5极谱分析法

合集下载

极谱分析法ppt课件

极谱分析法ppt课件
电解开始后,随着外加电压的继续增大,电流急剧上升, 最后当外加电压增加到一定数值时,电流不再增加,达到 一个极限值,达到扩散平衡,极谱波出现一个平台段。此 时的电流称为极限电流。极限电流与残余电流之差,称为 极限扩散电流,也叫扩散电流,也称为波高,以id表示。 波高id与电解液中M+的浓度成正比,是极谱定量分析的基 础。当电流为极限扩散电流一半时的滴汞电极电位,称为 半波电位,以E1/2表示,是极谱定性分析的基础。
Calomel electrode
Corresponding to section ac
0.1M
电容电流:是由于汞滴表面与溶液间形成的双电层, 在与参比电极连接后,随着汞滴表面的周期性变化而 发生的充电现象所引起的。此电流与滴汞电极的电位 有关。对于微量组分(如<10-5M)的测定,虽然注意 到所用试剂的纯度并经过仔细的除氧,但由于电容电 流的存在,仍有微量的残余电流(约为10-7A数量级) 通过(Why some 10-7A?), 这已足以起较大的测 量误差。所以电容电流的存在是提高极谱分析灵敏度 的一个主要障碍。
A + ne- B
Ede
= Eo
+
0.059 lg ACAe n BCBe
而根据扩散 电流公式:
-id = kACA -i = kA(CA- CAe)
• 所以:
CAe
=
-id
+i kA
又因为滴汞电极上金属离子还原生成的金属单质 常以汞齐的形式存在,汞界面上金属单质的汞齐 浓度与电解电流成正比,即有公式:
0.059 n
lg id - i i
(*)
当 i = ½ id 时, 对数项中的分数值为1,所以电 极电位等于带星号方程的常数项E’,它的数值

极谱分析法

极谱分析法
检测下限一般在10-4~10-5mol/L范围内。这主要是受干 扰电流的影响所致。
如何对经典直流极谱法进行改进? 改进的途径?
(id)平均 每滴汞上的平均电流(微安);n 电极反应中转移的 电子数;D 扩散系数; t 滴汞周期(s);c 待测物原始浓度 (mmol/L);m 汞流速度(mg/s); 讨论:
(1) n,D 取决于被测物质的特性 将706nD1/2定义为扩散电流常数,用 I 表示。越大,测定越 灵敏。
(2) m,t 取决于毛细管特性, m2/3 t 1/6定义为毛细管
e. 汞容易提纯 扩散电流产生过程
中,电位变化很小,电解 电流变化较大,此时电极 呈现去极化现象,这是由 于被测物质的电极反应 所致。被测物质具有去 极化性质:去极剂。 Hg有毒。汞滴面积的变 化导致不断产生充电电 流(电容电流)。
二、扩散电流理论
theory of diffusion current
三、干扰电流与抑制
interference current and elimination
1.残余电流
(a)微量杂质等所产生的微弱电流 产生的原因:溶剂及试剂中的微量杂质及微量氧等。 消除方法:可通过试剂提纯、预电解、除氧等;
(b)充电电流(也称电容电流) 影响极谱分析灵敏度的主要因素。 产生的原因:分析过程中由于汞滴不停滴下,汞滴表面
Applications of polarography
无机分析方面:特别适合于金属、合金、矿物及化学试 剂中微量杂质的测定,如金属锌中的微量Cu、Pb、Cd、Pb、 Cd;钢铁中的微量Cu、Ni、Co、Mn、Cr;铝镁合金中的微 量Cu、Pb、Cd、Zn、Mn;矿石中的微量Cu、Pb、Cd、Zn、 W、Mo、V、Se、Te等的测定。

第五章 伏安法和极谱分析法.

第五章   伏安法和极谱分析法.

第五章伏安法和极谱分析法基本要求:1.掌握直流极谱法的基本原理及其不足之处2.掌握尤考维奇方程和极谱波方程3.理解单扫描极谱法、脉冲极谱法和阳极溶出伏安法灵敏度高的原因4.掌握循环伏安法的原理及应用伏安法(V oltammetry)和极谱分析法(Polarography)都是通过由电解过程中所得的电流-电位(电压)或电位-时间曲线进行分析的方法。

它们的区别在于伏安法使用的极化电极是固体电极或表面不能更新的液体电极,而极谱分析法使用的是表面能够周期更新的滴汞电极。

自1922年J.Heyrovsky开创极谱学以来,极谱分析在理论和实际应用上发展迅速。

继直流极谱法后,相继出现了单扫描极谱法、脉冲极谱法、卷积伏安法等各种快速、灵敏的现代极谱分析方法,使极谱分析成为电化学分析的重要组成部分。

极谱分析法不仅可用于痕量物质的测定,而且还可用于化学反应机理,电极动力学及平衡常数测定等基础理论的研究。

与两种电解过程相对应,极谱分析法也可分为控制电位极谱法(如直流极谱法、单扫描极谱法、脉冲极谱法和溶出伏安法等)和控制电流极谱法(如交流示波极谱法和计时电位法等)。

5.1 直流极谱法5.1.1 原理1.装置直流极谱法也称恒电位极谱法,其装置如图5-1所示。

它包括测量电压、测量电流和极谱电解池三部分。

图5-1 直流极谱装置示意图图5-2 饱和甘汞电极(a)和滴汞电极(b)现以测定Pb2+和Zn2+为例。

在电解池中安装一支面积小的滴汞电极,另一支面积大的饱和甘汞电极,如图5-2所示。

电解池中盛有浓度均为1.00 ×10-3mol·L-1Pb2+ 和Zn2+ 溶液以及0.1mol·L-1KCl(称为支持电解质,浓度比被测离子大50-100倍),并加入1%的动物胶(称为极大抑制剂)几滴。

电解前,通入N2除去电解液中溶解的O2。

按图5-1,以滴汞电极为阴极,饱和甘汞电极为阳极,在不搅拌溶液的静止条件下电解。

极谱分析

极谱分析
滴 汞 电 极
(1) 易形成浓差极化; (2) 使电极表面不断更新,重复性好; (3) 汞滴面积的变化使电流呈快速锯 齿性变化. 10
2. 扩散电流理论和极谱波方程式
n: 电极反应中电子转移数 D : 待测物质在溶液中的
扩散系数(cm2/s) m : 汞滴流速(mg/s) τ : 滴汞周期(s) ( id )平均 :(μA) C : 浓度(mmol /L)
毛细管特性 – 汞柱 高度 滴汞电极电位 溶液组成 温度
影响半波电位的因素
支持电解质的种类和浓度 温度 形成络合物 溶液的酸度
16
4.定量分析方法
(id)平均 = Kc 波高测量方法
平行线法 三切线法 矩形法
极谱定量法
直接比较法 标准曲线法 标准加入法
17
5. 应用
无机分析方面: 特别适合于金属,合金,矿物及化学试剂中微量杂质的测 定,如金属锌中的微量Cu,Pb,Cd,Pb,Cd;钢铁中的微量 Cu,Ni,Co,Mn,Cr;铝镁合金中的微量Cu,Pb,Cd,Zn, Mn;矿石中的微量Cu,Pb,Cd,Zn,W,Mo,V,Se,Te等的 测定. 有机分析方面: 醛类,酮类,糖类,醌类,硝基,亚硝基类,偶氮类 在药物和生物化学方面; 维生素,抗生素,生物碱
极谱分析法
1
极谱法基本原理
以电解过程中的电压-电流曲线为基础 建立的电化学分析方法为伏安法 以滴汞电极为工作电极的伏安法 称为极谱法 捷克 海洛夫斯基
2
3
4
5
1.极谱分析过程和极谱波形成条件
极谱分析:特殊条件下进行的电解分 析. 特殊性: a,使用了一支极化电极 和另一支去极化电极作为 工作电极; b,在溶液静止的情况下 进行的非完全的电解过 程.

极谱分析法

极谱分析法
2 2

0
i K ( Pb2 Pb2 0 )



极限扩散电流
当滴汞电极表面的Pb2+迅速还原,[Pb2+]0 趋于零,此时主体浓度和电极表面之间的浓度 差达到极限情况,达到完全浓差极化,此时电 流不再随外加电压的增加而增加,曲线呈现一 平台,此时产生的电流称极限扩散电流。
id K Pb
根据浓差极化的要求,一些惰性导体制成的微电极,例 如:铂微电极或石墨电极,但因为固体表面不能保持新 鲜状态,每次电解后,可能有沉积的金属残留其上,使 电极的性质改变,不能保证高度的再现性。其次,对于 固体微电极,在测量每一电位下的扩散电流时,其电流 数值不是恒定的,随着时间的增加,电极表面反应物质 生成的扩散层厚度也相应增加,导致浓差梯度减小,扩 散电流下降。 滴汞电极解决了上述问题,汞滴不断下滴,电极 表面始终是新鲜的。
迁移电流 由于离子受静电引力作用,使更多的 离子趋向电极表面,并在电极上还原所产 生的电流称迁移电流。迁移电流与被测物 质浓度无定量关系。
消除迁移电流的方法:加入大量的支持 电解质(如:KCl、NH4Cl、KNO3)一般 支持电解质的浓度要比被测物质的浓度大 50-100倍。
极谱极大
在电解开始后,电流随电位的增加迅速增大到一 个极大值,然后下降到扩散电流区域,电流恢复正 常,这种现象称极谱极大。 由于极大现象将影响到半波电位及扩散电流的正确 测量,因此必须设法除去。
缺点:
汞蒸气有毒、滴汞电极所用毛细管易堵塞, 制备麻烦。
因而寻找一种能具有滴汞电极的优点而又 能克服其缺点的合适电极,是极谱工作者继 续探索的问题。
三、干扰电流及消除方法
除扩散电流外,还有其它因素引起的 非扩散电流,这些电流与被测离子浓度无 关或不成比例,存在干扰测定。 (一)残余电流

第十章极谱分析法-

第十章极谱分析法-
东北师范大学分析化学精品课
3
二、极谱分析法的特点
(1)较高的灵敏度:普通极谱法:10-5~10-2 mol/L; 新技术:10-11~10-8 mol/L. (2)分析速度快,易于自动化 (3)重现性好:汞滴不段更新,电极保持干净 (4)应用范围广:有机物质-无机离子分析;溶度积、 解离常数和络合物组成等的测定;电极反应机理研究; 电极过程动力学研究等。
第十章 极谱分析法
分析化学(下) 东北师范大学精品课
东北师范大学分析化学精品课
1
极谱法是一种特殊的电解方法。
(1)电极:滴汞电极,面积很小,电解时溶液浓度变化小 (2)极谱法测量的参数:与电重量法不同,不测量析出物 质的质量,测量回路中电流和工作电极的电位,并绘制电 流-电位曲线(又称极谱图),依据极谱图进行定性、定 量分析。 注:如果采用固体电极(或面积固定的电极)作为工作电 极,则此法称为伏安法。
24
东 北 师 范典大型学的分极析谱化曲学线 精 品 课
25
一、扩散电流方程式
id = KC
1934年,尤考维奇推导出扩散电流的近似公式
1 2 1
i 70n8D 2qm 3 6C
式中:n为电极反应中电子转移数;D为待测组分的扩散系 数 ( m2/s ) ; qm 为 滴 汞 流 速 ( mg/s); 为 滴 汞 生 长 时 间 (s);C为被测物质的浓度(mmol/L);i为任一瞬间 的扩散电流(mA)
id 60n7D 2qm 3t6C
在方程式中,与毛细管有关的项是qm和t, qm2/3t1/6称 为毛细管常数。 qm和t取决于毛细管的直径、长度和汞柱压力。若直径 和长度恒定,汞柱高度为h,压力为P,则
qm=K1P t=K2P qm2/3t1/6=K12/3K21/6P1/2

极谱分析法的基本原理

极谱分析法的基本原理

到1.30V (vs.SCE)还不会有H2析出,这样在酸性溶液
中可对很多物质进行极谱测定。
• 4. 测定范围广
• 汞能与许多金属生成汞齐,使其在滴汞电极上的 析出电位变正,因而在碱性溶液中,极谱可测定碱金 属、碱土金属。
缺点:
• 1. 汞易挥发且有毒,注意通风; • 2. 滴汞电极毛细管易堵塞,制备较麻烦; • 3. 当滴汞电极作阳极时,电位一般不能
超过+0.40V,否则汞将被氧化。 • 4. 滴汞电极上残余电流较大,限制了测定灵敏度
的提高。
4 3
2 1
图8-4
近似处理:
• 由于金属的过电位很小,极谱分析中的电流很小,电
解过程中电阻 R 也不大,则、 iR 都很小,可忽略。
U 外 ESCE Ede
又SCE的电位恒定不变,则:
U外 Ede
(相对于SCE)
重要意义:U外 Ede (相对于SCE)
• (1) 该式说明了从实验中得到的电流-外加电压(iU)曲线与作为理论分析基础的电流-滴汞电极电 位(i-Ede)曲线完全等同(滴汞电极电位可以用外 加电压取负值来表示)。

在扩散层内, Pb2+浓度从外向内逐渐减
小,在扩散层外, Pb2+的浓度等于主体溶液
的浓度。
图8-5
• 由于电极反应速度快,而离子扩散速度慢,溶液又 处于静止状态,所以扩散电流的大小决定于扩散速 度,而扩散速度又与扩散层中的浓度梯度成正比。
i [Pb2 ] [Pb2 ]0
i K ([Pb2 ] [Pb2 ]0 )
还原析出,产生持续不断的电解电流。
扩散电流

(2) 扩散电流
• 由于浓差极化,使离子不 断由高浓度向低浓度的电极表 面扩散,因而不断引起电极反 应而产生的电流称~ 。

极谱分析.

极谱分析.

流值;
4.以所测得的电流(用I表示)
为纵坐标,电压(用V表示)为
横坐标作图,得到I~V曲线,此
曲线叫做极谱波或叫极谱图。最
后利用此图就可求出溶液中的铅
的浓度。
三、极谱曲线—极谱图:
i C A B M
D
E
id
ir E
1/2 E/V(vs.SCE)
AB段:未达分解电压U分,随外
加电压U外的增加,只有一微小电
须一致。
c) 温度影响
除n外,温度影响公式中的各
项,尤其是扩散系数D。室温下,
温度每增加1oC,扩散电流增加约
1.3%,故控温精度须在0.5oC。
极谱定量分析方法 1.波高的测量:
极谱法中,波高的测量只需相对
波高即可(以mm,记录纸表格格 数表示均可)。而不需要绝对值。
三切线法:作极限扩散电流、
的去极化电极——参比电极;小
面积的极化电极; 2)电解是在静置、不搅拌的情况
下进行。
五.极谱分析中电极的特点: (一)参比电极——大面积的饱和
甘汞电极:对于参比电极,它在测 定过程中要发生如下的电极反应:
2Cl-+2Hg+2e=Hg2Cl2
250C时,它的电极电位等于:
E Eo 0.059 lg[Cl ] 0.246 0.059 lg[Cl ]
—底液。
b) 毛细管特性的影响
汞滴流速 m、滴汞周期 t 是受
毛细管特性的影响,因此,毛细管
特性将影响平均扩散电流大小。通 常将m2/3t1/6称为毛细管特性常数。
设汞柱高度为h,因m=kˊh,
t=k”/h, 则毛细管特性常数
m2/3t1/6=kh1/2,即平均极限扩散
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直流电源
A---灵敏度很高的 检流计(用来测量 电解过程中通过的 电流)。
V---伏特计,测 量加在两极上的 电压
C---滑动接触键C 向B移动,逐渐加 大外加电压
11
五、 极谱波的形成
电解Pb2+的稀溶液 (5×10-4mol/L-1)
每加一次电压,记 录一次电流。以电流为 纵坐标,滴汞电极的电 压为横坐标作图,得电 位(压)---电流曲线, 称为极谱波。

C溶液
16
通式
i K [C C0 ]
比例系数
主体溶液中 待测物质的浓度
电极表面 待测物质的浓度
17
3、极限扩散电流部分(DE段)
完全浓差极化与极限 扩散电流 id。
1/2
de
18
id=K[Pb2+] 通式: id=KC
即极限扩散电流正比于 溶液中待来自物质浓度,这就 是极谱法的定量基础关系式。
第五章 极谱分析法
Polarography
1
第五章 伏安分析法(Voltammetry)
§5-1 伏安分析法的基本原理
一、伏安分析的历史与发展
以待测物质溶液、工作电极、参比电极 构成一个电解池,通过测定电解过程中电压-电 流参量的变化来进行定量、定性分析的电化学分 析方法称为伏安法。
极谱法:使用滴汞电极或其它表面能够周期性 更新的液体电极为工作电极,称为极谱法。
4
二、电解池的伏安行为
当外加电压达到镉离子的电解 还原电压时,电解池内会发生 如下的氧化还原反应。
阴极还原反应:
Cd2+ + 2e Cd
阳极氧化反应:
2OH- -2e H2O + 1/2 O2
U外 ∝ i
U外- Ud= iR
U外代表外加电压、R代表电路
(Cd2+)
阻抗、 Ud代表分解电压
5
6
三、电极表面的传质过程
创立极谱法,1959年获Nobel奖
1934 年 尤考维奇 Ilkovic, 提出扩散电流理
论,从理论上定量解释了伏安曲线。
20世纪40年代以来 提出了各种特殊的伏安技 术。主要有:交流极谱法(1944年)、方波极 谱法(1952年)、脉冲极谱法(1958年)、卷 积伏安法(1970年)
20世纪40年代以来 主要采用特殊材料制备的 固体电极进行伏安分析。包括微电极、超微阵列 电极、化学修饰电极、纳米电极、金刚石电极、 生物酶电极、旋转圆盘电极等,结合各种伏安技 术进行微量分析、生化物质分析、活体分析。
当扩散电流为极限扩散 电流一半时滴汞电极的电位 称为半波电位1/2,它是定 性的依据。
1/2
de
19
六、极谱过程的特殊性
(一)电极的特殊性
在极谱分析中的两个电极:
★一个是滴汞电极,作工作电极:是一个电极面
积很小,电解时达到浓差极化的电极——极化 电极( de随外加电压变化)
de



0.059 2
lg
[Pb2 ]0 [Pb(Hg)]0
Pb2+在电极表面的浓度
铅汞齐在电极表面的浓度
14
2 、电解电流(电流上升部分)
当外加电压继续增加,滴汞电极表 面的Pb2+迅速还原,电流急剧上升, 图 中 ( BD 段 ) , 由 于 电 极 表 面 上 的 Pb2+的还原,使得滴汞电极表面Pb2+ 浓度小于主体溶液中Pb2+的浓度,产 生浓度差(浓差极化),于是Pb2+就 要从浓度较高的主体溶液向浓度较低 的电极表面扩散,扩散到电极表面的 Pb2+立即在电极表面还原而产生连续 不断的电解电流即扩散电流 (difussion current)——由于扩散引 起电极反应而产生的电流。
是基本重合的。
V = ( ESCE -Ede ) + i R
∵ R are very little in polarographic electrolysis
V = ESCE - Ede = -Ede( vs. SCE) 极限扩散电流Id与浓度成正比——定量分析的 基础;
半波电位E1/2与浓度无关——定性分析的基础。10
12
1、残余电流部分 (图中AB段)
当外加电压尚未达到 待测物质(Pb2+)的分解电 压时,电极上没有Pb2+ 被还原,此时,仍有微 小的电流通过电解池, 这种电流称为残余电流 (Residual current) 。
形成的还原电流
13
2 、电解电流(电流上升部分)(图中BD段)
当外加电压继续增加,达到Pb2+的分解电压时, 也就是滴汞电极电位变负到等于Pb2+的析出电压时, Pb2+在滴汞电极被还原析出金属铅并与汞生成铅汞齐。 电极反应 阴极Pb2+ +2e-+Hg = Pb(Hg) 此时电解池中开始有电解电流通过
伏安法:使用表面静止的液体或固体电极为 工作电极,称为伏安法。
2
§5-2 极谱分析法的基本原理
一、 极谱法的装置 电解池由滴汞电极和
甘汞电极组成(工作 电极和参比电极)。 上端为贮汞瓶,下接 一塑料管,塑料管的 下端接一毛细管(内 径约为0.05mm), 汞自毛细管中有规则 地滴落
3
1922 年 捷克科学家 海洛夫斯基 J.Heyrovsky
电极表面存在 三种传质过程
1. 扩散 2. 电迁移 3. 对流
若电解采用微铂电极为 工作电极、且溶液不充 分搅拌时,会促使耗竭 区提前出现。这种现象 称极化现象。
7
浓差极化: 由于电解过程中电极表面离子浓 度与溶液本体浓度不同而使电极电位偏离平衡 电位的现象。
电化学极化: 因电化学反应本身的迟缓而造 成电极电位偏离可逆平衡电位的现象称为电化 学极化。
2 、电解电流(电流上升部分)
由于电极反应速率很快而扩散速率很慢,
溶液又处于静止状态,所以扩散电流的大小取
决于扩散速率,而扩散速率又与扩散层的浓度
梯度 [Pb2 ] [Pb 2 ]0 成正比。

i [Pb 2 ] [Pb 2 ]0
C0

或 i K [[Pb 2 ] [Pb 2 ]0
注意:由于电解过程中电极表面的浓差极化是 不可避免的现象,外加电压要严格控制工作电 极上的电位大小就要求另一支电极为稳定电位 的参比电极,实际上由于电解池的电流很大, 一般不易找到这种参比电极,故只能再加一支 辅助电极组成三电极系统来进行伏安分析。 8
四、滴汞电极上的电解行为
9
极谱波可以用I ~ V外曲线表示,也可以用i ~ Ede曲线来表示,从下面的讨论可以看出,二者
相关文档
最新文档