为坐标原点,作O N ʅM F 1,垂足为N ,若2MN ң=3N F 1ң,则双曲线E 的离心率为㊂分析:根据给定条件,确定直角三角形的直角顶点位置,建立方程并结合双曲线定义求出|M F 1|,|M F 2|,再借助相似三角形性质列式求解㊂图3解析:әF 1M F 2为直角三角形,显然øM F 1F 2ʂ90ʎ,否则N 与F 1重合㊂若øF 1M F 2=90ʎ,由O N ʅM F 1,得O N ʊM F 2,则N 为M F 1的中点,与2MN ң=3N F 1ң矛盾㊂于是øM F 2F 1=90ʎ,即M F 2ʅx 轴,如图3㊂令双曲线半焦距为c ,由x =c ,x 2a 2-y 2b2=1,得y 2=b 4a2㊂因此,|M F 2|=b 2a ,|M F 1|=b2a +2a =a 2+c 2a㊂由2MN ң=3N F 1ң,得|N F 1|=25|M F 1|=2(a 2+c 2)5a㊂显然әO N F 1ʐәM F 2F 1,则|N F 1||F 1F 2|=|O F 1||M F 1|,即a 2+c 25a c =a c a 2+c2,整理得a 2+c 2=5a c ㊂则e 2-5e +1=0,解得e =5+12或e =5-12(舍去),所以双曲线E 的离心率为5+12㊂点评:本题采用了方程法,即通过建立关于离心率的方程来求得离心率,解答的关键是充分利用几何图形中相似三角形的对应边成比例建立方程㊂变式3:双曲线C :x 2a 2-y2b 2=1(a >0,b >),过虚轴端点且平行x 轴的直线交双曲线C 于A ,B 两点,F 为双曲线的一个焦点,且A F ʅB F ,则该双曲线的离心率e 为㊂分析:解决本题的落脚点是 A F ʅB F ,对于解决线线垂直问题,高中阶段我们常用的策略有:(1)两条直线垂直且斜率存在,则两条直线斜率之积等于-1;(2)考虑三边边长,利用勾股定理构造直角三角形;(3)转化为向量问题,两条垂线对应向量的数量积为零;(4)利用直角三角形的几何性质㊂解析:(方法1,利用 两条直线垂直且斜率存在,则两直线斜率之积等于-1)如图4,已知A ,B 两点的纵坐标都为b ,将b 代入双曲线方程得x =ʃ2a ,所以A (-2a ,b ),B (2a ,b )㊂13解题篇 经典题突破方法 高二数学 2023年12月图4设F (c ,0)为双曲线右焦点,则k A F =-bc +2a ,k B F =-bc -2a㊂因为A F ʅB F ,所以k A F ㊃k B F =-b c +2a ㊃-bc -2a=-1,整理得c 2+b 2=2a 2㊂①易知c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂离心率e =1+ba2=62㊂(方法2,әA F B 是直角三角形,利用勾股定理解题)根据方法1可得A (-2a ,b ),B (2a ,b )㊂设F (c ,0)为双曲线的右焦点,则:|A B |=22a ,|A F |=(c +2a )2+b 2,|B F |=(c -2a )2+b 2㊂因为A F ʅB F ,所以由勾股定理得:|A F |2+|B F |2=|A B |2,即(c +2a )2+b 2+(c -2a )2+b 2=8a 2㊂整理得c 2+b 2=2a 2㊂①又在双曲线中有c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂故离心率e =1+ba2=62㊂(方法3,转化为向量求解)根据方法1可得A F ң=(c +2a ,-b ),B F ң=(c -2a ,-b )㊂因为A F ʅB F ,所以A F ңʅB F ң㊂则(c -2a )(c +2a )+b 2=0,整理得c 2+b 2=2a 2㊂①又双曲线中有c 2=a 2+b 2㊂②由①②,得b 2a2=12㊂故离心率e =1+ba2=62㊂(方法4,转化为直角三角形性质求解)由方法2可得|A B |=22a ,如图5,设图5虚轴端点为C ,连接C F ,则|C F |=|A B |2=2a ㊂即c 2+b 2=2a ,c 2+b 2=2a 2㊂后面过程与前三种方法相同㊂(方法5,转化为双曲线定义求解)图6如图6,设虚轴端点为C ,连接C F ,则|C F |=|C A |=|C B |=2a ㊂由题意|A F |-|B F |=2a ,|A F |2+|B F |2=8a 2,得|A F |=(3+1)a ,|B F |=(3-1)a ㊂t a n øF A B =|B F ||A F |=(3-1)a(3+1)a=2-3,则t a nøF C B =t a n 2øF A B =33,故øF C B =30ʎ,øF C O =60ʎ㊂因为s i n øF C O =|O F ||C F |,所以s i n 60ʎ=c2a,则e =62㊂点评:双曲线有两个虚轴端点以及两个焦点,本题未明确给出哪个端点哪个焦点,看似让人无从下手,实则增加了问题的灵活性,同学们只需根据双曲线的对称性,任意选取其中的一个虚轴端点和焦点即可解决本题㊂方法总结:离心率是双曲线最重要的几何性质,求离心率(或离心率的取值范围),常见有两种方法:①求出a ,c ,代入公式e =ca ;②只需要根据条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式两边分别除以a 或a 2转化为关于e的方程,解方程即可得离心率e 的值㊂当求双曲线的离心率时一定要注意数形结合思想和双曲线定义的应用㊂(责任编辑 徐利杰)23 解题篇 经典题突破方法 高二数学 2023年12月。
双曲线离心率常见题型

一、求双曲线的离心率及其范围。
例1:已知21,F F 分别是双曲线122
22=-b
y a x 的左右焦点,过1F 垂直于x 轴的直线与双曲线交于B A ,两点,若2ABF ∆是直角三角形,求双曲线的离心率。
答案:21+
=e 变式:
1、若2ABF ∆是等边三角形,求双曲线的离心率。
答案:3=e
2、若2ABF ∆是锐角三角形,求双曲线的离心率。
答案:)21,1(+
∈e 3、若2ABF ∆是钝角三角形,求双曲线的离心率。
答案:),21(+∞+∈e
例2:已知21,F F 分别是双曲线12222=-b
y a x 的左右焦点,过2F 且倾斜角的为 60的直线与双曲线的右支有且仅有一个交点,求双曲线的离心率的取值范围。
答案:),2[+∞∈e
例3:过双曲线122
22=-b
y a x 的右焦点2F 作垂直于渐近线的的直线与双曲线的两支都相交,求双曲线的离心率的取值范围。
答案:),2(+∞∈e
二、直线1-=kx y 与双曲线42
2=-y x 没有公共点,求k 的取值范围 2
5,25>-<k k 或 变式1、直线1-=kx y 与双曲线422=-y x 有两个公共点,求k 的取值范围
)2
5,1()1,1()1,25(⋃-⋃-- 变式2、直线1-=kx y 与双曲线422=-y x 只有一个公共点,求k 的取值范围1,2
5±±=k k 或 变式3、直线1-=kx y 与双曲线422=-y x 的左支有两个公共点,求k 的取值范围 )1,25(--。
如何求双曲线的离心率

%
2 姨 3 -1
%
故选D. = 姨 3 +1,
%
与渐近线y=
b 得出其斜率的乘积为-1, 进而求得b和a, x垂直, c a
点评 : 本题把双曲线的问题放在正六边形中考查 , 情境新 颖 , 综合考查多方面的能力 , 掌握正六边形的性质是解决本题的 基础 . 利用性质得出计算 2a=|EC|-|FE| 的值是解题的关键 . 例 6 (2012 年浙江杭州第二中学高三模拟) 如图 3, F2为双
如何 求 双 曲
离心率 的 线
黄 健
筅湖北省广水市育才高中
也可求出渐近线的方程, 即
b % 2 当双曲线的 = 姨e -1 . 但要注意, a x2 y 2 (a>0, - =1 a2 b2
焦点所在的坐标轴不确定时上述两类问题都有两解.
例 1 (2012 年湖北黄冈高三模拟) 双曲线
%
则它的离心率e=______. ) 的一条渐近线方程为y= 姨 2 x, b>0 2 由于新课标降低了对双曲线的要求, 双曲线中基本知识必然 成为高考考查的热点, 考查中常常涉及到双曲线基本量 (a、 b、 c、 ) 之间的关系以及双曲线的渐近线, 特别是双曲线的离心率, 求 e 双曲线离心率涉及到解析几何 、 平面几何、 代数等多个知识点, 综合性强, 方法灵活, 解题关键是挖掘题中的隐含条件, 能够体 现双曲线解题的技巧与方法. 下面通过具体例子分类解析如何 求解双曲线的离心率.
一 、利用渐近线与离心率的关系求解
双曲线的渐近线也是用来反映双曲线的开口大小的程度 的, 所以双曲线的离心率与渐近线之间有着密切的联系, 二者之 间可以互求. 已知渐近线的方程时,可得 b a +b =1+ a a2
求离心率的范围问题整理分类

求离心率的范围问题求离心率范围的方法 一、建立不等式法:1.利用曲线的范围建立不等关系。
2.利用线段长度的大小建立不等关系。
F 1,F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为椭圆上的任意一点,PF 1|∈[a -c ,a +c ];F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线上的任一点,|PF 1|≥c -a .3.利用角度长度的大小建立不等关系。
4.利用题目不等关系建立不等关系。
5. 利用判别式建立不等关系。
6.利用与双曲线渐近线的斜率比较建立不等关系。
7.利用基本不等式,建立不等关系。
二、函数法:1. 根据题设条件,如曲线的定义、等量关系等条件建立离心率和其他一个变量的函数关系式;2.通过确定函数的定义域;3.利用函数求值域的方法求解离心率的范围.练习利用曲线的范围建立不等关系1.F 1,F 2是椭圆x 2a 2+y2b 2=1(a>b>0)的左、右焦点,若椭圆上存在点P ,使∠F 1PF 2=90°,求椭圆的离心率的取值范围.2.A 是椭圆长轴的一个端点,O 是椭圆的中心,若椭圆上存在一点P ,使∠OPA = , 则椭圆离心率的范围是_________.3.设12,F F 为椭圆22221(0)x y a b a b +=>>的左、右焦点,且12||2F F c =,若椭圆上存在点P 使得212||||2PF PF c ⋅=,则椭圆的离心率的最小值为( )A .12B .13 C.2 D.32π4.5.设F 1(-c ,0),F 2(c ,0)分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c上存在点P ,使线段PF 1的中垂线过点F 2,则椭圆离心率的取值范围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫22,1 D.⎣⎢⎡⎭⎪⎫33,1 6.已知点()()000,P x y x a ≠±在椭圆()2222:10x y C a b a b+=>>上,若点M 为椭圆C 的右顶点,且PO PM ⊥(O为坐标原点),则椭圆C 的离心率e 的取值范围是( )A .⎛ ⎝⎭B .()0,1C .⎫⎪⎪⎝⎭D .⎛ ⎝⎭利用线段长度的大小建立不等关系7. 设点P 在双曲线)0b ,0a (1by a x 2222>>=-的右支上,双曲线两焦点21F F 、,|PF |4|PF |21=,求双曲线离心率的取值范围。
离心率的五种求法

离心率的五种求法离心率是圆锥曲线中的一个重要的几何性质,在高考中频繁出现. 椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出,a c ,求解e 已知标准方程或,a c 易求时,可利用离心率公式c e a=来求解。
例1. 过双曲线C :)0b (1by x 222>=-的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是( )A. 10B. 5C.310D. 25分析:这里的1,a c ==2b ,即可利用定义求解。
解:易知A (-1,0),则直线l 的方程为1x y +=。
直线与两条渐近线bx y -=和bx y =的交点分别为B )1b b ,1b 1(++-、C )1b b,1b 1(--,又|AB|=|BC|,可解得9b 2=,则10c =故有10ace ==,从而选A 。
二、变用公式)c e a =双曲线,)c e a ==椭圆,整体求出e例2. 已知双曲线22221(0,0)x y a b a b -=>>的一条渐近线方程为43y x =,则双曲线的离心率为( ) A.35 B. 34C.45D.23 分析:本题已知b a=34,不能直接求出a 、c ,可用整体代入套用公式。
解:因为双曲线的一条渐近线方程为43y x =,所以 43b a =,则53c e a ===,从而选A 。
1.设双曲线(a >0,b >0)的渐近线与抛物线21y x =+相切,则该双曲线的离心率等于( C )A. C. D.解:由题双曲线的一条渐近线方程为,代入抛物线方程整理得,因渐近线与抛物线相切,所以,即224b a =e ∴===2.过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为.若12AB BC =uur uu u r,则双曲线的离心率是 ( )A .B .C .D . 答案:C【解析】对于,则直线方程为,直线与两渐近线的交点为B ,C ,,,222,4AB BC a b =∴=uur uu u r 因此 ,即224b a =,e ∴===3.过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( ) A . B . C . D .【解析】因为,再由有即2223b a =从而可得e ∴===B三、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
离心率的五种求法

离心率的五种求法椭圆的离心率10<<e ,双曲线的离心率1>e ,抛物线的离心率1=e . 一、直接求出a 、c ,求解e已知圆锥曲线的标准方程或a 、c 易求时,可利用率心率公式ace =来解决。
例1:已知双曲线1222=-y ax (0>a )的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A.23 B. 23 C. 26 D. 332解:抛物线x y 62-=的准线是23=x ,即双曲线的右准线23122=-==c c c a x ,则02322=--c c ,解得2=c ,3=a ,332==a c e ,故选D变式练习1:若椭圆经过原点,且焦点为()0,11F 、()0,32F ,则其离心率为( )A.43 B. 32 C. 21 D. 41 解:由()0,11F 、()0,32F 知 132-=c ,∴1=c ,又∵椭圆过原点,∴1=-c a ,3=+c a ,∴2=a ,1=c ,所以离心率21==a c e .故选C.变式练习2:如果双曲线的实半轴长为2,焦距为6,那么双曲线的离心率为( )A.23 B. 26 C. 23 D 2 解:由题设2=a ,62=c ,则3=c ,23==a c e ,因此选C 变式练习3:点P (-3,1)在椭圆12222=+by a x (0>>b a )的左准线上,过点P 且方向为()5,2-=a 的光线,经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A33 B 31 C 22D 21 解:由题意知,入射光线为()3251+-=-x y ,关于2-=y 的反射光线(对称关系)为0525=+-y x ,则⎪⎩⎪⎨⎧=+-=05532c c a 解得3=a ,1=c ,则33==a c e ,故选A二、构造a 、c 的齐次式,解出e根据题设条件,借助a 、b 、c 之间的关系,构造a 、c 的关系(特别是齐二次式),进而得到关于e 的一元方程,从而解得离心率e 。
离心率问题的7种题型15种方法(教师版)

目录题型一:椭圆离心率的求值 2方法一:定义法求离心率 2方法二:运用通径求离心率 3方法三:运用e=e=1+k2λ-1λ+1求离心率 4方法四:运用e=c a=sin(α+β)sinα+sinβ求离心率 4方法五:运用k OM⋅k AB=-b2a2求离心率 5方法六:运用正弦定理、余弦定理、三角函数求离心率 6方法七:运用相似比求离心率 6方法八:求出点的坐标带入椭圆方程建立等式 7方法九:运用几何关系求离心率 7题型二:双曲线离心率的求解 9方法一:定义法关系求离心率 10方法二:运用渐近线求离心率 10方法三:运用e=1+k2λ-1λ+1求离心率 11方法四:运用e=c a=sin(α+β)sinα-sinβ求离心率 11方法五:运用结论k OM•k AB=b2a2求离心率 12方法六:运用几何关系求离心率 13题型三:椭圆、双曲线离心率综合运用 15题型四:根据已知不等式求离心率的取值范围 17题型五:根据顶角建立不等式求离心率范围 18题型六:根据焦半径范围求离心率范围 19题型七:题型七根据渐近线求离心率的取值范围 21离心率问题的7种题型15种方法1离心率问题的7种题型15种方法求离心率常用公式椭圆公式1:e =ca 公式2:e =1-b 2a2证明:e =c a=c 2a 2=a 2−b 2a 2=1-b 2a 2公式3:已知椭圆方程为x 2a 2+y 2b2=1(a >b >0),两焦点分别为F 1,F 2,设焦点三角形PF 1F 2,∠PF 1F 2=α,∠PF 2F 1=β,则椭圆的离心率e =sin (α+β)sin α+sin β证明:∠PF 1F 2=α,∠PF 2F 1=β,由正弦定理得:F 1F 2 sin (180o −α−β)=PF 2 sin α=PF 1sin β由等比定理得:F 1F 2 sin (α+β)=PF 1 +PF 2 sin α+sin β,即2c sin (α+β)=2a sin α+sin β∴e =c a =sin (α+β)sin α+sin β。