结构力学知识点总结
结构力学最全知识点梳理及学习方法

结构力学最全知识点梳理及学习方法结构力学是工程领域的基础学科之一,主要研究物体在受力作用下的变形和破坏行为。
下面将对结构力学的知识点进行梳理,并提供一些学习方法。
1.静力学知识点:(1)力的分解与合成(2)平衡条件及对应的力矩平衡条件(3)杆件内力分析(4)支座反力的计算(5)重力中心和重力矩计算方法学习方法:静力学是结构力学的基础,要通过大量的练习加深对概念和公式的理解,并注重实际问题的应用。
2.应力学知识点:(1)应力的定义和类型(正应力、剪应力、主应力等)(2)应力的均衡方程(3)材料的本构关系(线性弹性、非线性弹性、塑性等)(4)薄壁压力容器的应力分析学习方法:应力学是结构力学的核心内容,要掌握应力的计算方法和不同材料的应力应变关系,需要多阅读教材和参考书籍,理解背后的物理原理,并进行大量的练习。
3.变形学知识点:(1)应变的定义和类型(线性应变、剪应变、工程应变等)(2)应变-位移关系(3)杆件弹性变形分析(4)杆件的刚度计算学习方法:变形学是结构力学的重要组成部分,要掌握应变的计算方法和杆件的变形规律,可以通过编程模拟杆件的变形过程或进行实验验证。
4.强度计算知识点:(1)材料的强度和安全系数(2)拉压杆件的强度计算(3)梁的强度计算(4)刚结构的强度计算5.破坏学知识点:(1)破坏形态(拉伸、压缩、剪切、扭转等)(2)材料的断裂特性和疲劳破坏(3)结构的失效分析(4)杆件和梁的屈曲分析学习方法:破坏学是结构力学的进一步深入,要了解不同破坏形态的特点和计算方法,并进行典型案例分析,以提高预测和识别破坏的能力。
学习方法总结:(1)理论学习:多阅读教材和参考书籍,并注重理解概念和原理。
(2)练习和实践:进行大量的计算练习和模拟分析,提高解决实际结构问题的能力。
(3)案例分析:通过分析实际案例,学习不同结构的设计和分析方法。
(4)交流和讨论:与同学和老师进行交流和讨论,共同学习和解决问题。
结构力学知识点超全总结

结构力学知识点超全总结结构力学是一门研究物体受力和变形的力学学科,它是很多工程学科的基础,如土木工程、机械工程、航空航天工程等。
以下是结构力学的一些重要知识点的总结:1.载荷:结构承受的外力或外界加载的活动载荷,如重力、风荷载、地震载荷等。
2.支座反力:为了平衡结构受力,在支座处产生的力。
3.静力平衡:结构处于静止状态时,受力分析满足力的平衡条件。
这包括平面力系统的平衡、剪力力系统的平衡和力矩力系统的平衡。
4.杆件的拉力和压力:杆件受力状态分为拉力和压力。
拉力是杆件由两端拉伸的状态,压力是杆件由两端压缩的状态。
5.梁的受力和变形:梁是一种长条形结构,在实际工程中经常使用。
梁的受力分析包括剪力和弯矩的计算,梁的变形包括弯曲和剪切变形。
6.悬臂梁和简支梁:悬臂梁是一种只有一端支座的梁结构,另一端自由悬挂。
简支梁是两端都有支座的梁结构。
7.梁的挠度和渐进程度:梁的挠度是指结构在受力后发生的形变。
梁的渐进程度是指梁的挠度随着距离变化的情况。
8.板和平面受力分析:板是一种平面结构,它的受力和变形分析和梁类似。
平面受力分析是一种在平面框架结构上进行受力分析的方法。
9.斜拉索:斜拉索是一种由杆件和拉索组成的结构,它广泛应用于桥梁、摩天大楼等工程中。
斜拉索的受力分析包括张力和弯矩的计算。
10.刚度:刚度是指物体在受力作用下抵抗变形的能力。
刚度越大,物体的变形越小。
刚度可以通过杆件的弹性模量和几何尺寸进行计算。
11.弹性和塑性:结构的受力状态可以分为弹性和塑性两种情况。
弹性是指结构受力后能够恢复到原始形状的性质,塑性是指结构受力后会产生永久变形的性质。
12.稳定性和失稳:结构的稳定性是指结构在受力作用下保持原始形状的能力。
失稳是指结构在受力过程中无法保持原始形状,产生不稳定状态。
13.矩形截面和圆形截面的力学特性:矩形截面和圆形截面是两种常见的结构截面形状。
矩形截面具有较高的抗弯刚度,而圆形截面具有较高的抗剪强度。
结构力学各章重要内容、知识点、难点

结构力学各章重要内容、知识点、难点1、绪论知识点:结构和结构的分类,结构力学的任务,结构的计算简图与杆件结构分类,荷载的分类。
重点:结构的计算简图选择原则、简化要点,结点和支座的变形和受力特性。
难点:活载,铰结点、刚结点、组合结点的特点。
2、平面体系的几何组成分析知识点:自由度、约束、瞬铰、多余约束等概念, 体系自由度计算公式,平面几何不变体系的组成规则,瞬变体系的特性,静定、超静定结构的几何组成。
重点:应用平面几何不变体系的组成规则分析平面杆系的几何组成。
难点:复杂平面杆系的几何分析。
3、静定梁和静定刚架知识点:截面法计算指定截面的内力,利用微分关系作内力图,分段迭加法画弯矩图,简支斜梁的计算,多跨静定梁的组成特点及计算。
静定平面刚架的特点、几何组成及型式,反力的计算,内力的计算和内力图的绘制,内力图的校核。
重点:分段迭加法画弯矩图;多跨静定梁反力、内力的计算及内力图绘制;静定平面刚架内力的计算和内力图。
难点:简支斜梁的计算;已知弯矩图,绘制剪力图、轴力图。
4、三铰拱知识点:三铰拱的组成和类型,三铰拱的反力和内力,三铰拱的受力特点,合重点:三铰拱的反力和内力计算。
难点:三铰拱截面剪力和轴力的计算。
5、静定桁架和组合结构知识点:桁架的特点和组成分类,结点法、截面法和联合法求桁架内力,组合结构的内力计算。
重点:特殊杆内力判断,结点法、截面法和联合法求桁架内力,组合结构的内力计算。
难点:复杂桁架内力计算,组合结构中梁式杆的弯矩图。
6、虚功原理和结构位移计算知识点:位移计算的目的;变形体系的虚功原理;结构位移计算的一般公式;静定结构在荷载作用下的位移计算;图乘法;静定结构由于温度变化及支座移动下的位移计算;线弹性结构的互等定理。
重点:静定结构在荷载作用下的位移计算。
难点:图乘法。
7、力法知识点:超静定结构和超静定次数,力法的基本结构、基本未知量、及其物理意义,利用对称性简化力法计算,超静定结构位移的计算。
结构力学主要知识点归纳

结构力学主要知识点一、基本概念1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去其次要因素,用一个简化图形来代替实际结构。
通常包括以下几个方面:A、杆件的简化:常以其轴线代表B、支座和节点简化:①活动铰支座、固定铰支座、固定支座、滑动支座;②铰节点、刚节点、组合节点。
C、体系简化:常简化为集中荷载及线分布荷载D、体系简化:将空间结果简化为平面结构2、结构分类:A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。
B、按内力是否静定划分:①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。
②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。
二、平面体系的机动分析1、体系种类A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。
B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。
常具体划分为常变体系和瞬变体系。
2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立坐标数目。
3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系①一个链杆可以减少一个自由度,成为一个联系。
②一个单铰为两个联系。
4、计算自由度:)2(3r h m W +-=,m 为刚片数,h 为单铰束,r 为链杆数。
A 、W>0,表明缺少足够联系,结构为几何可变;B 、W=0,没有多余联系;C 、W<0,有多余联系,是否为几何不变仍不确定。
5、几何不变体系的基本组成规则:A 、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。
B 、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。
C 、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且没有多余联系。
结构力学知识点

结构力学知识点1、工程结构分为:杆件结构、板壳结构、实体结构2、力学计算条件:力系的平衡条件或运动条件、变形的几何连续条件、应力与变形间的物理条件a、计算简图:加以简化,略去不重要的细节,显示其基本特点,用一个简化的图形来代替实际结构,这种图形称为结构的计算简图3、计算简图的原则:从实际出发——计算简图要反映实际构造的主要性能;分清主次略去细节——计算简图要便于计算4、结构的杆件内力(包括反力)可由平衡条件唯一确定,则此结构称为静定结构如果杆件的内力由平衡条件不能唯一确定,则必须同时考虑变形条件才能唯一确定,则结构为超静定结构5、自由度数:体系运动时可以独立改变的几何参数数目,即确定物体位置所需要的独立坐标数6、一个复铰可以连接n个钢片,其相当于(n-1)个单铰连接n个钢片,而一个单铰相当于连个自由度,故上述复铰相当于2(n-1)个自由度7、一个单刚结点,相当于3个自由度数,一个复刚结点,连接n个杆相当于(n-1)个单刚8、规律1:一个钢片与一个点用两根连杆相连接,且三个铰不在一条直线上,且组成几何不变的整体,且没有多余约束规定2:两个钢片用一个铰和一根连杆相连接,且三个铰不在一条直线上,则组成几何不变的整体,且没有多余约束规定3:三个钢片用三个铰两两相连,且三个铰不在同一直线上,则组成几何不变的整体,且没有多与约束规定4:两个钢片用三根连杆相连,且连杆不交于同一点,则组成几何不变的整体,且没有多余约束9、体系的计算自由度W可表示为:W=3m-(3g+2h+b)其中m为钢片个数,g 为单刚个数,h为单铰结个数,b代表单链杆个数,即:W=全部自由度个数-全部约束10、注意:①体系中如有复约束,则应先把复约束拆解称为单约束;钢片内部如有多余约束,也应把他们计算在内②刚连在一起的各个钢片作为一个大钢片,如带有a个无铰闭合框,约束数目增加3a个③铰支座、定向支座相当于两个支撑连杆,固定端相当于三个支承连杆11、若W大于0,则S大于0,体系是几何可变的(体系缺少约束);若w等于0,则s=n,如无多与约束则为几何不变,如有多余约束则为几何可变;若W小于0,n大于0,体系有多余约束,s为自由度数,n为多余约束12、轴力FN以拉力为正;剪力FQ以绕微段隔离体顺时针着为正;弯矩M使杆件下部受拉时为正。
《结构力学》知识点归纳梳理

《结构力学》知识点归纳梳理《结构力学》是土木工程、建筑工程等专业的重要基础课程之一,它主要研究物体受力作用下的力学性质及其运动规律。
结构力学的知识对于设计和分析各种工程结构具有重要意义。
以下是对《结构力学》中的一些重要知识点进行归纳梳理。
1.静力学基本原理:(1)牛顿第一定律与质点的平衡条件;(2)牛顿第二定律与质点运动方程;(3)牛顿第三定律与作用力对;(4)力的合成与分解。
2.力和力矩的概念和计算:(1)力的点表示和力的向量运算;(2)力矩的点表示和力矩的向量运算;(3)力的矢量和点表示的转换。
3.等效静力系统:(1)强心轴的概念和计算;(2)悬臂梁的等效静力;(3)等效力和等效力矩。
4.支持反力分析:(1)节点平衡法计算支持反力;(2)静力平衡方程计算支持反力。
5.算术运算法:(1)类似向量的加法和减法;(2)类似向量的数量积和向量积。
6.静力平衡条件:(1)法向力平衡条件;(2)切向力平衡条件;(3)力矩平衡条件。
7.杆件受力分析:(1)内力的概念和分类;(2)弹性力的性质和计算方法;(3)强度力的性质和计算方法。
8.杆件内力的作图法:(1)内力的几何关系;(2)内力图的作图方法。
9.杆件内力的计算方法:(1)等效系统的概念和计算方法;(2)推力与拉力的分析与计算。
10.刚性梁的受力分析:(1)刚性梁的受力模式;(2)刚性梁的截面受力分析;(3)刚性梁的等效荷载。
11.弯矩与剪力的计算方法:(1)弯矩和剪力的表达式;(2)弯矩和剪力的计算方法。
12.杆件的弯曲:(1)弯曲梁的受力分析;(2)弯曲梁的弯曲方程。
13.弹性曲线:(1)弹性曲线的概念和性质;(2)弹性曲线的计算方法。
14.梁的挠度:(1)梁的挠度方程;(2)梁的挠度计算方法。
15.梁的受力:(1)梁受力分析的应用;(2)梁的横向剪切力。
以上是对《结构力学》中的一些重要知识点的归纳和梳理。
通过学习和掌握这些知识点,可以帮助我们更好地理解结构力学的基本原理,从而能够进行工程结构的设计和分析。
结构力学考研知识点归纳

结构力学考研知识点归纳结构力学是土木工程专业研究生入学考试的重要科目之一,它主要研究建筑结构在外力作用下的内力、变形和稳定性问题。
以下是结构力学考研的一些关键知识点归纳:基本概念和原理- 力的基本概念:力的三要素(大小、方向、作用点)。
- 静力学基本定理:平衡条件、力矩平衡等。
- 材料力学性质:弹性模量、泊松比、屈服强度等。
静定结构分析- 静定梁的内力分析:弯矩、剪力、轴力的计算。
- 静定桁架的内力分析:节点法、截面法。
- 三铰拱和悬索结构的内力分析。
超静定结构分析- 力法、位移法和弯矩分配法的原理和应用。
- 连续梁和框架结构的分析。
- 影响线的概念及其应用。
稳定性分析- 临界载荷的确定方法。
- 欧拉公式及其应用。
- 稳定性与结构形式、材料特性的关系。
能量方法- 虚功原理和最小势能原理。
- 莫尔定理和卡斯特拉诺定理。
- 能量方法在结构分析中的应用。
矩阵位移法- 局部坐标系和全局坐标系的建立。
- 刚度矩阵的组装和边界条件的处理。
- 结构的自由振动分析。
非线性问题- 材料非线性:塑性变形、破坏。
- 几何非线性:大变形问题。
- 接触非线性问题的处理方法。
结构动力分析- 单自由度和多自由度系统的振动分析。
- 地震作用下的结构响应分析。
- 随机振动和疲劳分析。
结构优化设计- 结构优化的基本概念和方法。
- 拓扑优化、形状优化和尺寸优化。
- 优化设计在实际工程中的应用。
结束语结构力学作为一门应用广泛的学科,其知识点繁多且相互关联。
考研复习时,不仅要掌握上述知识点,还要注重理论与实践的结合,通过大量的练习来加深理解。
希望以上的归纳能够帮助考生们更系统地复习结构力学,为考研做好充分的准备。
结构力学知识点

结构力学知识点结构力学是研究结构在外力作用下的受力和变形规律的学科,它涉及到力学、材料科学、数学等多个领域的知识。
以下是结构力学的主要知识点总结:1. 基本概念- 外力:作用在结构上的力,包括重力、风力、地震力等。
- 内力:结构内部由于外力作用而产生的力,如拉力、压力、剪力等。
- 变形:结构在外力作用下形状或尺寸的变化。
- 刚度:结构抵抗变形的能力。
- 强度:结构在外力作用下不发生破坏的能力。
2. 基本假设- 材料均质连续:假设结构材料是均匀且连续分布的。
- 线弹性:材料的应力与应变关系遵循胡克定律,即在弹性范围内应力与应变成正比。
- 小变形:结构的变形量远小于原始尺寸,可以忽略变形对结构受力的影响。
3. 基本方法- 静力平衡:通过静力平衡方程求解结构的内力。
- 虚功原理:利用虚功原理求解结构的位移和应力。
- 能量方法:通过能量守恒原理分析结构的受力和变形。
- 有限元分析:利用数值方法将结构离散化,通过计算机求解结构的受力和变形。
4. 基本构件- 杆件:承受轴向力的构件,如梁、柱。
- 梁:承受弯矩和剪力的构件,通常承受垂直于轴线的载荷。
- 板:承受面内力的构件,如楼板、墙板。
- 壳:承受曲面内力的构件,如屋顶、管道。
5. 基本理论- 材料力学:研究材料在外力作用下的应力、应变和破坏规律。
- 弹性力学:研究材料在弹性范围内的应力、应变和变形规律。
- 塑性力学:研究材料在塑性变形范围内的应力、应变和变形规律。
- 断裂力学:研究材料在外力作用下的裂纹扩展和断裂规律。
6. 分析方法- 刚度法:通过建立结构的刚度矩阵求解结构的位移和内力。
- 柔度法:通过建立结构的柔度矩阵求解结构的位移和内力。
- 弯矩分配法:一种简化的梁结构分析方法,通过分配弯矩来求解结构的内力。
- 影响线法:通过绘制结构的弯矩、剪力等影响线来分析结构的受力。
7. 结构稳定性- 屈曲:结构在外力作用下失去稳定性,发生弯曲变形。
- 振动:结构在外力作用下发生的周期性运动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.关于∞点和∞线的下列四点结论:(1) 每个方向有一个∞点(即该方向各平行线的交点)。
(2) 不同方向上有不同的∞点。
(3) 各∞点都在同一直线上,此直线称为∞线。
(4) 各有限远点都不在∞线上。
2.多余约束与非多余约束是相对的,多余约束一般不是唯一指定的。
一个体系中有多个约束时,应当分清多余约束和非多余约束,只有非多余约束才对体系的自由度有影响。
3.W>0, 缺少足够约束,体系几何可变。
W=0, 具备成为几何不变体系所要求 的最少约束数目。
W<0, 体系具有多余约束。
4.一刚片与一结点用两根不共线的链杆相连组成的体系内部几何不变且无多余约束。
两个刚片用一个铰和一根不通过此铰的链杆相联,组成无多余约束的几何不变体系。
两个刚片用三根不全平行也不交于同一点的链杆相联,组成无多余约束的几何不变体系。
三个刚片用不在同一直线上的三个单铰两两相连,组成无多余约束的几何不变体系。
5.二元体规律:在一个体系上增加或拆除二元体,不改变原体系的几何构造性质。
6.形成瞬铰(虚铰)的两链杆必须连接相同的两刚片。
7.w=s-n ,W=0,但布置不当几何可变。
自由度W >0 时,体系一定是可变的。
但W ≤0仅是体系几何不变的必要条件。
S=0,体系几何不变。
8..轴力FN --拉力为正;剪力FQ--绕隔离体顺时针方向转动者为正;弯矩M--使梁的下侧纤维受拉者为正。
弯矩图--习惯绘在杆件受拉的一侧,不需标正负号; 轴力和剪力图--可绘在杆件的任一侧,但需标明正负号。
9.剪力图上某点处的切线斜率等于该点处荷载集度q 的大小 ; 弯矩图上某点处的切线斜率等于该点处剪力的大小。
10. 梁上任意两截面的剪力差等于两截面间载荷图所包围的面积; 梁上任意两截面的弯矩差等于两截面间剪力图所包围的面积。
()()Q dM x dF x dx=22()()()QdF x d M x q y dx dx==-FN+d FN F N FQ+dF QF QM M+d Md x dx ,,BAB A BAx NB NA x x x QB QA y x x B AQx F F q dx F F q dx M M F dx=-=-=+⎰⎰⎰11.分布力q(y)=0时(无分布载荷),剪力图为一条水平线;弯矩图为一条斜直线。
分布力q(y) = 常数时,剪力图为一条斜直线;弯矩图为一条二次曲线。
12.只有两杆汇交的刚结点,若结点上无外力偶作用,则两杆端弯矩必大小相等,且同侧受拉。
13.对称结构受正对称荷载作用, 内力和反力均为对称(K 行结点不受荷载情况) 。
对称结构受反对称荷载作用, 内力和反力均为反对称。
14.三铰拱支反、内力计算公式(竖向荷载、两趾等高)f M F F F F F CB B A A 0H 0V V 0V V ===15.拱轴上内力有以下3个特点:不管是在均布荷载下还是在集中荷载下,拱的三个内力图都是曲线图形。
在有竖向集中力作用点两侧截面,轴力图和剪力图都有突变,突变值等于相应简支梁的剪力分别在拱的轴力和剪力方向上的投影。
有集中力偶作用点两侧截面,弯矩图有突变,突变值仍等于所作用的集中力偶。
16.隔离体的形式、约束力结点:桁架的结点法、刚架计算中已知Q 求N 时取结点为单元。
杆件:多跨静定梁的计算、刚架计算中已知M 求Q 时取杆件为单元。
杆件体系:桁架的截面法取杆件体系为单元。
ϕϕϕϕcos sin sin cos H 0Q N H 0Q Q H 0F F F F F F yF M M --=-=-=17.约束力的数目是由所截断的约束的性质决定的。
截断链杆只有未知轴力;在平面结构中,截断梁式杆,未知力有轴力、剪力和弯矩;在铰处截断,有水平和竖向未知力。
18.选择截取单元的次序;①主从结构,先算附属部分,后算基本部分; ②简单桁架,按去除二元体的次序截取结点;③联合桁架,先用截面法求出连接杆的轴力,再计算其它杆。
19.虚功法的特点:1、将平衡问题归结为几何问题求解;2、直接建立荷载与未知力之间的关系,而不需求其它未知力。
20.应用虚功原理求静定结构某一约束力X 的方法:1)撤除与X 相应的约束。
使静定结构变成具有一个自由度的机构,使原来的约束力X 变成主动力。
2)沿X 方向虚设单位虚位移。
作出机构可能发生的刚体虚位移图;利用几何关系求出其它主动力对应的虚位移。
3)建立虚功方程,求未知力。
21.临界荷载判别式22.虚力原理:虚功原理的关键是位移与力系是独立无关的。
因此,可以把位移看成是虚设的,也可以把力系看成是虚设的,本部分正是把力系看作是虚设的,求刚体体系的位移。
步骤:1.在拟求位移的方向上虚设单位荷载,利用平衡条件求支反力。
2.利用虚力原理列出虚力方程进行求解,由于是在所求位移处设置单位荷载,因此,这种解法又称单位荷载法。
23.虚位移原理:一个力系平衡的充分必要条件是:对任意协调位移,虚功方程成立; 虚力原理:一个位移是协调的充分必要条件是:对任意平衡力系,虚功方程成立。
24.支座位移时静定结构的位移计算(1)沿所求位移方向加单位力,求出虚反力; (2)建立虚功方程 (3)解方程得 定出方向。
25.式中,R 为虚拟状态中由单位荷载引起的与支座位移相应的支座反力,c 为实际状态中与相应的已知的支座位移。
为反力虚功总和,当与c 方向一致时,其乘积取正;相反时,取负。
0cr i i P R tg α∑⋅≥在顶点左 0cr i i P R tg α∑⋅≤在顶点右 0cr i i P R tg α∑⋅≤在顶点左 0cr i i P R tg α∑⋅≥在顶点右 01=⋅∑+∆⋅k k c R k k c R ⋅∑-=∆k k ΔR c =-∑须注意,式中S 前面的负号,系原来推导公式时所得,不可漏掉。
26.结构位移计算的一般公式当截面B 同时产生三种相对位移时,在i -i27. 这里的积分号表示沿杆件长度积分,总和号表示对结构中各杆求和。
其中最后一项表示给定支座位移Ck 的影响。
结构位移计算的一般公式还可用变形体的虚功原理导出:外虚功=内虚功。
28.变形体虚功原理:各微段内力在应变上所作的内虚功总和Wi ,等于荷载在位移上以及支座反力在支座位移上所作的外虚功总和We 。
29.荷载作用下的位移计算公式30.各类结构的位移计算公式(1)梁与刚架:由于梁和刚架是以弯曲为主要变形(2)桁架:桁架中杆件只受轴力作用,且每根杆件的截面面积、轴力均为常数 (3)组合结构:桁梁混合结构中,一些杆件以弯曲为主,一些杆件只受轴力 (4)拱:对于拱结构,当压力线与拱轴线相近时,应考虑弯曲变形和轴向变形31.剪切变形和轴向变形引起的位移与弯曲变形引起的位移相比可以忽略不计。
32.图乘法应用条件:a )EI=常数;等截面直杆; b ) 两个弯矩图至少有一个是直线。
c )竖标yC 应取自直线图中,对应另一图形的形心处。
面积A 与竖标yC 在杆的同侧,AyC 取正号,否则取负号。
33.当图乘法的适用条件不满足时的处理方法 a)曲杆或EI=EI (x )时,只能用积分法求位移;b)b)当EI 分段为常数或M 、Mp 均非直线时,应分段图乘再叠加。
35.应用图乘法时的几个具体问题1.如果两个图形都是直线图形,则标距可任取自其中一个图形。
2,如果一个图形为曲线,另一个图形为折线,则应分段考虑。
3.如图形较复杂,可分解为简单图形。
ληθ∆∆∆∆d N d Q d M N Q M ++=++=k k c R ds )Q N M (∑-++∑=⎰γεκ∆外虚功: k k e cR 1W ⋅∑+⋅=∆内虚功: ()⎰++∑=ds Q N M W i γεκP P P MM NN kQQ ds ds ds EI EA GA ∆=∑+∑+∑⎰⎰⎰36.静37.定结构温度变形的特征静定结构当温度发生变化时,各杆件均能自由变形(但不产生内力),同样可采用单位荷载法。
温度沿杆长度均匀分布,杆件不可能出现剪切变形(即微段d η=0),同时注意到实际状态的支座位移为零。
38.温度引起位移公式dq 和du 为实际温度状态下,因材料热胀冷缩所引起的各微段的弯曲变形和轴向变形。
只要能求出dq 和du 的表达式,即可利用上式求得结构的位移。
39.温度引起的变形代入公式上下边缘温差a 为材料的温度线膨胀系数. 温度以升高为正,轴力以拉为正38.桁架的杆件长度因制造误差而与设计长度不符时,由此引起的位移计算与温度变化时相类似。
设各杆长度的误差为Dl (伸长为正,缩短为负),则位移计算公式为40.超静定结构特征:超静定结构则是有多余约束的几何不变体系;超静定结构的支座反力和截面内力不能完全由静力平衡条件唯一地加以确定 。
41.确定结构超静定次数最直接的方法是解除多余约束法,即将原结构的多余约束移去,使其成为一个(或几个)静定结构,则所解除的多余约束数目就是原结构的超静定次数。
42.1)移去一根支杆或切断一根链杆,相当于解除一个约束。
2)移去一个不动铰支座或切开一个单铰,相当于解除两个约束。
3)移去一个固定支座或切断一根梁式杆,相当于解除三个约束。
d d d d ΔM N u Qd M N u θηθ=++=+∑∑∑⎰⎰⎰∑∑⎰⎰00()d d d d d d Ky t M N u Qd t s N t s Mh M st N s th θηαααα∆=++∆=+=+∆∑∑∑⎰⎰⎰∑∑⎰⎰∑∑⎰⎰0N M t t A A h αα∆=+∑∑图面积 N图面M 0()Ky t N M tt A Ahαα∆∆=+∑∑12tt t -=∆2210t t t +=ΔN l =∆∑4)将固定支座改为不动铰支座或将梁式杆中某截面改为铰结,相当于解除一个转动约束。
43.力法的计算步骤1)确定基本未知量数目。
力法基本未知量数=结构的多余约束数=结构的超静定次数 2)选择力法基本体系。
(去多余约束) 3)建立力法基本方程。
4)求系数和自由项。
(图乘法,互乘,自乘) 5)将系数和自由项代入力法方程,解方程,求多余未知力。
6)作内力图:叠加法计算控制截面的内力值。
7)校核。
44.力法的基本原理是:以结构中的多余未知力为基本未知量;根据基本体系上解除多余约束处的位移应与原结构的已知位移相等的变形条件,建立力法的基本方程,从而求得多余未知力;最后,在基本结构上,应用叠加原理作原结构的内力图。
45.n 次超静定结构的力法典型方程方程的物理意义:基本结构在全部多余末知力和荷载共同作用下,沿每个多余末知力方向的位移,应与原结构中对应位移相等。
46.荷载作用下的平面结构,这些位移的计算式可写为47.超静定桁架 48.49.超静定组合结构用力法计算时,一般可将桁杆作为多余约束切断而得到其静定的基本体系。