层次分析法介绍
层次分析法

决策论层次分析法一、层次分析法概述1. 层次分析法的产生背景定量分析方法对于社会科学的发展产生了巨大的促进作用,因此越来越受到重视,特别是最优化模型,曾一度在决策问题中得到非常广泛应用。
但在应用过程中,也出现了一些问题,主要体现在以下几个方面。
第一,社会问题的复杂性决定了难以构造合适的模型。
即使构造出数学模型,有时也难以准确说明问题或者难以执行。
第二,决策问题带有相当多的主观性,而这很难体现在最优化模型中第三,庞大的模型成本太大,难以理解由于存在上述问题,人们重新思考数量方法在社会科学中的作用,特别是对于决策问题,如何既考虑数学分析的精确性,又考虑人类决策思维过程及思维规律,即定性与定量相结合,正是在这种背景下,产生了层次分析法。
2. 层次分析法的发展层次分析法(The Analytic Hierarchy Pricess,以下简称AHP)是由美国运筹学家、匹兹堡大学萨第(T.L.Saaty)教授于本世纪70年代提出的,他首先于1971年在为美国国防部研究“应急计划”时运用了AHP,又于1977年在国际数学建模会议上发表了“无结构决策问题的建模—层次分析法”一文,此后AHP在决策问题的许多领域得到应用,同时AHP的理论也得到不断深入和发展。
目前每年都有不少AHP的相关论文发表,以AHP为基本方法的决策分析系统—“专家选择系统”软件也已早推向市场,并日益成熟。
AHP于1982年传入我国。
在当年召开的中美能源、资源、环境会议上萨第教授的学生高兰尼柴(H.Gholamnezhad)向中国学者介绍了这一新的决策方法。
随后,许树柏等发表了发表了国内第一篇介绍AHP的文章“层次分析法—决策的一种实用方法”(1982年)。
此后,AHP在我国得到迅速发展,1987年9月我国召开了第一届AHP学术讨论会,1988年在我国召开了第一届国际AHP学术会议,目前AHP在应用和理论方面得到不断发展与完善。
3. 层次分析法基本原理层次分析法的基本原理是排序的原理,即最终将各方法(或措施)排出优劣次序,作为决策的依据。
层次分析法概述

层次分析法一、层次分析法概述层次分析法(Analytic Hierarchy Process )是美国运筹学家T .L .Saaty 教授于20世纪70年代初期提出的一种简便、灵活而又实用的多方案或多目标的决策方法,它是一种定性和定量相结合的、系统化的、层次化的分析方法,是一种具有定性分析与定量分析相结合的决策方法,可将决策者对复杂对象的决策思维过程系统化、模型化、数量化。
其基本思想是通过分析复杂问题包含的各种因素及其相互关系,将问题所研究的全部元素按不同的层次进行分类,标出上一层与下层元素之间的联系,形成一个多层次结构。
在每一层次,均按某一准则对该层元素进行相对重要性判断,构造判断矩阵,并通过解矩阵特征值问题,确定元素的排序权重,最后再进一步计算出各层次元素对总目标的组合权重,为决策问题提供数量化的决策依据。
层次分析法特别适用于无结构问题的建模。
自1982年被介绍到我国以来,由于它在处理复杂的决策问题上的实用性和有效性,以及其系统灵活简洁的优点,迅速地在我国社会经济各个领域内,如能源系统分析、城市规划、经济管理、科研评价行为科学、军事指挥、运输、农业、教育、人才、医疗、环境保护、冲突求解及决策预报等领域得到了广泛的重视和应用。
二、层次分析法的基本思想基本思想 层次分析法的采用先分解后综合的系统思想,整理、综合人们的主观判断,将所要分析的问题层次化,根据问题的性质和要达到的总目标,将问题分解成不同的组成因素,按照因素间的相互关系及隶属关系,将因素按不同层次聚集组合,形成一个多层分析结构模型,最终归结为最低层(方案、措施、指标等)、中间层(准则层)、最高层(总目标)。
把实际问题转化为分析同层因素间相对重要程度的权重值或相对优劣次序的问题,使定性分析与定量分析有机结合,实现定量化决策。
三、确定权重值的基本原理人们在进行社会、经济以及科学管理领域问题的系统分析中,面临的常常是一个相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。
层次分析法的概念

层次分析法的概念层次分析法(Analytic Hierarchy Process,简称AHP)是一种多准则决策分析(Multi-Criteria Decision Analysis,简称MCDA)的方法,由美国运筹学家Thomas L. Saaty于20世纪70年代初提出。
AHP方法通过对多个准则进行层级划分和比较,并运用数学计算方法来确定各准则的重要性和不同方案的优先级,从而帮助决策者做出合理的决策。
AHP的基本思想是将复杂的决策问题分解为多个层次,从上到下逐级进行划分,形成一个层次结构模型。
在层次结构模型中,最顶层为目标层,下面的层次依次为准则层和方案层。
目标层描述了整体决策的目标,准则层描述了实现目标所需要的具体准则,方案层描述了可选方案。
每个层次都有若干个元素,分别构成了一个层次结构的树状图。
AHP方法的核心是构建准则间的判断矩阵,并计算出准则的权重。
判断矩阵用来比较和度量层次结构中的元素之间的重要性和优先级,它的维数等于层次中元素的个数,矩阵元素表示了两个元素之间的相对重要性。
决策者通过对每对元素进行两两比较,根据自己的主观判断,利用语义比例尺(由1到9的9个数值构成)对元素的相对重要性进行评价。
评价结果填入判断矩阵中,形成一个与层次结构对应的判断矩阵。
然后,通过计算判断矩阵的特征向量和最大特征值,可以得到准则的权重。
AHP方法还可以计算各个方案的优先级。
在方案层构建判断矩阵的过程中,同样可以通过两两比较不同方案,评价它们的优先级。
根据方案的判断矩阵,结合准则的权重,运用数学计算方法,可以得到每个方案的优先级权重。
这样,决策者可以根据方案的优先级权重,评估和比较各个方案的可行性和优劣程度,作出决策。
AHP方法的主要优势在于能够将复杂的决策问题进行层次化的细分,从而使决策问题更加清晰和可操作。
它考虑了决策者的主观权重评估和相对重要性比较,充分考虑了不同准则和方案之间的相互关系。
此外,AHP方法还能够处理不确定性和模糊性的问题,对决策者的专业知识和经验有较高的要求,同时也可以用来解决多个决策者之间的决策问题。
层次分析法(AHP法)

A~成对比较阵 A是正互反阵 稍加分析就发 现上述成对比 较矩阵有问题
成对比较的不一致情况
1 A 2
一致比较
1/ 2 1
4 7
不一致
a21 2 (C2 : C1 )
a13 4 (C1 : C3 )
a23 8 (C2 : C3 )
允许不一致,但要确定不一致的允许范围
1 1 B1 2 1 5
2 1 1 2
5 2 1
1 3 4 1 B4 1 1 3 1 1 1 4
1 B2 3 8 1 1 3 8 1 1 3 3 1
1 2 1 1 7 1 5 1 5
1 B3 1 1 3
4 7 1 2 3
1 1 1 3
3 5 1 2 1 1
3 3 1
3 5 1 3 1 1
层次分析法(AHP法) (Analytic Hierarchy Process)
层次分析法(AHP)是美国运筹学家匹茨堡大学教 授萨蒂(T.L.Saaty)于上世纪70年代初,为美国国防 部研究“根据各个工业部门对国家福利的贡献大小而 进行电力分配”课题时,应用网络系统理论和多目标 综合评价方法,提出的一种层次权重决策分析方法。 这种方法的特点是在对复杂的决策问题的本质、影 响因素及其内在关系等进行深入分析的基础上,利用 较少的定量信息使决策的思维过程数学化,从而为多 目标、多准则或无结构特性的复杂决策问题提供简便 的决策方法。 是对难于完全定量的复杂系统作出决策的模型和方 法。
三、层次分析法的步骤和方法
运用层次分析法构造系统模型时,大体可以分 为以下四个步骤: 1. 建立层次结构模型 2. 构造判断(成对比较)矩阵 3. 层次单排序及其一致性检验 4. 层次总排序及其一致性检验
常用综合评价方法介绍

常用综合评价方法介绍常用的综合评价方法有很多种,每种方法都有其特点和适用范围。
下面将介绍几种常用的综合评价方法。
1.层次分析法层次分析法是一种定性与定量相结合的综合评价方法,它将复杂的问题分解成多个相对简单的子问题,通过构建层次结构,运用专家判断和统计分析,确定各个层次指标的权重,最终得到综合评价结果。
层次分析法适用于评价对象多指标多层次的情况,例如企业绩效评价、项目优选等。
2.主成分分析法主成分分析法是一种将多个相关指标转化为少数几个无关综合指标的方法。
它通过线性变化将原始指标进行降维处理,使得新的综合指标能够尽量表征原始指标的信息。
主成分分析法适用于多指标多层次的综合评价问题,例如社会经济发展水平、企业形象评价等。
3.灰色关联度分析法灰色关联度分析法是一种通过比较样本序列与参考序列的演化趋势,确定各个指标之间的相关度,从而进行综合评价的方法。
该方法适用于评价对象历史数据不完备、发展不平衡的情况,例如经济增长速度评价、产品市场竞争力评价等。
4.评价树方法评价树方法是一种将繁杂的评价体系分解为多个子问题的树状结构,通过权重计算和综合评分,得到最终的综合评价结果。
评价树方法适用于评价对象多指标多层次的情况,例如职业发展评价、环境质量评价等。
5.熵权法熵权法是一种基于信息熵理论的综合评价方法,它通过计算指标的熵值和权重,综合考虑各个指标的重要程度和发展状况。
熵权法适用于评价指标数量大、权重不确定的情况,例如学生综合素质评价、城市发展评价等。
以上是常用的几种综合评价方法,每种方法都有其适用的场景和特点。
在实际应用中,可以根据具体的评价对象和问题进行选择,或者根据不同方法的结果进行对比,以得到更准确和全面的评价结论。
层次分析法

1. 层次分析法(The analytic hierarchy process, 简称AHP)用于解决评价类问题,例如:选择那种方案最好、哪位运动员或者员工表现的更优秀。
评价类问题可以用打分解决。
层次分析法 (The Analytic Hierarchy Process即 AHP)是由美国运筹学家、匹兹堡大学教授T. L. Saaty于20世纪70年代创立的一种系统分析与决策的综合评价方法, 是在充分研究了人类思维过程的基础上提出来的, 它较合理地解决了定性问题定量化的处理过程。
AHP的主要特点是通过建立递阶层次结构, 把人类的判断转化到若干因素两两之间重要度的比较上, 从而把难于量化的定性判断转化为可操作的重要度的比较上面。
在许多情况下, 决策者可以直接使用AHP进行决策, 极大地提高了决策的有效性、可靠性和可行性, 但其本质是一种思维方式, 它把复杂问题分解成多个组成因素, 又将这些因素按支配关系分别形成递阶层次结构, 通过两两比较的方法确定决策方案相对重要度的总排序。
整个过程体现了人类决策思维的基本特征,即分解、判断、综合,克服了其他方法回避决策者主观判断的缺点。
1.1模型介绍1.1.1引例高考结束了,小明该选择华科还是五武大?小明最关心四个方面:学习氛围0.4、就业前景0.3、男女比例0.2、校园景色0.19(权重和为1)(1)学习氛围:经查阅资料查到“学在华工,玩在武大,爱在华师”一句话,因此在学习氛围方面给华科0.7,给武汉大学0.3.(2)就业前景:搜索两所学校就业率差不多,因此在就业前景方面对两所学校均赋予0.5的权重。
(3)男女比例:经查询,华科男女比例2:1,武大1.35:1,因此武大0.7分,华科0.3分(4)校园景色:华科0.25分,武大0.75分整理权重表格:指标权重华科武大学习氛围0.40.70.3就业前景0.30.50.5男女比例0.20.30.7校园景色0.10.250.75华科最终的得分:0.7*0.4+0.5*0.3+0.3*0.2+0.25+*0.1=0.515分武大最终得分:0.3*0.4+0.5*0.3+0.7*0.2+0.75*0.1=0.485分1.1.2 模型1、关键词:打分法、确定评价指标、形成评价体系2、解决评价类问题,首先确定以下三个问题:(1)评价的目标是什么(2)为了达到这个目标有哪几种可选的方案(3)评价的准则或者说指标是什么(我们根据什么东西来评价好坏)。
层次分析法

这种方法既不单纯追求高深数学,又不片面地注重行为、逻辑、推理,而是把定性方法与定量方法有机地结 合起来,使复杂的系统分解,能将人们的思维过程数学化、系统化,便于人们接受,且能把多目标、多准则又难 以全部量化处理的决策问题化为多层次单目标问题,通过两两比较确定同一层次元素相对上一层次元素的数量关 系后,最后进行简单的数学运算。计算简便,并且所得结果简单明确,容易为决策者了解和掌握。
2.定量数据较少,定性成分多,不易令人信服
在如今对科学的方法的评价中,一般都认为一门科学需要比较严格的数学论证和完善的定量方法。但现实世 界的问题和人脑考虑问题的过程很多时候并不是能简单地用数字来说明一切的。层次分析法是一种带有模拟人脑 的决策方式的方法,因此必然带有较多的定性色彩。
3.指标过多时,数据统计量大,且权重难以确定
谢谢观看
计算步骤
ห้องสมุดไป่ตู้
计算步骤
1.建立层次结构模型
将决策的目标、考虑的因素(决策准则)和决策对象按它们之间的相互关系分为最高层、中间层和最低层, 绘出层次结构图。最高层是指决策的目的、要解决的问题。最低层是指决策时的备选方案。中间层是指考虑的因 素、决策的准则。对于相邻的两层,称高层为目标层,低层为因素层。
2.构造判断(成对比较)矩阵
在确定各层次各因素之间的权重时,如果只是定性的结果,则常常不容易被别人接受,因而Saaty等人提出 一致矩阵法,即不把所有因素放在一起比较,而是两两相互比较,对此时采用相对尺度,以尽可能减少性质不同 的诸因素相互比较的困难,以提高准确度。如对某一准则,对其下的各方案进行两两对比,并按其重要性程度评 定等级。为要素与要素重要性比较结果,表1列出Saaty给出的9个重要性等级及其赋值。按两两比较结果构成的 矩阵称作判断矩阵。判断矩阵具有如下性质:
层次分析法

层次分析法层次分析法是一种应用广泛的决策分析方法,它通过构建层次结构和比较矩阵,来对不同因素进行排序和权重分配,帮助决策者做出合理的决策。
本文将介绍层次分析法的基本原理、应用领域以及一些实际案例。
一、层次分析法的基本原理层次分析法由美国运筹学家托马斯·L·塞蒂提出,它是一种定性和定量相结合的分析方法,能够综合考虑多个因素的重要性和相互关系。
它的基本原理如下:1. 层次结构:将决策问题分解成多个层次,从上至下逐级细化。
顶层是目标层,中间层是准则层,最底层是方案层。
2. 比较矩阵:在每个层次内,通过构建比较矩阵来判断各因素之间的重要性。
比较矩阵是一个n×n的正互反矩阵,其中n是该层次因素的个数。
通过对各因素进行两两比较,得出相对重要性的判断。
3. 加权优先向量:通过对比较矩阵进行特征向量的计算,可以得到各个因素的权重。
特征向量是对比较矩阵的主特征值对应的特征向量,也称为特征向量法。
4. 一致性检验:通过一致性指标和一致性比率的计算,判断构建的比较矩阵是否合理。
一致性指标表示了矩阵的内部一致性程度,一致性比率则是对一致性指标进行归一化,判断是否满足一致性。
5. 综合评价:通过计算得出的权重,进行乘积运算和累加运算,得到方案的综合评价值。
综合评价值越高,方案越优。
二、层次分析法的应用领域层次分析法在许多领域都有广泛的应用,包括经济学、管理学、环境科学、社会科学等。
下面是一些常见的应用领域:1. 投资决策:在投资决策中,可以将不同的投资方案作为方案层,通过比较各个方案的风险性、收益性等因素,来确定投资方向。
2. 供应链管理:在供应链管理中,可以将供应商的价格、质量、交货周期等因素作为准则层,通过比较不同供应商的重要性,来选择合适的供应商。
3. 项目评估:在项目评估中,可以将项目的成本、时限、风险等因素作为准则层,通过比较各个因素的重要性,来评估项目的可行性和优先级。
4. 人才选拔:在人才选拔中,可以将候选人的学历、工作经验、专业技能等因素作为准则层,通过比较各个因素的重要性,来确定最佳人选。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 层次分析法2.1层次分析法的简单介绍层次分析法(Analytic Hierarchy Process 简称AHP),是20世纪80年代由美国运筹学教授T. L. Satty 提出的一种简便、灵活而又实用的多准则决策方法,它根据问题的性质和要达到的目标分解出问题的组成因素,并按因素间的相互关系将因素层次化,组成一个层次结构模型,然后按层分析,最终获得最低层因素对于最高层(总目标)的重要性权值。
在经营决策中经常会遇到多指标、多方案的综合比较问题, 由于经常出现多个方案互有好坏的情况。
因此要从成百上千个指标、方案中选择最佳的组合方案就成了一个较为麻烦的问题。
在实际应用中,尽管人们还不能解决多个方案的综合比较问题, 但是如果就2个方案之间进行比较还是可以判断出相对好坏的。
于是, 设法在数学上找到1种方法, 使之从多方案比较过渡到两两之间的比较,从而解决多方案比较的问题, 这就是AHP法的基本思想。
2.2层次分析法的基本层次结构第一类:最高层,又称顶层、目标层。
第二类:中间层,又称准则层。
第三类:最底层,又称措施层、方案层。
层次结构图(一)层次之间的支配关系是完全的结构模型层(二) 层次之间的支配关系是不完全的结构模型2.3 判断矩阵设要比较n 个因素)...,,(21n y y y y =对目标z 的影响,从而确定它们在z 中所占的比重,每次取两个因素i y 和j y 用ij a 表示i y 与j y 对z 的影响程度之比,按1~9的比例标度来度量ij a ,n 个被比较的元素构成一个两两比较(成对比较)的判断矩阵.)(n n ij a ⨯=A 显然,判断矩阵具有性质:⎪⎪⎪⎪⎪⎭⎫⎝⎛=A nn n n n n a a aa a a a a a212222111211 ,0>ij a ,1ijji a a =1=ii a )...,2,1,(n j i =所以又称判断矩阵为正互反矩阵(简称正互阵,又称成对比较阵)。
现在,来看看如何确定ij a 的取值?T.L.Satty 的做法是用数字1~9及其倒数作为标度(见表2-1)。
选择1~9方法是基与下述根据:(1)在估计事物质的区别时,人们常用五种判断表示,即相等、较强、强、很强、绝对强。
当需要更高精度时,还可以在相邻判断之间做出比较,这样,总共有九个等级,它们有连贯性,便于在实践中应用。
(2)心理学家认为,人们同时在比较若干个对象时,能够区别差异的心理学极限为27±个对象,这样它们之间的差异正好可以用九个数字表示出来。
Satty 还将1~9标度方法同另外一种26标度方法进行过比较,结果表明1~9标度是可行的,并且能够地将思维判断数量化。
表2-1判断值 比较关系 强烈程度 1 jiY Y =相等 3 j i Y Y ∞> i Y 稍好于j Y 5 j i Y Y >> i Y 明显好于j Y 7 j i Y Y >>> i Y 比j Y 好得多 9 j i Y Y >i Y 极端好于j Y 1/3 j i Y Y < i Y 稍次于j Y 1/5 j i Y Y << i Y 明显次于j Y 1/7 j i Y Y <<< i Y 比j Y 次得多 1/9j i Y Y ∞<i Y 绝对次于j Y2,4 ,6 ,8及 1/2 , 1/4 , 1/6 , 1/8 表示强烈程度在相应相邻等级之间2.4一致性检验虽然通过两两成对比较得到的判断矩阵不一定满足一致性,但人们还是希望能找到一个数量标准,用它来衡量矩阵A 不一致的程度。
假如,把一块单位重量的分成块,其重量分别为),,2,1(n i w i =,则n y y y ,,,21 在z 中所占的比重可按其重量排序,即为T ),,,21n w w w (,i y 与j y 的相对重量为jiij w w a =,这样就能得到判断矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=A n nn n n n w w w w w w w w w w w w w w w w w w212221212111显然,矩阵A 是满足一致性的互反矩阵,并且有[]⎥⎦⎤⎢⎣⎡=A T n n w w w w w w 1,,1,1,,,2121 记T=),,,(21n w w w w ,则 []w n w w w w w w w w n n =⎥⎦⎤⎢⎣⎡⋅=A T,,,1,1,12121 即对于一致的判断矩阵而言,排序向量w就是A 的特征向量。
反之,若A 是一致性的正互反矩阵,则有性质:1=ii a , jiij a a 1=, ik ik ij a a a =⋅ 因此j ij i a a a 11=⋅ ,即 j i ij a a a 111=,这样的话,就有()()n n n n ij a a a a a a a 1121111211,,,1,,1,1 T⨯⎥⎦⎤⎢⎣⎡==A类似地可以证明T⎭⎬⎫⎩⎨⎧='n a a a w 112111,,1,1 是A 的属于特征根n 的特征向量,并且由于A 是相对变量w 关于目标的判断阵,故w '为诸对象的一个排序。
除了以上性质外,一致的正互反矩阵A 还具有性质:A 的转置T A 也是一致的;的每一行均为任意指定的一行的倍数,从而1)(=A rank A 的最大特征根n =max λ,其余的特征根为0;设A 的最大特征根m ax λ对应有特征向量T =),,,(21n w w w w,则⋅=ji ij w w a由上面的性质有,当A 是一致阵时,n =max λ,将m ax λ对应特征向量标准化后,仍记为T =),,,(21n w w w w ,即w满足∑==ni i w 11称w 为权向量。
权向量w 在层次分析法中有很重要的作用,他表示n y y y ,,,21 在目标z 中的比重。
关于正互反矩阵,根据Perron-Frobenius 定理有结论:(1) 正互反阵存在正实数的最大特征根,这个特征根是单根,其余的特征根的模均小于它,并且这个最大的特征根有正的特征向量(特征向量的每一分量皆为正)。
(2) n 阶正互反矩阵()nm ija ⨯=A 是一致阵的充分必要条件是n =max λ。
这样若判断矩阵不具有一致性,则,max n >λ并且这时的权向量就不能真实地反映{}n y y y ,,,21 在目标z 中所占的比重,衡量不一致程度的数量指标被称作一致性指标,为 1max --=n nCI λ由于∑==ni i n 1λ,实际上CI 相当于1-n 个特征根nλλ,,2 (最大特征值m ax λ除外)的平均值。
当然对于一个阵来说,一致性指标CI 等于0,并且由此可以知CI 的值越小越好。
但是仅仅依靠CI 值来作为判断矩阵A 是否具有较好的一致性的指标是不够的,因为可能产生的片面性跟问题的因素多少、规模大小有关,即随着值的增大误差将增大。
为此,Satty 又提出平均随机一致性指标RI对于固定的n ,随机构造正互反矩阵A ,其中,ij a 是从91,,31,21,9,,2,1中随机抽取的,这样的A 最不一致,取充分大的子样(500个样本)得到A 的最大特征根的平均值max λ'定义 1max --=n nRI λ令RICICR =,称CR 为随机一致性比率,当1.0<CR 时,认为判断矩阵具有满意的一致性,否则就需要调整判断矩阵,使之具有满意的一致性。
组合的随机一致性比率RI CICR CR 1= 其中1CR 为准则层-目标层的随机一致性比率121)W CI CI CI CI i ,,(= 121)(W RI RI RI RI i ,,= 1W 是准则层-目标的权数向量,i i RI CI 是方案层对准则层各元素的值 n i 2,1=2.6层次单排序和层次总排序当判断矩阵为一致性矩阵时,可以用它对应于特征根入的特征向量作为被比较因素的权向量,当判断矩阵基本符合完全一致性条件,不一致程度可接受,能够允许其特征向量作为权数向量,否则要重新成对比较,对判断矩阵加以调整。
当方案小于等于两个时不用考虑一致性问题,当方案越多,其不一致程度就越大,CI 越大判断矩阵的不一致程度越严重。
所谓层次单排序是指根据判断矩阵计算对于上一层某因素而言本层次与之有联系的因素的重要性次序的权数。
它是本层次所有因素相对于上一层次而言的重要性进行排序的基础。
层次单排序可以归结为计算判断矩阵的特征根和特征向量问题即对判断矩阵B ,计算满足W max W λ=B 的特征根与特征向量。
式中m ax λ为B 的最大特征根;W 为对应于m ax λ的正规化特征向量;W 的分量i W 只是相应因素单排序的权值。
层次总排序利用同一层次单排序的结果,就可以计算针对上一层次而言本层次所有因素重要性的权数,这就是层次总排序。
层次总排序需要从上而下逐层顺序进行,对于最高层下面的第二层,其层次单排序即为总排序,假定上一层所有因素m A A A ,,21得到的总排序已完成,得到的权数分别为:m a a a ,,21,与i a 对应的本层因素n B B B ,,21单排序结果为:i n i i b b b ,,,21 这里,若j B 与iA 无关则0=ijb 层次总排序如表2-2所示。
显然111=∑∑==n i mj i j i b a 即层次总排序仍然是归一化正规向量。
表2-2 层次1A2Am A 层次的总排序1a2a m a 1B11b21bm b 1∑=mi i i b a 11 2B12b22bm b 2∑=mi i i ba 12n B1n b2n bm n b∑=mi i ni ba 1此外最后的层次总排序及一致性检验还可以根据因素层各层从下往上的顺序,每层都作排序和一致性检验,直至得到各因素对目标层)(S 的权数向量W ,以各方案对准则层每个因素的权数向量i W 和准则层的各因素对目标层的权数向量2W 计算组合权数向量,对各方案作最后的排序,并通过一致性检验,组合权数向量W 的计算公式为 23W W W ⋅=其中3W 为 将i W 作为列向量所构成矩阵。