面矩和惯性矩

合集下载

惯性矩总结(含常用惯性矩公式)==

惯性矩总结(含常用惯性矩公式)==
2 Ix I A a x 2 2 C C2
30 200 3 57.52 200 30 mm 4 3.98 107 mm 4 12
例2 求 I x 和 I y C C 解:
200 yC
7 4
I xC I
xC
I 6.01 10 mm
xC
200 yC
7 4
I xC I

xC
I 6.01 10 mm
xC
30
I
xC1
C
200 157.5
I
xC
I
xC 1
a A1
2 1
a1 57.5 xC a2 57.5 xC2
30
II
200 30 3 57.52 200 30 mm 4 12 2.03 107 mm 4
ix
Ix ——图形对 x 轴的惯性半径 A
iy
单位:m
Iy A
——图形对 y 轴的惯性半径
三、惯性半径
试问:
即: 注意:
2 2 A yC I x y 2dA A i x
A
?
i x yC
i x yC
?
i y xC
四、平行移轴公式
一、定理推导 二、应用
一、定理推导
30
I
xC1
C
200 157.5
I yC I yC I yC
a1 57.5 xC a2 57.5 xC2
30
II
30 200 3 200 30 3 12 12 2.05 107 mm 4
y
h2
dy dA y

大一工程力学惯性矩知识点

大一工程力学惯性矩知识点

大一工程力学惯性矩知识点惯性矩是工程力学中一个重要的概念,它描述了物体在旋转运动中的惯性特性。

在本文中,我们将详细介绍大一工程力学中关于惯性矩的知识点,包括定义、计算方法、应用以及相关定理等内容。

一、惯性矩的定义惯性矩是描述物体对于旋转运动的惯性特性的物理量。

对于质量分布连续的物体,其惯性矩可以通过质量元的质量和位置来计算。

对于二维情况下的惯性矩,可以用面积元的面积和位置来计算;对于三维情况下的惯性矩,则需要用到体积元的体积和位置。

二、计算惯性矩的方法1. 单个质点的惯性矩对于一个质点,其惯性矩可以通过质点的质量和到旋转轴的距离来计算。

质点的惯性矩表示为I = mr^2,其中m为质量,r为距离。

2. 刚体的惯性矩对于刚体,其惯性矩需要通过对刚体进行划分,然后计算各个部分的惯性矩再求和来得到。

常见的计算刚体惯性矩的方法有平行轴定理和垂直轴定理。

平行轴定理指出,一个物体绕通过其质心的轴的惯性矩等于绕通过平行于该轴且距离为d的另一轴旋转的惯性矩加上整个物体质量乘以d的平方。

即I = I_cm + md^2,其中I_cm为绕质心轴的惯性矩,d为距离。

垂直轴定理指出,一个物体绕通过其质心垂直于平面的轴的惯性矩等于绕通过任意垂直于该轴的轴旋转的惯性矩之和。

即I = I_x + I_y + I_z,其中I_x、I_y和I_z分别为绕x、y、z轴的惯性矩。

3. 复合图形的惯性矩对于复合图形,可以将其分解为多个简单几何形状,然后计算每个简单几何形状的惯性矩再求和来得到复合图形的总惯性矩。

三、惯性矩的应用惯性矩在工程力学中有广泛的应用。

其中一个重要的应用是计算刚体的转动惯量,它是刻画刚体对于旋转的惯性特性。

通过计算刚体的转动惯量,可以帮助我们理解刚体在旋转运动中的行为,进而进行相关的工程设计和分析。

此外,惯性矩还在工程设计中有着重要作用。

例如,在机械设计中,对于旋转部件的设计,需要合理选择材料和尺寸以满足设计要求。

惯性矩抵抗矩面积矩

惯性矩抵抗矩面积矩

A
A
二、形心:(等厚均质板的质心与形心重
合。 )

¯x

x dm m
m
质心 :
y dm
¯y m

m
等厚 均质
等厚 均质
x trd AtrA
A
xd A A
A
Sy A
y trd AtrA
A
yd A
A
A
Sx A
等于形心坐标

累加式:x y
xi Ai
A (正负面积法公 ) yi Ai
A
¯x y¯
Sy Ax Ai xi Sx Ay Ai yi
例 I-1-1 是确定下图的形心。
解 : 组合图形,用正负面积法解之。
C2 C1
y
1、用正面积法求解,图形分割及坐标如
C1(0,0) 图(a)
C2(-35,60)
x
x xiAi x1A1x2A2
、建立坐标系。
Байду номын сангаас
、计算面积和面积矩

、求形心位置。

x

Sy A



y

Sx A

xi Ai A yi Ai A
、建立形心坐标系;求:Iyc , Ixc , Ixcyc ,
、求形心主轴方向
——

0 tg20
2Ixcyc Ixc Iyc
、求形心主惯性矩 IIx y0 0ccIxc 2Iyc(Ixc 2Iyc)2Ix 2cy
xy
x
Ix
Iy

IP 2
d4
64

截面的几何性质面积矩惯性矩惯性积平行移轴

截面的几何性质面积矩惯性矩惯性积平行移轴

2
对于复杂形状,可以采用微元法或积分法计算其 惯性矩。
3
在工程实践中,常常使用软件或计算器进行惯性 矩的计算,以提高计算效率和精度。
04
CATALOGUE
惯性积
惯性积的定义
惯性积是截面的一种几何属性,用于描述截面的 形状和大小。
惯性积是一个标量,表示截面在某个方向上的投 影面积与该方向上单位长度的平方之比。
02
利用三维坐标系中的点坐标和 方向向量,通过向量的外积计 算得到截面的法向量和面积向 量,进而计算惯性积。
03
利用计算机图形学中的几何算 法,通过计算截面的顶点坐标 和法线向量,实现惯性积的精 确计算。
05
CATALOGUE
平行移轴
平行移轴的定义
一个方向上的直线,可以 是实线或虚线。
在三维空间中,与某一平 面相交的平面。
中性轴
通过截面形心并与形心轴垂直的轴线。
惯性矩的性质
01
惯性矩与截面的形状和大小有关,形状相同但尺寸不同的截面 具有不同的惯性矩。
02
惯性矩具有方向性,与中性轴的位置有关。
对于矩形、圆形、椭圆形等简单形状,其惯性矩可以通过公式
03
直接计算。
惯性矩的计算方法
1
对于简单形状,如矩形、圆形、椭圆形等,可以 直接使用公式计算其惯性矩。
截面的几何性质
目录
• 截面的定义与性质 • 面积矩 • 惯性矩 • 惯性积 • 平行移轴
01
CATALOGUE
截面的定义与性质
截面的定义
截面定义
截面是指通过一个平面与一个三维物 体相交,所形成的交线或交面。这个 平面可以是垂直的、倾斜的或与三维 物体表面平行。
截面的形状

材料力学公式超级大汇总

材料力学公式超级大汇总

材料力学重点及其公式材料力学的任务 (1)强度要求;(2)刚度要求;(3)稳定性要求。

变形固体的基本假设 (1)连续性假设;(2)均匀性假设;(3)各向同性假设;(4)小变形假设。

外力分类:表面力、体积力;静载荷、动载荷。

内力:构件在外力的作用下,内部相互作用力的变化量,即构件内部各部分之间的因外力作用而引起的附加相互作用力截面法:(1)欲求构件某一截面上的内力时,可沿该截面把构件切开成两部分,弃去任一部分,保留另一部分研究(2)在保留部分的截面上加上内力,以代替弃去部分对保留部分的作用。

(3)根据平衡条件,列平衡方程,求解截面上和内力。

应力: dA dP A P p A =∆∆=→∆lim0正应力、切应力。

变形与应变:线应变、切应变。

杆件变形的基本形式 (1)拉伸或压缩;(2)剪切;(3)扭转;(4)弯曲;(5)组合变形。

静载荷:载荷从零开始平缓地增加到最终值,然后不再变化的载荷。

动载荷:载荷和速度随时间急剧变化的载荷为动载荷。

失效原因:脆性材料在其强度极限b σ破坏,塑性材料在其屈服极限s σ时失效。

二者统称为极限应力理想情形。

塑性材料、脆性材料的许用应力分别为:[]3n s σσ=,[]b bn σσ=,强度条件:[]σσ≤⎪⎭⎫ ⎝⎛=max max A N ,等截面杆 []σ≤A N m a x轴向拉伸或压缩时的变形:杆件在轴向方向的伸长为:l l l -=∆1,沿轴线方向的应变和横截面上的应力分别为:l l ∆=ε,A P A N ==σ。

横向应变为:bb b b b -=∆=1'ε,横向应变与轴向应变的关系为:μεε-='。

胡克定律:当应力低于材料的比例极限时,应力与应变成正比,即 εσE =,这就是胡克定律。

E 为弹性模量。

将应力与应变的表达式带入得:EANl l =∆ 静不定:对于杆件的轴力,当未知力数目多于平衡方程的数目,仅利用静力平衡方程无法解出全部未知力。

最新惯性矩总结(含常用惯性矩公式)

最新惯性矩总结(含常用惯性矩公式)

惯性矩是一个物理量,通常被用作描述一个物体抵抗扭动,扭转的能力。

惯性矩的国际单位为(m^4)。

工程构件典型截面几何性质的计算2.1面积矩1.面积矩的定义图2-2.1任意截面的几何图形如图2-31所示为一任意截面的几何图形(以下简称图形)。

定义:积分和分别定义为该图形对z轴和y轴的面积矩或静矩,用符号S z和S y,来表示,如式(2—2.1)(2—2.1)面积矩的数值可正、可负,也可为零。

面积矩的量纲是长度的三次方,其常用单位为m3或mm3。

2.面积矩与形心平面图形的形心坐标公式如式(2—2.2)(2—2.2)或改写成,如式(2—2.3)(2—2.3)面积矩的几何意义:图形的形心相对于指定的坐标轴之间距离的远近程度。

图形形心相对于某一坐标距离愈远,对该轴的面积矩绝对值愈大。

图形对通过其形心的轴的面积矩等于零;反之,图形对某一轴的面积矩等于零,该轴一定通过图形形心。

3.组合截面面积矩和形心的计算组合截面对某一轴的面积矩等于其各简单图形对该轴面积矩的代数和。

如式(2—2.4)(2—2.4)式中,A和y i、z i分别代表各简单图形的面积和形心坐标。

组合平面图形的形心位置由式(2—2.5)确定。

(2—2.5)2.2极惯性矩、惯性矩和惯性积1.极惯性矩任意平面图形如图2-31所示,其面积为A。

定义:积分称为图形对O点的极惯性矩,用符号I P,表示,如式(2—2.6)(2—2.6)极惯性矩是相对于指定的点而言的,即同一图形对不同的点的极惯性矩一般是不同的。

极惯性矩恒为正,其量纲是长度的4次方,常用单位为m4或mm4。

(1)圆截面对其圆心的极惯性矩,如式(2—7)(2—2.7)(2)对于外径为D、内径为d的空心圆截面对圆心的极惯性矩,如式(2—2.8)(2—2.8)式中,d/D为空心圆截面内、外径的比值。

2.惯性矩在如图6-1所示中,定义积分,如式(2—2.9)(2—2.9)称为图形对z轴和y轴的惯性矩。

惯性矩是对一定的轴而言的,同一图形对不同的轴的惯性矩一般不同。

惯性矩的定义和计算公式

惯性矩的定义和计算公式

惯性矩的定义和计算公式惯性矩的定义●区域惯性矩-典型截面I●区域惯性矩,一个区域的惯性矩或典型截面轮廓的第二个区域惯性矩●面积惯性矩或面积惯性矩-也称为面积二阶矩-I,是用于预测梁的挠度、弯曲和应力的形状特性。

●面积惯性矩-英制单位●inches4●面积惯性矩-公制单位●mm4●cm4●m4●单位转换● 1 cm4 = 10-8 m4 = 104 mm4● 1 in4 = 4.16x105 mm4 = 41.6 cm4●示例-惯性单位面积矩之间的转换●9240 cm4 can be converted to mm4 by multiplying with 104●(9240 cm4) 104 = 9.24 107 mm4●区域惯性矩(一个区域或第二个区域的惯性矩)●●绕x轴弯曲可表示为●I x = ∫ y2 dA (1)●其中●I x =与x轴相关的惯性矩面积(m4, mm4, inches4)●y =从x轴到元件dA的垂直距离(m, mm, inches)●dA =基元面积(m2, mm2, inches2)●绕y轴弯曲的惯性矩可以表示为●I y = ∫ x2 dA (2)●其中●I x =与y轴相关的惯性矩面积(m4, mm4, inches4)●x =从轴y 到元件dA的垂直距离(m, mm, inches)●典型截面I的面积惯性矩●典型截面II的面积惯性矩●实心方形截面●●实心方形截面的面积惯性矩可计算为●I x = a4 / 12 (2)●其中● a = 边长(mm, m, in..)●I y = a4 / 12 (2b)●实心矩形截面●●矩形截面惯性矩的面积可计算为●I x = b h3 / 12 (3)●其中● b = 宽●h = 高●I y = b3 h / 12 (3b)●实心圆形截面●●实心圆柱截面的面积惯性矩可计算为●I x = π r4 / 4●= π d4 / 64 (4)●其中●r =半径● d = 直径●I y = π r4 / 4●= π d4 / 64 (4b)●中空圆柱截面●空心圆柱截面的面积惯性矩可计算为●I x = π (d o4 - d i4) / 64 (5)●其中●d o = 外圆直径●d i = 内圆直径●I y = π (d o4 - d i4) / 64 (5b)●方形截面-对角力矩●●矩形截面的对角线面积惯性矩可计算为●I x = I y = a4 / 12 (6)●矩形截面-通过重心的任何线上的面积力矩●●通过重心在线计算的矩形截面和力矩面积可计算为●I x = (b h / 12) (h2 cos2 a + b2 sin2 a) (7)●对称形状●●对称形状截面的面积惯性矩可计算为●I x = (a h3 / 12) + (b / 12) (H3 - h3) (8)●I y = (a3 h / 12) + (b3 / 12) (H - h) (8b)●不对称形状●●非对称形状截面的面积惯性矩可计算为●I x = (1 / 3) (B y b3 - B1 h b3 + b y t3 - b1 h t3) (9)●典型截面II的面积惯性矩●区域惯性矩vs.极惯性矩vs.惯性矩●“面积惯性矩”是一种形状特性,用于预测梁的挠度、弯曲和应力●“极惯性矩”是衡量梁抗扭能力的一个指标,计算受扭矩作用的梁的扭曲度时需要用到它●“转动惯量”是测量物体在旋转方向上变化的阻力。

建筑力学 第五章(最终)

建筑力学 第五章(最终)

dA 2 y dz 2 R2 Z 2dz
于是求得
Sy
z dA
A
R
z
O
2
R2 z2 dz 2 R3 3
2R3
zc
Sy A
3 πR2
4R 3π
2
图5-6
5. 2. 3 组合图形的面积矩计算
当图形是由若干个简单图形(如矩形、圆形和三角形等)组合而成时, 这类图形称为组合图形。由于简单图形的面积及其形心位置均为已知,而且 由面积矩的定义可知,组合图形对某一轴的面积矩等于其各简单图形对该轴 面积矩的代数和,即
5.1.2 物体重心的坐标公式
1. 重心坐标的一般公式
设有一物体,如图5-1所示。重心 c 坐 标为(xc,yc,zc),物体的容重为 γ,总体积 为V。将物体分割成许多微小体积 ΔVi,每 个微小体积所受的重力 PGi Vi , 其作 用点坐标(xi,yi,zi)。整个物体所受的重力
为 PG PGi 。
n
xc
A1x1c A2x2c An xnc A1 A2 An
Ai xic
i 1 n
Ai
i 1
n
yc
A1 y1c A2 y2c An ync A1 A2 An
Ai yic
i 1 n
Ai
i 1
(5-6)
【例5-1】试求图5-2 所示 Z 形平面图形的形心。
解:将Z 形图形视为由三个矩形图形组合而成,以 c1 、c2 、c3 分别表示 这些矩形的形心。取坐标系如图5-2 所示,各矩形的面积和形心坐标为
5. 2. 2 面积矩与形心的关系
由平面图形的形心坐标公式 (5-4) 和面积矩的定义可得
yc
A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档