IGBT驱动
IGBT驱动电流及驱动功率的计算

IGBT驱动电流及驱动功率的计算IGBT驱动电路的设计包括上下桥绝缘水平的选择、驱动电压水平的确定、驱动芯片驱动功率的确定、短路保护电路等等。
今天我们重点讨论一下驱动电流以及功率的确定,也就是说如何确定一个驱动芯片电流能力是不是可以驱动一个特定型号的IGBT,如果不能驱动该如何增强驱动输出能力。
01、驱动芯片峰值电流的计算在选择IGBT驱动芯片时,很重要的一步就是计算IGBT所需要的最大驱动电流,在不考虑门极增加Cge电容的条件下,可以把IGBT驱动环节简化为一个RLC电路,如下图阴影部分所示。
求解这个电路可以得到峰值电路的关系式如下:I peak:驱动环节可以输出的最大电流ΔU ge:门极电源最大值减去最小值R G,ext:外部门极电阻值,R G,int为器件内部的电阻值从上面公式可以看出最大驱动电流取决于门极电压水平,以及门极电阻值,一旦这两个参数确定后,所需要的最大驱动电流基本确定。
当然,在一些设计中会选用不同的开通关断电阻,那么就需要分别计算开通关断需要的电流。
依据上述计算的开通关断电流值可以初步选择芯片的驱动电流,芯片数据手册给出的峰值不能小于计算得到的电流值,并且适当考虑工程余量。
02、推挽电路放大电路增加驱动电流如果驱动芯片的输出电流不能驱动特定IGBT的话,比较简单的方法是采用推挽电路进一步增强驱动芯片的峰值电流输出能力。
采用三极管放大是一种常用的方式,其计算步骤如下:(1)根据选择的驱动电压水平以及门极电阻计算得到需求的最大峰值电流I peak (2)选择合适耐压的PNP/NPN三极管组成推挽电路(3)查所选择的三极管数据手册中的电流传输系数h FE,计算得到三极管的基极电流(4)计算驱动芯片输出极的输出电阻上述步骤给出了BJT作为推挽放大电路时一般的步骤,需要着重考虑的是BJT的耐压以及基级电阻的匹配。
由于使用BJT做推挽放大设计设计比较简单,因此在设计中得到广泛的应用。
在大功率应用场合比较常用的BJT三极管型号有MJD44/45H11(80V)等。
IGBT驱动工作原理

IGBT驱动工作原理IGBT(Insulated-Gate Bipolar Transistor)是一种功率半导体器件,结合了MOSFET(金属氧化物半导体场效应晶体管)和BJT(双极型晶体管)的优点,广泛应用于高压、高电流的功率电子系统中。
IGBT驱动器是控制和驱动IGBT工作的关键组件,下面将详细介绍IGBT驱动器的工作原理。
在讲解IGBT驱动器的工作原理之前,首先需要了解IGBT的基本结构。
IGBT结构由四部分组成:P型衬底、N型绝缘层、P型区域和N型极区。
其中,P型区域和N型极区之间的结为PN结,类似于BJT的结。
而IGBT最大的特点就是在P型区域和N型极区之间引入了绝缘层,将栅极与P型区隔离开来,避免了BJT的漏电流。
IGBT的工作过程可以分为导通和截止两个阶段。
在导通状态下,当集电极(P型区域)的电压高于发射极(N型极区)时,PN结处于正向偏置,P型区域中的电洞和N型极区中的电子注入到P型区域,形成电流。
此时,通过向栅极施加一个正向电压,增加集电极电流,进一步增强IGBT的导通能力。
在截止状态下,当栅极电压低于一些阈值电压时,PN结处于反向偏置,P型区域和N型极区之间形成封锁区,几乎没有电流通过。
此时,即使集电极-发射极间的电压高于阻断电压,也不会导致绝缘层击穿,从而保持截止状态。
电流放大是指驱动器通过外部电流源向栅极注入一定的电流,将其放大并输送到栅极。
这样可以达到在短时间内迅速充电或放电栅极的目的,以控制IGBT的导通和截止。
其中,典型的驱动方式是采用互补法,即通过一个NPN型晶体管和一个PNP型晶体管组成的驱动电路,以实现对IGBT的控制。
电压命令是指驱动器根据输入控制信号的变化,控制IGBT的导通时间和截止时间。
通常,IGBT驱动器会通过两个阻型缓冲电路(Inverting Buffer和Non-Inverting Buffer)接收外部控制信号,对输入信号进行放大和处理,并输出一个经过放大的电压命令信号给IGBT。
IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路IGBT(Insulated-Gate Bipolar Transistor)驱动电路主要由三部分组成:信号隔离部分、驱动信号放大部分和保护电路。
信号隔离部分是将输入信号与输出信号进行隔离,防止输入信号中的噪声和干扰对输出信号产生影响。
常用的信号隔离方法有变压器隔离、光电隔离和互感器隔离等。
其中,光电隔离是最常用的方法之一,它通过输入端的光电耦合器将电信号转换成光信号,通过光电隔离再将光信号转换为电信号输出。
这样可以有效防止输入信号中的噪声和干扰对输出信号产生干扰,提高系统的稳定性和可靠性。
驱动信号放大部分是将输入信号进行放大,以驱动IGBT的门极电压,控制IGBT的导通和关断。
驱动信号放大部分一般采用功放电路,常用的放大器有晶体管放大器和运放放大器。
通过合理选择放大器的工作点和增益,可以将输入信号进行适当放大,提高系统的灵敏度和响应速度,以确保IGBT的正常工作。
保护电路是为了保护IGBT免受电路中的过电流、过电压等异常情况的损害而设计的。
保护电路一般包括过流保护、过压保护、过温保护和短路保护等功能。
过流保护通过在电路中增加电流传感器来检测电流的变化,一旦电流超过设定值就会触发保护,例如通过切断电源来防止IGBT损坏。
过压保护通过在电路中增加电压传感器来检测电压的变化,一旦电压超过设定值就会触发保护,例如通过切断电源来防止IGBT损坏。
过温保护通过在IGBT芯片上增加温度传感器来检测芯片温度的变化,一旦温度超过设定值就会触发保护,例如通过减小驱动信号的幅度来降低功耗和温度。
短路保护通过在电路中增加短路检测电路,一旦检测到短路就会触发保护,例如通过立即切断电源来防止IGBT损坏。
总之,IGBT驱动电路的原理是通过信号隔离部分将输入信号与输出信号进行隔离,通过驱动信号放大部分将输入信号进行放大,以驱动IGBT的门极电压,控制其导通和关断。
同时,通过保护电路对IGBT进行多重防护,保证其在电路异常情况下的正常工作,提高系统的可靠性和稳定性。
igbt的驱动芯片

igbt的驱动芯片IGBT(Insulated Gate Bipolar Transistor)是一种高效能的功率半导体开关器件,广泛应用于电力电子领域。
为了正常工作,IGBT需要一个专门的驱动芯片来提供电源和控制信号。
本文将详细介绍IGBT驱动芯片的功能,特性以及应用。
首先,IGBT驱动芯片的主要功能是提供高电流和高速的驱动信号,以确保IGBT能够正常工作。
IGBT通常需要较大的驱动电流来克服其内部电容的充放电时间,从而实现快速开关。
因此,驱动芯片必须能够提供足够的电流来保证IGBT可靠地打开和关闭。
同时,驱动芯片还需要提供恰当的电源电压,以确保IGBT的正常工作。
其次,IGBT驱动芯片还需要提供各种保护功能,以防止IGBT受到损坏。
例如,过流保护功能可以检测IGBT通道中的电流是否超过了额定值,并在必要时及时切断驱动信号,防止IGBT受到过电流的损害。
另外,短路保护功能可以检测IGBT通道之间是否存在短路,并在必要时采取措施,如切断电源,以保护IGBT。
此外,驱动芯片还需要提供电隔离功能,以确保高电压和高电流不会引起电气短路或其他危险。
由于IGBT通常工作在高压和高电流环境下,驱动芯片必须具备良好的隔离能力,以保护操作员和设备的安全。
IGBT驱动芯片还需要具备高速和低延迟的特点,以满足IGBT快速开关的需求。
快速开关可以减小功率损耗,并提高系统的效率。
因此,驱动芯片需要具备高速开关的能力,并且能够实现快速的开关转换,以减小开关损耗和提高系统的响应速度。
最后,IGBT驱动芯片还需要具备抗干扰和抗高温的特性。
由于IGBT驱动芯片通常应用于恶劣的工业环境中,如电力系统和工业机械等,因此驱动芯片需要具备抗干扰和抗高温的能力。
抗干扰性能可以减少外部电磁干扰对驱动芯片的影响,保证驱动信号的稳定性。
抗高温性能可以确保驱动芯片在高温环境下正常运行,提高系统的可靠性和稳定性。
总结起来,IGBT驱动芯片是实现IGBT正常工作的关键组成部分。
IGBT模块驱动技术及应用

二、IGBT驱动与保护
驱动线
IGBT驱动线在设计过程中,尽量设计短,并双绞。
二、IGBT驱动与保护
结温
高结温将有助于减少在高杂散电感条件下的震荡
二、IGBT驱动与保护
二、IGBT驱动与保护
Vce尖峰
Vce尖峰电压由IGBT关断过程中杂散电感及二极管反向恢复产生。
L=85nH
L=185nH
衡IGBT的通态损耗和开关损耗。
一、IGBT基本原理
(2)非穿通(NPT)型IGBT
与PT型IGBT不同,NPT型IGBT以掺杂的N-
栅极
发射极
基区为衬底,P掺杂发射区设计的很薄,没有
PT型IGBT的N型缓冲区,这样在阻断状态,电
场只在N型衬底内存在。因为电场不再“穿
通”N型衬底,因此被称为“非穿通”型IGBT。
针对感性负载,为了防止过压,IGBT需要
并联一个续流二极管给电流提供续流回路。RC
N+
P
IGBT并不是简单的在外部并联一个半导体二极
管,而是在半导体内部实现了一个二极管,主
N-基区
(衬底)
要用于谐振电路、硬开关电路中。
N场终止层
P
N
集电极
P
一、IGBT基本原理
英飞凌IGBT
二、IGBT驱动与保护
IGBT模块驱动技术及应用
一、IGBT基本原理
目
录
二、IGBT驱动与保护
三、双脉冲测试
四、安全工作区
一、IGBT基本原理
1. IGBT基本介绍
IGBT(InsulatedGateBipolarTransistor)绝缘栅双极型晶体管
IGBT之父:Jayant Baliga(贾杨.巴利加)教授(20世纪80年代发明)
IGBT的驱动特性及功率损耗计算

IGBT的驱动特性及功率损耗计算IGBT(Insulated Gate Bipolar Transistor)是一种常用的功率开关器件,广泛应用于电力电子领域。
IGBT的驱动特性和功率损耗计算是研究和设计IGBT电路时重要的考虑因素。
以下是对IGBT驱动特性和功率损耗计算的详细介绍。
一、IGBT的驱动特性1.输入阻抗:IGBT的输入阻抗较高,通常在几百欧姆到几兆欧姆之间,可以接受微弱的输入信号。
2.输入电容:IGBT的输入电容通常较大,约为几十皮法(pF),需要充放电过程来实现开关控制。
3.驱动电压:IGBT的驱动电压通常在12V至15V左右,在工作过程中,需要适当控制驱动电压的大小和时间,以保证其正常工作。
4.驱动电流:IGBT的驱动电流是驱动IGBT的关键参数,通常需要较大的驱动电流来保证IGBT的稳定工作。
5.驱动方式:常见的IGBT驱动方式有电流驱动和电压驱动两种。
电流驱动方式可以提供更好的保护性能和更高的驱动能力。
6.驱动信号:IGBT的驱动信号通常为脉宽调制(PWM)信号,通过控制脉宽来调节流过IGBT的电流,从而实现对电路的开关控制。
7.驱动时间:IGBT的驱动时间是指IGBT从关断到导通或从导通到关断的时间,通常需要较短的驱动时间来保证IGBT的快速开关。
IGBT在工作过程中会产生一定的功率损耗,包括导通损耗、关断损耗和开关损耗。
功率损耗的计算对于设计IGBT电路和散热系统非常重要。
1.导通损耗:IGBT在导通状态下会有一定的导通电压降和导通电流,导致功率损耗。
导通损耗可以通过以下公式计算:Pcon = Vce × Ic其中,Pcon为导通损耗,Vce为导通电压降,Ic为导通电流。
2.关断损耗:IGBT在关断过程中会有一定的关断电流和关断电压降,导致功率损耗。
关断损耗可以通过以下公式计算:Pdis = Vce × Ic × td其中,Pdis为关断损耗,Vce为关断电压降,Ic为关断电流,td为关断时间。
IGBT驱动电路原理与保护电路

IGBT驱动电路原理与保护电路IGBT(Insulated Gate Bipolar Transistor)驱动电路是一种用于控制和驱动IGBT器件的电路,用于将低功率信号转化为高功率信号,以实现对IGBT器件的控制。
IGBT驱动电路通常由输入电路、隔离电路、输出电路和保护电路组成。
下面将详细介绍IGBT驱动电路的原理和保护电路的作用。
IGBT驱动电路的主要工作原理是通过输入信号的变化来控制IGBT的通断,从而实现对高功率负载的控制。
IGBT驱动电路一般采用CMOS电路设计,以确保高噪声抑制和良好的电磁兼容性。
常见的IGBT驱动电路分为光耦隔离和变压器隔离两种。
光耦隔离驱动电路是将输入信号与输出信号通过光电耦合器隔离,在高功率环境下提供了良好的隔离和保护。
光电耦合器的输入端通常由输入信号发生器驱动,而输出端则连接到IGBT的控制极,实现信号的传输和控制。
光耦隔离驱动电路在功率轻载和带负载的情况下都能提供良好的电气隔离,提高了系统的可靠性和稳定性。
变压器隔离驱动电路是通过变压器来实现输入和输出信号的隔离。
输入信号通过变压器的一侧传输,然后通过变压器的另一侧连接到IGBT的控制极。
变压器隔离驱动电路具有较高的耐受电压和电流能力,并能抵御噪声和干扰的影响。
IGBT保护电路的作用:IGBT是一种高功率开关设备,在工作过程中容易受到电流过大、电压过高、温度过高等因素的影响,导致过热、短路甚至损坏。
因此,为了保护IGBT设备的正常工作和延长其使用寿命,需要在IGBT驱动电路中添加一些保护电路。
常见的IGBT保护电路包括过流保护、过压保护和过温保护。
过流保护电路通过检测IGBT芯片上的电流大小来保护器件的工作。
当电流超过预设值时,保护电路会通过切断电源或降低输入信号的方式来阻止过大电流通过IGBT。
这样可以防止IGBT芯片发生过热和失效。
过压保护电路通过监测IGBT器件上的电压来保护该器件的工作。
当电压超过正常工作范围时,保护电路会通过切断电源或降低输入信号的方式来阻止过高电压对IGBT芯片的损害。
IGBT驱动工作原理

IGBT驱动工作原理IGBT(Insulated Gate Bipolar Transistor)是一种MOSFET(金属氧化物半导体场效应晶体管)和BJT(双极型晶体管)的结合体,具有低开关损耗、高开关速度和高功率密度等优点,广泛用于电力电子领域。
IGBT驱动器则是用来控制IGBT工作的电路,下面将详细介绍IGBT驱动器的工作原理。
1.输入电源:提供电平稳定的DC电源,一般为12V或15V。
2.输入接口:负责接收外部控制信号,如PWM(脉宽调制)信号。
3.输入电阻:限制输入电流,保护驱动器。
4.驱动芯片:是整个驱动器核心部件,负责产生用于控制IGBT的信号,一般有低压侧和高压侧两部分。
低压侧接收输入接口的PWM信号,并通过内部逻辑电路产生驱动高压侧的信号,控制IGBT的开关。
5.滤波电容:将输入信号进行滤波,保证信号纯净,减小干扰。
6.输入光耦:将驱动芯片产生的信号通过光耦隔离,以提高系统的安全性和稳定性。
7.功率放大电路:将低压侧驱动信号增加到适合IGBT控制的电平,以保证IGBT能够快速开启和关闭。
8.输出光耦:将功率放大电路输出的信号通过光耦隔离后,传递给IGBT的控制端。
9.输出电容:对输出信号进行滤波,提供脉冲电流。
10.输出电阻:用于匹配IGBT的输入阻抗,提供负载。
1.当外部控制信号到来时,输入接口将其传递给驱动芯片。
2.驱动芯片通过低压侧逻辑电路对输入信号进行处理,产生相应的驱动信号。
3.驱动信号经过滤波电容、输入光耦和功率放大电路等部件的处理,最终输出到IGBT的控制端。
4.IGBT根据驱动信号的状态,判断是否开启或关闭。
开启时,电流从IGBT的集电极流入基极,使得IGBT处于导通状态;关闭时,电流无法从集电极流入基极,使得IGBT处于截止状态。
5.IGBT的状态变化将影响电路中的电流和电压,从而实现控制功率器件工作的目的。
总结:IGBT驱动器通过接收外部控制信号,经过驱动芯片的逻辑处理和功率放大电路的放大,在滤波电容和光耦隔离的作用下,将信号传递给IGBT,控制IGBT的开闭状态,从而实现对功率器件的精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
© 2015 Power Integrations |
15
COMPANY CONFIDENTIAL
信号传输技术
传输方式
优势
-低成本 -灵活,可集成更多功能
劣势
-不带隔离 -无负压关断 -需要外部提供电源 -Vce<=0.6kV -寿命 -传输延时 -需要外部提供电源 -Vce<=1.2kV -体积较大 -成本较高 -传输时延大
© 2015 Power Integrations |
12
COMPANY CONFIDENTIAL
信号传输技术
光耦
原方/副方之间采用光耦技术进行隔离
隔离电压等级有限
本身不带DC/DC 电源 传输时延较大,不适合直接并联应用
传输延迟时间误差会影响死区时间的设置 导致变流器输出电流的失真 这个参数随寿命的变化而变化
• Input Buffer • Pulse Shaper • Dead Time / Interlock • Pulse Stage Driver
Pulse Shaper Output Stage
传输时延较小,适合直接并联应用 信号可实现双向传输
信号传输,故障反馈信号可通过同一变压器 进行传输
Power Supply Error Processing Error Signal Output
关断电阻Rg,off 越大
IGBT关断速度(di/dt)越慢 电压尖峰越小,IGBT损耗大 存在桥臂直通的可能性
电阻的使用推荐在曲线范围内 开关电阻的选配可通过双脉冲测试来验证
© 2015 Power Integrations |
9
COMPANY CONFIDENTIAL
基本功能
IGBT开关要素
门极电阻配置方法 二极管需选择快速导通且正向压降低的器件
© 2015 Power Integrations |
10
COMPANY CONFIDENTIAL
信号传输技术
信号传输技术:
电平转换器:单一电平控制技术来对IGBT门极进行开关; 光耦:采用光隔离技术。只能起到信号隔离作用。需要外部提供隔离电源。 脉冲变压器:采用磁隔离技术,信号和电源均采用变压器进行传输。 光纤传输:满足任何电压等级的应用,需要给光纤提供一路稳压并带隔离的直流电源。可实现远距离信号传输。
2
COMPANY CONFIDENTIAL
简介
IGBT驱动可包括以下几部分:
基本功能:用来控制IGBT的门极以实现IGBT的开通和关断。IGBT门极呈现的是容性特征,需要储备或者释放一定数 量的电荷量才能开通或者关断流过集电极的电流。 保护功能:为了避免IGBT在正常工作的过程中不受到损坏,IGBT驱动也需要提供短路保护,Vce过压保护,门极欠压 保护等功能。 电气隔离:由于驱动器控制的是IGBT的门极,副边电路参考的电位都是IGBT的发射极,处于较高电位,因此IGBT驱 动电路的设计需要满足安规要求---电气间隙,爬电距离。
FF450R17ME4
© 2015 Power Integrations | 7 COMPANY CONFIDENTIAL
基本功能
IGBT开关要素
门极电压电平—关断过程
需要在IGBT门极施加负电平电压源 通常推荐使用-8V…-10V电平的负电压源, 避免半桥拓扑IGBT发生直通现象 有缘米勒钳位---Active Miller Clamping
Level Shifter
© 2015 Power Integrations |
Opto-coupler
11
Transformer
Optic link
COMPANY CONFIDENTIAL
信号传输技术
电平转换器:
电平转换器:
无任何隔离措施,适用于600V以下IGBT模块 采用单一电平控制技术
厂商
Diodes IR
型号
ZXMC4559DN8 IRF7343
UBR
-60V/+60V -55V/+55V
封装
SO-8 SO-8
控制简单; 轨到轨控制,推动级速度快; 推动级器件本身的损耗小;
MOSFET厂家
© 2015 Power Integrations |
20
COMPANY CONFIDENTIAL
H桥拓扑 共射极电路 MOSFET推挽电路 N沟道MOSFET推挽电路
电流源推动级
© 2015 Power Integrations |
17
COMPANY CONFIDENTIAL
驱动拓扑电路
H桥电路
单一电平电压源,无须负电压;需要外部提供一个稳压的+16V电源。
控制复杂,需要控制H桥中的所有晶体管; 门极峰值电流有限,某些应用场合需要增加电流放大电路; 功率器件的上桥对应的驱动都需要独立的隔离电源;
© 2015 Power Integrations |
6
COMPANY CONFIDENTIAL
基本功能
IGBT开关要素
门极电压电平—开通过程
需要在IGBT门极施加正电平电压源使IGBT 处于导通饱和区 通常推荐采用+15V 导通饱和压降与门极电压电平成反比 短路电流与门极电压成正比
© 2015 Power Integrations |
18
COMPANY CONFIDENTIAL
驱动拓扑电路
共射极电路
输出电压与输入电压之间的关系:Uin-Uout>0.7VT1导通; Uout-Uin>0.7VT2导通
控制简单; 可通过并联实现更大门极峰值电流的需求; 自身损耗大,在开关频率高的情况下发热明显 三极管速度相对MOSFET而言偏慢
80
50 80
D-PAK
SOT223 D-PAK
三极管厂家
© 2015 Power Integrations | 19 COMPANY CONFIDENTIAL
驱动拓扑电路
MOSFET推挽电路
数字电路中常用的输出推动级 可实现门极电阻可选功能,从而控制IGBT开关时的di/dt(dv/dt)
低压侧
高压侧
COMPANY CONFIDENTIAL
信号传输技术
脉冲变压器
原方/副方之间采用脉冲变压器技术进供隔离技术
DC+ Desaturation Monitoring
DC/DC 电源
采用变压器技术进行能量传送
Signal Processing Switching Signal High Side / TOP Switching Signal Low Side / BOT
• Error Latch • Error Signal
Load
Power Supply Desaturation Monitoring
DC/DC Converter Control Supply voltage
• Power Supply Monitoring
Pulse Shaper Output Stage
© 2015 Power Integrations |
3
COMPANY CONFIDENTIAL
基本功能
IGBT开通
T1开通,T2关断。+15V电源通过Rg,on给IGBT门极进行充电 当IGBT门极电压到达UGE,th之后,集电极电流开始增长;
© 2015 Power Integrations |
DC-
© 2015 Power Integrations |
14
COMPANY CONFIDENTIAL
信号传输技术
光纤技术
信号的收发通过光纤传输
光纤收发需要成对出现 可实现远距离传输,满足全电压应用场合 采用光信号传输技术,抗干扰能力强
本身不带DC/DC 电源 传输时延较大,不适合直接并联应用
电阻串检测方法电路原理
Vce Monitor ing + -
VISOx 150uA ACLx
T1,T2的占空比相同;
© 2015 Power Integrations |
25
COMPANY CONFIDENTIAL
Vcesat检测
在IGBT发生短路故障时,会伴随Vcesat退保和现象。所以,可以用以下2 种方式来检测这个过程并对IGBT进行保护。
二极管检测Vce 电阻串检测Vce
电平转换器
光耦
-低成本
脉冲变压器
-可实现高电压隔离等级 -自带隔离电源 -传输时延小
-可实现高电压隔离等级 -抗干扰能力强
光纤
© 2015 Power Integrations |
16
COMPANY CONFIDENTIAL
驱动拓扑电路
推动级电路
电压源推动级---主流驱动技术都采用电压源型推动级
4
COMPANY CONFIDENTIAL
基本功能
IGBT关断
T1关断,T2开通。IGBT经由Rg,off给-10V电压源放电。
© 2015 Power Integrations |
5
COMPANY CONFIDENTIAL
基本功能
IGBT开关要素
门极电压电平 门极电阻 门极电荷量 门极杂散电感
驱动拓扑电路
N沟道MOSFET推挽电路 轨到轨正逻辑控制;推动级速度快; 推动级器件本身的损耗小; 上管MOSFET需要配置自举(Bootstrap)以及电荷泵 (Charge Pump);
Bootstrap
© 2015 Power Integrations | 21 COMPANY CONFIDENTIAL
图1 IGBT外特性曲线
© 2015 Power Integrations |