七年级下册尺规作图专题复习课件

合集下载

七年级下册尺规作图复习课件ppt

七年级下册尺规作图复习课件ppt

B N
B'
N'
N'
O'
M' A'
O'
M' A'
O'
Байду номын сангаас
M' A'
O
MA



经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
(5)题目五:经过直线上一点做已 知直线的垂线。
(6)题目六:经过直线外一点作已 知直线的垂线
(2)若要使自来水厂到两村的输水管用料最省,厂 址应选在哪个位置?
请将上述两种情况下的自来水厂厂址标出,并保留 作图痕迹.
.B
A.
a h
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
• 例6、如图,有A,B,C三个村庄,现要修
建一所希望小学,使三个村庄到学校的距 离相等,学校的地址应选在什么地方?请 你在图中画出学校的位置并说明理由(保 留作图痕迹).
(3)题目三:作已知角的角平分线。
• 已知:如图,∠AOB, • 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 • 作法: • (1)以O为圆心,任意长度为半径画弧,分别交OA,OB
于M,N; • (2)分别以M、N为圆心,线段MN的长为半径画弧,两
弧交∠AOB内于P;作射线OP。则射线OP就是∠AOB的 角平分线。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

2.4 用尺规作图课件 课件

2.4 用尺规作图课件   课件

2.下列属于尺规作图的是( B ) A.用量角器画一个角等于30°
B.用圆规和直尺作线段AB等于已知线段a C.用三角板作线段AB的垂线
D.用刻度尺画一条线段等于3 cm
选做题
3.如图,已知∠A,∠B,求作一个角,使它等于∠A-∠B.
(不用写作法,保留作图痕迹)
解:作∠COD=∠A, 并在∠COD的内部作∠DOE=∠B, 则∠COE就是所求作的角.
用尺规作一个角等于已知角
已知:∠AOB. 求作:作∠A'O'B',使∠A'O'B'=∠AOB.
作法
(1)作射线O'A'
(2)以点O为圆心,以任意长为半 径画弧,交OA于点C,交OB于点D; O
(3)以点O'为圆心,以OC长为半
作法与示范 径画弧,交O'A'于点C';
O
(4)以点C'为圆心,以CD长为半
选做题
2.如图,已知α和β(α>β),求作∠AOB,使∠AOB=α-β.
做法: (1)作射线__O_A_____; (2)以射线OA为一边作∠AOC=___∠__α__; (3)以____O___为顶点,以射线_O_C_____为一边,在∠AOC的内部作 ∠BOC=__∠__β___,则___∠__A_O_B____就是所求的角。
B
D’ D
是一个正方形
课堂总结 尺规作角
基本工具
圆规 无刻度直尺
尺规判断两个角的大小
用尺规作一个角等于已知角的和、差、倍
基本步骤:一线三弧
画弧必 备条件
圆心 半径
作业布置
必做题
1.如图,点C在∠AOB的边OB上,用尺规作出了∠BCN=∠AOC, 作图痕迹中,弧FG是( D )

《尺规作图》课件PPT课件

《尺规作图》课件PPT课件
在机械装配过程中,装配图纸是指导工人如何组装机械的重要依据。使用尺规作图可以绘制出详细的装配图纸, 包括各个零件的尺寸、位置和连接方式等。
05
习题与练习
基本题
题目1
作一个角等于已知角
题目2
经过一点作已知直线的垂线
题目3
过直线外一点作已知直线的平行线
进阶题
01
02
03
题目4
作一个三角形,使其三边 长度分别为3cm、4cm、 5cm
02
通过一个点作圆
使用尺规,选取一个点作为圆心,再选取一个长度作为半径,然后以该
点为起点,以该长度为半径,画出一个圆。
03
通过两个点作圆
使用尺规,选取两个点作为圆上的点,再选取这两个点之间的中点作为
圆心,然后以该中点到每个点的距离为半径,分别画出两个圆,这两个
圆就是所求的两个圆。
圆弧的作法
圆弧的基本性质
题目5
作一个角,使其是已知两 角的和
题目6
经过一点作已知直线的垂 直平分线
挑战题
题目7
作一个正方形,使其面积 等于已知三角形的面积
题目8
经过两个已知点作一条直 线的平行线
题目9
作一个五边形,使其内角 和等于已知四边形的内角 和
THANKS FOR WATCHING
感谢您的观看
在几何学中,尺规作图被广泛应用于解决各种几何问题,如求作线段的中点、等分 线段、求作圆的切线等。
在代数和解析几何中,尺规作图也有着广泛的应用,如求作函数的图像、求作方程 的根等。
在数学竞赛中,尺规作图是重要的解题工具之一,能够解决一些复杂的几何构造问 题。
02
尺规作图的基本技能
直线的作法
直线的基本性质

《尺规作图》课件PPT

《尺规作图》课件PPT

或。
•一最个基圆本,最一常段用弧的尺规作图,称为 基本作图.
•一些复杂的尺规作图都是由 组成的. 基本作图
两种基本作图:
•1、作一条线段等于已知线段 •2、作一个角等于已知角
已知:线段AB.
求作:线段A’ B’,使A’ B’=AB. 作法与示范:
A
•作

•示
•(1) 作射线A’C’ ;
(2) 以点A’为圆心,
以AB的长为半径 画弧,
交射线A’ C’于点B’,
A’B’ 就是所求作的线段。
A’
B’
B

C’
2、作一个角等于已知角 •已知: AOB(图1)
•求作: A`O`B`,使 A`O`B`= AOB B
O
A
感谢您的阅读! 为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
学习永远不晚。 JinTai College
• 这样作法正确吗?你应如何检验? • 写出证明∠AOB= A O的B 过程.
随堂练习:
⑴已知∠ AOB,利用尺规作 ∠ A′O′B′,使∠ A′O′B′=2∠ AOB.
B
α
β
O
A
⑵已知角α,β(β<α<90°)求作一个角,使它等于获?
作业巩固
(一)阅读作业:通读教材,复习 巩固用尺规作一个角等于已知角; (二)书面作业:P24 习题1.3
画一画 作法与示范
作法
(1)作射线O′A′:
(2)以点O为圆心,以任意长为半径画弧, 交OA于点C,交OB于点D;
(3)以点O′为圆心,以OC长为半径画弧, 交O′ A′于点C′; (4)以点C′为圆心,以CD长为半径画弧, 交前面的弧于点D ′ ; (5)过点D ′作射线O ′ B ′ .

尺规作图课件

尺规作图课件

作圆的直径与半径
总结词
利用直尺和圆规,可以轻松作出圆的直径和半径。
详细描述
首先确定圆心和任意一点在圆上,然后使用直尺和圆规,通过测量和画线,可以作出圆的直径或半径。直径是穿 过圆心且两端都在圆上的线段,而半径是从圆心到圆上任意一点的线段。
04
尺规作图的进阶技能
作已知直线的中垂线
总结词
通过给定直线上的一个点,使用尺规作已知直线的中垂线。
02
尺规作图的基本知识
尺规作图的工具与材料
工具
直尺、圆规、斜边尺
材料
白纸、铅笔、橡皮
尺规作图的规则与限制
规则
只能使用直尺和圆规,不能使用其他工具。
限制
不能折叠、剪切或黏贴图形。
尺规作图的步骤与方法
步骤一
确定作图目标,理解题 目要求。
步骤二
根据题目要求,使用直 尺和圆规绘制草图。
步骤三
仔细检查草图,确保符 合尺规作图的规则和限
制。
步骤四
修改和完善草图,直至 达到预期的作图目标。
03
尺规作图的基本技能
作平行线与垂直线
总结词
利用直尺和圆规,可以轻松作出 平行线和垂直线。
详细描述
首先确定一个点作为起点,然后 使用直尺和圆规,通过测量和画 线,可以作出与已知直线平行的 直线或与已知直线垂直的直线。
作角的平分线
总结词
利用直尺和圆规,可以将一个角平分 成两个相等的角。
何图形。
尺规作图的限制在于只能使用直 尺和圆规,不能使用其他工具来
辅助作图。
尺规作图的历史与发展
尺规作图的历史可以追溯到古希腊时期,当时数学家们开始研究如何使用直尺和圆 规来完成各种几何图形。

尺规作图 —初中数学课件PPT

尺规作图 —初中数学课件PPT
数学
广东中考
解:(1)如图,点A1的坐标为(﹣1,1). (2)如图.
数学
首页
末页
谢谢!
数学
首页
末页
4
数学
首页
末页
考点梳理
1.作一条线段等于已知线段
作法:①作射线AB;②在射线AB上截取AC=a,则 线段AC就是所求作的线段,如图所示.作一条线段
等于已知线段是作有关线段的基础,利用它可以作 出已知线段的和、差、倍等线段. 2.作一个角等于已知角
作法:①作射线O′A′;②以点O为圆心,以任意 长为半径画弧,交OA于点C,交OB于点D;③以O′ 为圆心,以OC的长为半径画弧,交O′A′于点C′ ;④以C′为圆心,以CD的长为半径画弧,交前弧 于点D′;⑤过点D′作射线O′B′,则 ∠数学A′O′B′就是所求作的角,如图所示首页. 末页
数学
首页
末页
广东中考
解:(1)如图所示: (2)DE∥AC
∵DE平分∠BDC,
∴∠BDE= ∠BDC,
∵∠ACD=∠A,∠ACD+∠A=∠BDC,
∴∠A= ∠BDC,
∴∠A=∠BDE,
∴DE∥AC.
数学
首页
末页
广东中考
14. (2013广州)已知四边形ABCD是平行四边 形(如图),把△ABD沿对角线BD翻折180°得到 △A′BD.利用尺规作出△A′BD.(要求保留作 图痕迹,不写作法).
数的学 面积.
首页
末页
课堂精讲
考点4平移作图、旋转作图和对称作图 解:(1)如图,△A1B1C1即为所求. (2)如图,△A2B1C2即为所求.
(3)扫过区域的面积为 .
90 32 9
360 4

新北师大版七年级数学下册第二章《 用尺规作角》优课件

新北师大版七年级数学下册第二章《 用尺规作角》优课件
【解析】选D.由题意可知,∠AOC在∠AOB的内部,且OA为其 公共边,OA与OC的夹角为90°.故选D.
1.下列尺规作图语句正确的是( ) (A)作线段AB,使a=AB (B)延长线段AB到C,使AC=BC (C)作∠AOB,使∠AOB=∠α (D)以r的长为半径作弧 【解析】选C.A应为使AB=a;B延长线段AB到C后,AC>BC; D没有圆心.
【规律总结】 作一个角等于已知角可以归纳为“一线三弧”
先画一条射线,再作三次弧.其中前两次弧半径相同,而第三次以原 角的两边与弧的交点之间的距离为半径.
【跟踪训练】 1.尺规作图就是( ) (A)用直尺按一定的规矩作图 (B)用直尺和圆规作图 (C)用三角尺和圆规作图 (D)用没有刻度的直尺和圆规作图 【解析】选D.根据尺规作图的概念可知选D.
2.下列属于尺规作图的是( ) (A)用量角器画一个角等于30° (B)用圆规和直尺作线段AB等于已知线段a (C)用三角板作线段AB的垂线 (D)用刻度尺画一条线段等于3 cm 【解析】选B.根据尺规作图的概念可知选B.
3.根据图形填空. (1)连接______两点. (2)延长线段______到点______,使BC=______. (3)在______AM上截取______=______. (4)以点O为______,以m为______画弧交OA,OB分别于C,D.
2.下列尺规作图的语句错误的是( ) (A)作∠AOB,使∠AOB=3∠α (B)以点O为圆心作弧 (C)以点A为圆心,线段a的长为半径作弧 (D)作∠ABC,使∠ABC=∠α+∠β 【解析】选B.作弧必须有圆心和半径,缺一不可,故B选项错误.
3.画一个钝角∠AOB,然后以O为顶点,以OA为一边, 在角的内 部画一条射线OC,使∠AOC=90°,正确的图形是( )

七年级下册尺规作图复习课件讲课稿

七年级下册尺规作图复习课件讲课稿

• 作法:
• 作∠A=∠ ;
n
m
C
• 在AB上截取AB=m ,AC=n;
n
• 连接BC。
α
• 则△ABC就是所求作的三角形。
α A
m
B
题目九:已知两角及夹边作三角形。
• 已知:如图,∠ ,∠ ,线段m .
• 求作:△ABC,使∠A=∠ ,∠B=∠ , AB=m.
• 作法:
• 作线段AB=m;
• 在AB的同旁作∠A=∠ ,作∠B=∠ ,
A D
107国道
C
O
320国道 B
• 例2、三条公路两两相交,交点分别为A,B, C,现计划建一个加油站,要求到三条公路 的距离相等,问满足要求的加油站地址有几 种情况?用尺规作图作出所有可能的加油站 地址。
A
B
C
• 例3、过点C作一条线平行于AB。
C
A
B
• 例3:已知线段AB和CD,如下图,求作一 线段,使它的长度等于AB+2CD.
• ∠A与∠B的另一边相交于C。
• 则△ABC就是所求作的图形(三角形)。
m
C
α
β
α
A
β B
【考点练习】
• 例1、如图:107国道OA和320国道OB在某市相交于点O,在 ∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、 OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作 法,保留作图痕迹,写出结论)
• 作法:
• (1)分别以M、N为圆心,大于 画弧,两弧相交于P,Q;
• (2)连接PQ交MN于O.
的相同线段为半径
P
• 则点O就是所求作的MN的中点。
M
O
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
• 连接AC,BC。
b
a
• 则△ABC就是所求作的三角形。
A
c
B
题目四:已知两边及夹角作三角形
• 已知:如图,线段m,n, ∠ . • 求作:△ABC,使∠A=∠ ,AB=m,AC=n.
• 作法:
• 作∠A=∠ ;
n
m
C
• 在AB上截取AB=m ,AC=n;
n
• 连接BC。
α
• 则△ABC就是所求作的三角形。
题目一:作一条线段等于已知线段
• 已知:如图,线段a .求作:线段AB,使AB = a .
• 作法:
• 作射线AP;
a
• 在射线AP上截取AB=a .
• 则线段AB就是所求作的图形。 A
B
P
题目二:作一个角等于已知角
• 已知:如图,∠AOB。 • 求作:∠A’O’B’,使A’O’B’=∠AOB • 作法: (1)作射线O’A’; (2)以O为圆心,任意长度为半径画弧,交OA于M,交OB于N; (3)以O’为圆心,以OM的长为半径画弧,交O’A’于M’; (4)以M’为圆心,以MN的长为半径画弧,交前弧于N’; (5)连接O’N’并延长到B’。则∠A’O’B’就是所求作的角。
变式2:经过直线外一点作已知直线 的垂线
【考点练习】
• 例1、如图:107国道OA和320国道OB在某市相交于点O,在 ∠AOB的内部有工厂C和D,现要修建一个货站P,使P到OA、 OB的距离相等且PC=PD,用尺规作出货站P的位置(不写作 法,保留作图痕迹,写出结论)
A D
107国道
C
O
320国道 B
• 例7、如图,A、B两村在一条小河的的同一侧, 要在河边建一水厂向两村供水.
(1)若要使自来水厂到两村的距离相等,厂址应选 在哪个位置?
(2)若要使自来水厂到两村的输水管用料最省,厂 址应选在哪个位置?
请将上述两种情况下的自来水厂厂址标出,并保留 作图痕迹.
.B
A.
B N
B'
N'
N'
O'
M' A'
O'
M' A'
O'
M' A'
O
MA



题目三:已知三边作三角形
• 已知:如图,线段a,b,c.
• 求作:△ABC,使AB = c,AC = b,BC = a.
• 作法:
a
• 作线段AB = c;
b
• 以A为圆心,以b为半径作弧,
• 以B为圆心,以a为半径作弧与
c
• 前弧相交于C;
• 例4.如图,已知∠A、∠B,求作一个角,使 它等于∠A-∠B.
• 例5、如图,画一个等腰△ABC,使得底边 BC= a ,它的高AD= h
a h
• 例6、如图,有A,B,C三个村庄,现要修
建一所希望小学,使三个村庄到学校的距 离相等,学校的地址应选在什么地方?请 你在图中画出学校的位置并说明理由(保 留作图痕迹).
A
M
P
O
N
B
题目七:作已知线段的中垂线
• 已知:如图,线段MN.
• 求作:点O,使MO=NO(即O是MN的中点).
• 作法:
• (1)分别以M、N为圆心,大于 画弧,两弧相交于P,Q;
• (2)作直线PQ.
的相同线段为半径
P
• 则直线PQ为线段MN的垂直平分线.
M
O
N
Q
变式1:经过直线上一点做已知直线 的垂线。
• 例2、三条公路两两相交,交点分别为A,B, C,现计划建一个加油站,要求到三条公路 的距离相等,问满足要求的加油站地址有几 种情况?用尺规作图作出所有可能的加油站 地址。
A
B
C
• 例3、过点C作一条线平行于AB。
C
A
B
• 例3:已知线段AB和CD,如下图,求作一 线段,使它的长度等于AB+2CD.
题目六:作已知角的角平分线
• 已知:如图,∠AOB, • 求作:射线OP, 使∠AOP=∠BOP(即OP平分∠AOB)。 • 作法: • (1)以O为圆心,任意长度为半径画弧,分别交OA,OB
于M,N; • (2)分别以M、N为圆心,线段MN的长为半径画弧,两
弧交∠AOB内于P;作射线OP。则射线OP就是∠AOB的 角平分线。
尺规作图复习课
【知识回顾】 1、尺规作图的定义:尺规作图是指用没有刻度的直尺和 圆规作图。最基本,最常用的尺规作图,通常称基本作图。 一些复杂的尺规作图都是由基本作图组成的。 2、五种基本作图:
1、作一条线段等于已知线段;(线段的和与差) 2、作一个角等于已知角; (角的和与差) 3、作已知线段的垂直平分线; 4、作已知角的角平分线; 5、过一点作已知直线的垂线;
α A
m
B
题目五:已知两角及夹边作三角形
• 已知:如图,∠ ,∠ ,线段m .
• 求作:△ABC,使∠A=∠ ,∠B=∠ , AB=m.
• 作法:
• 作线段AB=m;
• 在AB的同旁作∠A=∠ ,作∠B=∠ ,
• ∠A与∠B的另一边相交于C。
• 则△ABC就是所求作的图形(三角
A
β B
相关文档
最新文档