层次分析法模型分析解析

合集下载

评估模型研究_层次分析法

评估模型研究_层次分析法

2•评估方法概述2.1层次分析法(AHP)层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty教授于20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法,其基本思路是评价者通过将复杂问题分解为若干层次和若干要素,并在同一层次的各要素之间简单地进行比较、判断和计算。

这样就可以得出不同替代方案的重要度,从而为选择最优方案提供决策依据。

运用层次分析法建模,大体上可按下面四个步骤进行:(1)建立递阶层次结构模型;(2)构造出各层次中的所有判断矩阵;(3)层次单排序及一致性检验;(4)层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

2.1.1递阶层次结构的建立与特点应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类:(1)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(2)中间层:这一层次中包11 1 1 1 1 1 1 1 1 1 1Yl ¥2....Yr 21 222t采翌曰标图1 AHP评估层次结构示意图评住项目第一自讦估碘目班I第Z尉含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(3)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

层次分析法——精选推荐

层次分析法——精选推荐

一、层次分析模型和一般步骤1、定义:层次分析法是一种定性与定量分析相结合的多因素决策分析方法。

这种方法将决策者的经验判断给于数量化,在目标因素结构复杂且缺乏必要数据的情况下使用更为方便,因而在实践中得到广泛应用。

2、层次分析的四个基本步骤:(1)在确定决策的目标后,对影响目标决策的因素进行分类,建立一个多层次结构;(2)比较同一层次中各因素关于上一层次的同一个因素的相对重要性,构造成对比较矩阵;(3)通过计算,检验成对比较矩阵的一致性,必要时对成对比较矩阵进行修改,以达到可以接受的一致性;(4)在符合一致性检验的前提下,计算与成对比较矩阵最大特征值相对应的特征向量,确定每个因素对上一层次该因素的权重;计算各因素对于系统目标的总排序权重并决策。

二、建立层次结构模型将问题包含的因素分层:最高层——解决问题的目的;中间层——实现总目标而采取的各种措施、必须考虑的准则等。

也可称策略层、约束层、准则层等;最低层——用于解决问题的各种措施、方案等。

把各种所要考虑的因素放在适当的层次内。

用层次结构图清晰地表达这些因素的关系。

例1购物模型某一个顾客选购电视机时,对市场正在出售的四种电视机考虑了八项准则作为评估依据,建立层次分析模型如下:〔例2〕选拔干部模型练习:画出下列问题的层次模型评选优秀学校某地区有三个学校,现在要全面考察评出一个优秀学校。

主要考虑以下几个因素: (1)教师队伍(包括平均学历和年龄结构)(2)教学设施(3)教学工作(包括课堂教学,课外活动,统考成绩和教学管理) (4)文体活动三、构造成对比较矩阵比较第 i 个元素与第 j 个元素相对上一层某个因素的重要性时,使用数量化的相对权重aij来描述。

设共有 n 个元素参与比较,则称n n ij a A ⨯=)( 为成对比较矩阵。

成对比较矩阵中aij的取值可参考 Satty 的提议,aij按下述标度进行赋值。

在 1— 9及其倒数中间取值。

对例 2, 选拔干部考虑5个条件:品德x1,才能x2,资历 x3 ,年龄x4,群众关系x5。

层次分析法步骤解析—根法、和法、幂法

层次分析法步骤解析—根法、和法、幂法

层次分析法(AHP)AHP(Analytic Hierarchy Process)方法,是由20世纪70年代由美国著名运筹学学家T.L.Satty提出的。

它是指将决策问题的有关元素分解成目标、准则、方案等层次,在此基础上进行定性分析和定量分析的一种决策方法。

这一方法的特点,是在对复杂决策问题的本质、影响因素及其内在关系等进行深入分析之后,构建一个层次结构模型,然后利用较少的定量信息,把决策的思维过程数学化,从而为求解多准则或无结构特性的复杂决策问题提供了一种简便的决策方法。

AHP十分适用于具有定性的,或定性定量兼有的决策分析。

这是一种十分有效的系统分析和科学决策方法,现在已广泛地应用在企业信用评级、经济管理规划、能源开发利用与资源分析、城市产业规划、企业管理、人才预测、科研管理、交通运输、水资源分析利用等方面。

一、递阶层次结构的建立一般来说,可以将层次分为三种类型:(1)最高层:只包含一个元素,表示决策分析的总目标,因此也称为总目标层。

(2)中间层:包含若干层元素,表示实现总目标所涉及的各子目标,包含各种准则、约束、策略等,因此也称为目标层。

(3)最低层:表示实现各决策目标的可行方案、措施等,也称为方案层。

典型的递阶层次结构如下:总目标m一个好的递阶层次结构对解决问题极为重要,因此在建立递阶层次结构时,应注意到:(1)从上到下顺序地存在支配关系,用直线段(作用线)表示上一层次因素与下一层次因素之间的关系,同一层次及不相邻元素之间不存在支配关系。

(2)整个结构不受层次限制。

(3)最高层只有一个因素,每个因素所支配元素一般不超过9个,元素过多可进一步分层。

(4)对某些具有子层次结构可引入虚元素,使之成为典型递阶层次结构。

二、构造比较判断矩阵设有m个目标(方案或元素),根据某一准则,将这m个目标两两进行比较,把第i个目标(i=1,2,…,m)对第j个目标的相对重要性记为a ij,(j=1,2,…,m),这样构造的m阶矩阵用于求解各个目标关于某准则的优先权重,成为权重解析判断矩阵,简称判断矩阵,记作A=(a ij)m×m。

评估模型研究_层次分析法

评估模型研究_层次分析法

2.评估方法概述2.1 层次分析法(AHP)层次分析法(Analytic Hierarchy Process,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。

它是美国运筹学家T. L. Saaty 教授于20世纪70年代初期提出的一种简便、灵活而又实用的多准则决策方法。

人们在进行社会的、经济的以及科学管理领域问题的系统分析中,面临的常常是一个由相互关联、相互制约的众多因素构成的复杂而往往缺少定量数据的系统。

层次分析法为这类问题的决策和排序提供了一种新的、简洁而实用的建模方法,其基本思路是评价者通过将复杂问题分解为若干层次和若干要素,并在同一层次的各要素之间简单地进行比较、判断和计算。

这样就可以得出不同替代方案的重要度,从而为选择最优方案提供决策依据。

运用层次分析法建模,大体上可按下面四个步骤进行:(1)建立递阶层次结构模型;(2)构造出各层次中的所有判断矩阵;(3)层次单排序及一致性检验;(4)层次总排序及一致性检验。

下面分别说明这四个步骤的实现过程。

2.1.1 递阶层次结构的建立与特点应用AHP分析决策问题时,首先要把问题条理化、层次化,构造出一个有层次的结构模型。

在这个模型下,复杂问题被分解为元素的组成部分。

这些元素又按其属性及关系形成若干层次。

上一层次的元素作为准则对下一层次有关元素起支配作用。

这些层次可以分为三类:(1)最高层:这一层次中只有一个元素,一般它是分析问题的预定目标或理想结果,因此也称为目标层。

(2)中间层:这一层次中包图1 AHP评估层次结构示意图含了为实现目标所涉及的中间环节,它可以由若干个层次组成,包括所需考虑的准则、子准则,因此也称为准则层。

(3)最底层:这一层次包括了为实现目标可供选择的各种措施、决策方案等,因此也称为措施层或方案层。

递阶层次结构中的层次数与问题的复杂程度及需要分析的详尽程度有关,一般地层次数不受限制。

层次分析法及模糊综合评价

层次分析法及模糊综合评价

为残缺元素
Cw w
3, w (0.5714,0.2857,0.1429)T
Aw w
2 2 0 A 1/ 2 1 2
0 1/ 2 2
aij , i j, aij
aij 0,
i j, aij
mi 1, i j
mi~A第i 行 中的个数
6. 更复杂的层次结构 • 递阶层次结构:层内各元素独立,无相互影响和 支配;层间自上而下、逐层传递,无反馈和循环。 • 更复杂的层次结构:层内各元素间存在相互影响 或支配;层间存在反馈或循环。
• 精确计算的复杂和不必要
• 简化计算的思路——一致阵的任一列向量都是特征向量, 一致性尚好的正互反阵的列向量都应近似特征向量,可取 其某种意义下的平均。
和法——取列向量的算术平均
1 2 例 A 1/ 2 1
6 列向量 0.6 0.615 0.545 0.364 平均 0.324 w
为 A 的 截集,其中, 叫置信水平。
模糊综合评价
什么是事物的模糊性? 指客观事物在中介过渡时所呈现的“亦此亦彼性”。
(1)清晰的事物——每个概念的内涵(内在涵义或本质属性) 和外延(符合本概念的全体)都必须是清楚的、不变的,每个 概念非真即假,有一条截然分明的界线,如男、女。
(2)模糊性事物——由于人未认识,或有所认识但信息不够丰富, 使其模糊性不可忽略。它是一种没有绝对明确的外延的事物。 如美与丑等。人们对颜色、气味、滋味、声音、容貌、冷暖、 深浅等的认识就是模糊的。
定理1 正矩阵A 的最大特征根是正单根,对应
正特征向量w,且
lim
k
Ak e eT Ake
w,
e (1,1,,1)T
正互反阵的最大特征根是正数, 特征向量是正向量。

层次分析法模型

层次分析法模型

二、模型的假设1、假设我们所统计与分析的数据,都就是客观真实的;2、在考虑影响毕业生就业的因素时,假设我们所选取的样本为简单随机抽样,具有典型性与普遍性,基本上能够集中反映毕业生就业实际情况;3、在数据计算过程中,假设误差在合理范围之内,对数据结果的影响可以忽略、三、符号说明四、模型的分析与建立1、问题背景的理解随着我国改革开放的不断深入,经济转轨加速,社会转型加剧,受高校毕业生总量的增加,劳动用工管理与社会保障制度,劳动力市场的不尽完善,以及高校的毕业生部分择业期望过高等因素的影响,如今的毕业生就业形势较为严峻、为了更好地解决广大学生就业中的问题,就需要客观地、全面地分析与评价毕业生就业的若干主要因素,并将它们从主到次依秩排序、针对不同专业的毕业生评价其就业情况,并给出某一专业的毕业生具体的就业策略、2、方法模型的建立(1)层次分析法层次分析法介绍:层次分析法就是一种定性与定量相结合的、系统化、层次化的分析方法,它用来帮助我们处理决策问题、特别就是考虑的因素较多的决策问题,而且各个因素的重要性、影响力、或者优先程度难以量化的时候,层次分析法为我们提供了一种科学的决策方法、通过相互比较确定各准则对于目标的权重,及各方案对于每一准则的权重、这些权重在人的思维过程中通常就是定性的,而在层次分析法中则要给出得到权重的定量方法、我们现在主要对各个因素分配合理的权重,而权重的计算一般用美国运筹学家T、L、Saaty教授提出的AHP法、(2)具体计算权重的AHP 法AHP法就是将各要素配对比较,根据各要素的相对重要程度进行判断,再根据W、计算成对比较矩阵的特征值获得权重向量kStep1、 构造成对比较矩阵假设比较某一层k 个因素12,,,k C C C L 对上一层因素ο的影响,每次两个因素i C 与j C ,用ij C 表示i C 与j C 对ο的影响之比,全部比较结果构成成对比较矩阵C ,也叫正互反矩阵、*()k k ij C C =,0ij C >,1ij jiC C=, 1ii C =、若正互反矩阵C 元素成立等式:* ij jk ik C C C = ,则称C 一致性矩阵、标度ij C含义1i C 与j C 的影响相同 3 i C 比j C 的影响稍强 5 i C 比j C 的影响强 7 i C 比j C 的影响明显地强 9i C 比j C 的影响绝对地强2,4,6,8i C 与j C 的影响之比在上述两个相邻等级之间11,,29Li C 与j C 影响之比为上面ij a 的互反数 Step2、 计算该矩阵的权重通过解正互反矩阵的特征值,可求得相应的特征向量,经归一化后即为权重向量12 = [ , ,..., ]T kkkkkQ q qq ,其中的ikq 就就是i C 对ο的相对权重、由特征方程A-I=0λ,利用Mathematica 软件包可以求出最大的特征值max λ与相应的特征向量、Step3、 一致性检验1)为了度量判断的可靠程度,可计算此时的一致性度量指标CI :max1kCI k λ-=-其中maxλ表示矩阵C 的最大特征值,式中k 正互反矩阵的阶数,CI 越小,说明权重的可靠性越高、2)平均随机一致性指标RI ,下表给出了1-14阶正互反矩阵计算1000次得到3)当0.1CR RI=<时,(CR 称为一致性比率,RI 就是通过大量数据测出来的随机一致性指标,可查表找到)可认为判断就是满意的,此时的正互反矩阵称之为一致性矩阵、进入Step4、 否则说明矛盾,应重新修正该正互反矩阵、转入Step2、 Step4、 得到最终权值向量将该一致性矩阵任一列或任一行向量归一化就得到所需的权重向量、计算出来的准则层对目标层的权重即不同因素的最终权重,这样一来,我们就可以按权重大小将进行排序了、 (3)组合权向量的计算成对比较矩阵显然非常好体现了我们研究对象——各个因素之间权重的比较状态,能够有效地全面而深刻地表现出有关的数据信息,显然也就是矩阵数学模型的重要应用价值、 因素往往就是有层次的,我们经常在进行决策分析时,要进行多方面、多角度、多层次的分析与研究,把我们的决策选择建立在深刻而广泛的分析研究基础之上的、一个总的指标下面可以有第一层次的各个方面的指标、因素、成份、特征性质、组成成分等等,而每个这种因素又有新的成份在里面、这就就是决策分析的数学模型的真正的意义之所在、定理1:对于三决策问题,假设第一层只有一个因素,即这就是总的目标,决策总就是最后要集中在一个总目标基础之上的东西,然后才能进行最后的比较、又假设第二层与第三层因素各有n 、m 个,并且记第二层对第一层的权向量(即构成成份的数量大小、成份的比例、影响程度的大小的数量化指标的量化结果、所拥有的这种属性的程度大小等等多方面的事情的量化的结果)为:(2)(2)(2)(2)12(,,,)Tn w w w w =L , 而第3层对第2层的全向量分别就是:(3)(3)(3)(3)12(,,,)Tk k k km w w w w =L ,这表示第3层的权重大小,具体表示的就是第2层中第k 个因素所拥有的面对下一层次的m 个同类因素进行分析对比所产生的数量指标、那么显然,第三层的因素相对于第一层的因素而言,其权重应当就是:先构造矩阵,用 (3)k w 为列向量构造一个方阵 (3)(3)(3)(3)12(,,)nWw w w=L,这个矩阵的第一行就是第3层次的m 个因素中的第1个因素,通过第2层次的n 个因素传递给第1层次因素的权重,故第3层次的m 个因素中的第i 个因素对第1层次的权重为 (2)(3)1nkkik w w=∑,从而可以统一表示为:(1)(3)(2)wWw=,它的每一行表示的就就是三层(一般就是方案层)中每一个因素相对总目标的量化指标、定理2:一般公式如果共有s 层,则第k 层对第一层(设只有一个因素)的组合权向量为()()(1),3,4,k k k k s wWw-==L ,其中矩阵 ()k W的第i 行表示第k 层中的第i 个因素,相对于第1k -层中每个因素的权向量;而列向量 (1)k w-则表示的就是第1k -层中每个因素关于第一层总目标的权重向量、于就是,最下层对最上层的的组合权向量为:()()(1)(3)(2)s s s wWWWw-=L ,实际上这就是一个从左向右的递推形式的向量运算、逐个得出每一层的各个因素关于第一层总目标因素的权重向量、 (4)灰色关联度综合评价法灰色系统的关联分析主要就是对系统动态发展过程的量化分析,它就是根据因素之间发展态势的相似或相异程度,来衡量因素间接近的程度,实质上就就是各评价对象与理想对象的接近程度,评价对象与理想对象越接近,其关联度就越大、关联序则反映了各评价对象对理想对象的接近次序,即评价对象与理想对象接近程度的先后次序,其中关联度最大的评价对象为最优、因此,可利用关联序对所要评价的对象进行排序比较、利用灰色关联度进行综合评价的步骤如下:1)用表格方式列出所有被评价对象的指标、2)由于指标序列间的数据不存在运算关系,因此必须对数据进行无量纲化处理、3)构造理想对象,即把无量纲化处理后评价对象中每一项指标的最佳值作为理想对象的指标值、4)计算指标关联系数、其计算公式为:min max imax()()ik k ρρξ+=+∆∆∆∆其中min()()minminiikk k x x =-∆,max()()maxmaxiikk k x x =-∆,()ik ∆=()()ik k x x -,1,2,i n =L ,1,2,k m =L 、式中n 为评价对象的个数;m 为评价对象指标的个数;()ik ξ为第i 个对象第k 个指标对理想对象同一指标的关联系数;A 表示在各评价对象第k 个指标值与理想对象第k 个指标值的最小绝对差的基础上,再按1,2,,i n =L 找出所有最小绝对差中的最小值;max ∆表示在评价对象第k 个指标值与理想对象第k 个指标值的最大绝对差的基础上,再按1,2,,i n =L 找出所有最大绝对差中的最大值;min ∆为评价对象第k 个指标值与理想对象第k 个指标值的绝对差、ρ为分辨系数,ρ越小分辨力越大,一般ρ的取值区间[0,1],更一般地取ρ=0、5、5)确立层次分析模型、6)确定判断矩阵,计算各层次加权系数及加权关联度,加权关联度的计算公式为:()mk iikk γξω=∑,式中7为第i 个评价对象对理想对象的加权关联度,kω为第k 个指标的权重、7)依加权关联度的大小,对各评价对象进行排序,建立评价对象的关联序,从而可以得出关联度较大的对象,关联度越大其综合评价结果也越好、 (5)线性回归分析法假如对象(因变量)y 与p 个因素(自变量)12,,,p x x x L 的关系就是线性的,为研究她们之间定量关系式,做n 次抽样,每一次抽样可能发生的对象之值为12,,ny y yL它们就是在因素(1,2,,)i i p x =L 数值已经发生的条件下随机发生的、把第j 次观测的因素数值记为:12,,,jjpj x xx L (1,2,j n =L )那么可以假设有如下的结构表达式:1111011212201213011p p p p n np p y x x y x x y x x βββεβββεβββε⎧=++++⎪⎪=++++⎪⎨⎪⎪=++++⎪⎩L L L L L L L L L L L L L L L L L L 其中,01,,,pβββL 就是1p +个待估计参数,12,,,n εεεL 就是n 个相互独立且服从同一正态分布2(0,)N σ的随机变量、这就就是多元线性回归的数学模型、若令12n y y y y ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ,111212122212111p p n n np x xx x xx x xxx ⎛⎫ ⎪ ⎪=⎪ ⎪⎪⎝⎭L L L LLL L L,012p βββββ⎛⎫⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭M ,12n εεεε⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M则上面多元线性回归的数学模型可以写成矩阵形式:y x βε=+在实际问题中,我们得到的就是实测容量为n 的样本,利用这组样本对上述回归模型中的参数进行估计,得到的估计方法称为多元线性回归方程,记为%011p p y b b x b x =+++L式中,012,,,,p b b b b L 分别为01,,,p βββL 的估计值、 (6)主成分分析法1)主成分的定义设有p 个随机变量12,,,p x x x L ,它们可能线性相关,通过某种线性变换,找到p 个线性无关的随机变量12,,,pz z zL ,称为初始向量的主成分、设12(,,,)Tp αααα=L为p 维空间pR 中的单位向量,并记所有单位向量的集合为{}0|1TR ααα==,且记X =12(,,,)Tp X X X L 、2)用相关矩阵确定的主成分令*i E X -=,**(,),ij i j E r X X =1,2,,j p =L 、*X=***12(,,)Tp X X X L ,则1212121211()1pp ij p p R r r r rr r r⎛⎫ ⎪⎪== ⎪ ⎪ ⎪⎝⎭L LL L LLL 为*X 的协方程、类似地,我们可对R 进行相应的分析、3)主成分分析的一般步骤 第一步、选择主成分设X 的样本数据经过数据预处理后计算出的样本相关矩阵为121*21212111*()11()()pT p p p R ij n r r r rr XX r r⎛⎫ ⎪ ⎪=== ⎪- ⎪ ⎪⎝⎭L LL L LLL %%、 由特征方程0R I λ-=,求出p 个非负实根,并按值从大到小进行排列:120p λλλ≥≥≥≥L 、将iλ带入下列方程组,求出单位特征向量iα()0,1,2,,i i R I i m λα-==L确定m的方法就是使前m个主成分的累计贡献率达到85%左右、第二步、利用主成分进行分析在实际分析时,通常把特征向量的各个分量的取值大小与符号(正负)进行对照比较,往往能对主成分的直观意义作出合理的解释、利用主成分可以进行以下分析:a)对原指标进行分类;b)对原指标进行选择;c)对样品进行分类;d)对样品进行排序;e)预测分析、。

层次分析法

层次分析法在日常生活中,我们面临着各种各样的决策问题。

比如:假期旅游,是去风光秀丽的昆明,还是去迷人的北戴河,或者是去山水甲天下的桂林?一般会依据景色、费用、食宿条件、旅途等因素选择去哪个地方?再比如:面临毕业,可能有科研单位、企业、工厂等单位可以去选择,一般会依据工作环境、工资待遇、发展前途、住房条件等因素择业。

为了解决这些问题,德国运筹学家T.L.Saaty教授于70年代初期提出的一种简便、灵活而又实用的多准则决策方法——层次分析法(Analytic Hierarchy Process,简称AHP)。

层次分析法的基本步骤第一步:建立层次结构模型例:假期旅游,是去风光秀丽的昆明,还是去迷人的北戴河,或者是去山水甲天下的桂林?一般会依据景色、费用、居住、饮食、旅途等因素选择去哪个地方?某一个游客选择旅游景点时,对以上是三个旅游景点考虑了五项准则作为评估依据,建立层次分析模型如下:第二步:构造成对比较阵通过互相比较确定各准则对于目标的权重,即构造判断矩阵,在层次分析方法中,为使矩阵中的各要素的重要性能够进行定量显示,引进了矩阵判断标度(1-9标度法):设准则层包含5个准则,景色:1C ,费用:2C ,居住:3C ,饮食:4C ,旅途:5C 。

相对于目标层,选择旅游地,进行两两比较打分。

1143322175511111472311211351131135A ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭构造所有相对于不同准则的方案层判断矩阵相对于景色:1125112211152B ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭相对于费用:2111381313831B ⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭ 相对于居住:311311311133B ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭相对于饮食:413411131114B ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭相对于旅途:511141114441B ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭第三步:计算各个矩阵的最大特征值max λ和特征向量W Matlab 程序为: [x,lumda]=eig(A); r=abs(sum(lumda)); n=find(r==max(r)); max_lumda=lumda(n,n) max_x=x(:,n)利用matlab 程序计算各个矩阵的特征值和特征向量如下: 矩阵A 的特征值为m a x 5.073λ=,特征向量为:(2)(0.263,0.475,0.055,0.099,0.110)T W =矩阵1B 的特征值为max(1) 3.005λ=,特征向量为:(3)1(0.595,0.277,0.129)T W = 矩阵2B 的特征值为max(2) 3.002λ=,特征向量为:(3)2(0.082,0.236,0.682)T W = 矩阵3B 的特征值为max(3)3λ=,特征向量为:(3)3(0.429,0.429,0.142)T W = 矩阵4B 的特征值为max(4) 3.009λ=,特征向量为:(3)4(0.633,0.193,0.175)T W = 矩阵5B 的特征值为max(5)3λ=,特征向量为:(3)5(0.166,0.166,0.688)T W = 第四步:一致性检验判断矩阵通常是不一致的,但是为了能用它的对应于特征根的特征向量作为被比较因素的权向量,其不一致程度应在容许的范围内,如何确定这个范围?1.一致性指标:1nCI n λ-=-0CI =时,A 一致;CI 越大,A 的不一致性程度越严重。

第三讲层次分析法建模


将各个钢笔的质量、颜色、价格、外形、实用进行排序
经综合分析决定买哪支钢笔 与人们对某一复杂决策问题的思维、判断过程大体一致。
二、层次分析法建模的基本步骤
运用层次分析建模,大体上可按下面四个步骤进行: 1.建立层次结构模型 分析系统中各因素间的关系,建立系统的递阶层 次结构; 2.构造判断矩阵 对同一层次的各元素关于上一层次中某一准则的重要 性进行两两比较,构造两两比较的判断矩阵; 3.层次单排序与一致性检验 由判断矩阵计算被比较元素对于该准则的 相对权重,并进行判断矩阵的一致性检验;
则层)、最底层(方案层),各层可以根据问题的需要细分为若干子层。最 高层只有一个元素 ,用于分析预定目标或结果,中间层可由若干准则、子准 则层组成。最底层则由为实现目标而提供选择的各种措施与决策方案组成, 也称方案层。 2.每一层次中各元素所支配的元素一般不超过9个。
Байду номын сангаас

续—层次结构图

特点 1.元素按从上到下的顺序进行支配,同一层次元素之间不存在支 配关系; 2.目标层只有一个元素,每个元素所支配的元素不超过9个,否 则需要进一步分组。(图例说明)
CI
max
n
n 1

3.1190 3 0.0595 3 1
2 5 1 A 1 2 1 7 1 5 1 7 1
CI 0.0595 CR 0.1026 RI 0.58
可见此判断矩阵具有较好的一致性。
(四)层次总排序与一致性检验

层次总排序的概念 层次单排序后,还需要进行层次总排序,即计算同一层次所有元素对于最高层(总目标)相对 重要性的排序权值,称为层次总排序。这一过程是由最高层到最底层逐层进行的。

层次分析模型介绍

若干部门去。如能知道各部门对投入量的需求权 重,把权系数看成分配的百分比率即可。
层次分析模型介绍
§ 1.2 层次分析法的基本原理和步骤
运用层次分析法解决问题,大体可以分为 四个步骤:
1. 建立问题的递阶层次结构; 2. 构造两两比较判断矩阵; 3. 由判断矩阵计算被比较元素相对权重; 4. 计算各层次元素的组合权重。
层次分析模型介绍
§ 1.2.2 构造两两比较判断矩阵
在建立递阶层次结构以后,上下层次之间元 素的隶属关系就被确定了。假定上一层次的元素 Ck 作为准则,对下一层次的元素 A1, …, An 有支配 关系,我们的目的是在准则 Ck 之下按它们相对重 要性赋予 A1, …, An 相应的权重。
层次分析法
层次分析模型介绍
第一讲 层次分析法
层次分析模型介绍
§ 1.1 引言与引例
层次分析法(Analytic Hierarchy Process, 简称 AHP)是美国运筹学家 T. L. Saaty 教授于 上世纪 70 年代初期提出的一种简便、灵活而又 实用的多准则决策方法。
层次分析模型介绍
人们在进行社会的、经济的以及科学管理 领域问题的系统分析中,面临的常常是一个由 相互关联、相互制约的众多因素构成的复杂而 往往缺少定量数据的系统。
在这样的系统中,人们感兴趣的问题之一 是:就 n 个不同事物所共有的某一性质而言, 应该怎样对任一事物的所给性质表现出来的程 度(排序权重)赋值,使得这些数值能客观地 反映不同事物之间在该性质上的差异?
其中 x1 = 写作水平,x2 = 外语程度, x3 = 公关能力,x4 = 国内外政治经济时事, x5 =计算机操作知识,x6 = 容貌与风度, x7 = 体形高矮与肥瘦,x8 = 音色。

层次分析模型

面的表现。
方案层确定
01
方案层是层次分析模型中的最低层,代表了可供选 择的方案。
02
方案层的确定应考虑问题的实际情况和需求,确保 所选择的方案具有可行性和实用性。
03
方案层应具有可比性,以便于比较不同方案在满足 目标层和准则层要求方面的优劣。
03 判断矩阵与权重计算
判断矩阵的构造
确定因素
根据问题的要求,确定相关因素,并 按照因素间的相互关联影响以及隶属 关系将因素按不同的层次聚集组合, 形成一个多层次的分析结构模型。
详细描述
在投资项目选择中,层次分析模型可以将项目评估的多个方 面(如市场需求、技术可行性、财务指标等)进行权重分配 ,并比较不同项目之间的优劣。通过比较各因素的相对重要 性,决策者可以确定最佳的投资项目。
案例二:供应商选择问题
总结词
层次分析模型在供应商选择问题中,通过构建层次结构,将供应商的多个评价 指标(如价格、质量、交货期等)进行权重分配,帮助企业进行供应商的优选。
计算方案层对目标层的权重
根据子准则层对目标层的权重,以及方案层对子准则层的权重,计 算方案层对目标层的权重。这一步通常需要逐级进行。
排序方案
根据方案层对目标层的权重大小,对方案进行排序,得出优劣顺序。
多准则决策分析
多准则决策分析是层次分析法的扩展,它允许在决策过程中考虑 多个准则。通过层次分析法,可以确定各个准则的权重,以及方 案在各个准则下的表现(如得分、满意度等)。
目标层的确定应具有可度量性,以便于评估和比 较不同方案的优劣。
目标层应具有可实现性,确保所选择的方案能够 达到预期的目标。
准则层确定
准则层的确定是为了将目标层 细化为更具体的标准或准则, 以便于评估和比较不同方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n 数值的大小来衡量
A 的不一致程度。
定义:一致性指标
CI
n
n 1
其中 n 为 A 的对角线元素之和,也为 A 的特征根之和。
定义 随机一致性指标 RI
随机构造500个成对比较矩阵
则可得一致性指标
A1, A2 ,, A500
CI1, CI 2 ,, CI500
CI1 CI 2 CI 500 RI 500
1 1 B5 1 1 4 4
决策。此过程主观因素占有相当的比重给用数学方法解决问 题带来不便。美国运筹学家、 匹兹堡大学教授T.L.Saaty 等 人在20世纪七十年代提出了一种能有效处理这类问题的实用 方法—层次分析法。
层次分析法(Analytic Hierarchy Process, AHP )是一种
定性和定量相结合的、系统化的、层次化的分析方法。由于 它在处理复杂的决策问题上的实用性和有效性,很快在世界 范围得到重视。它的应用已遍及经济计划和管理、能源政策 和分配、行为科学、军事指挥、运输、农业、教育、人才、
随机一致性指标 RI 的数值: n
RI
1 2 500
500 n 1
n
1 2
0 0
3
0.58
4
0.90
5
1.12
6
1.24
7
1.32
8
1.41
9
1.45
10
1.49
11
1.51
CI 一般地,当一致性比率 CR 0.1 时,认为 A RI 的不一致程度在容许范围之内,可用其归一化特征向量
2. 构造成对比较矩阵
设某层有 n 个因素, X x1 , x 2 , , x n 要比较它们对上一层某一准则(或目标)的影响程度,确定
在该层中相对于某一准则所占的比重。(即把 n个因素对上
层某一目标的影响程度排序)
上述比较是两两因素之间进行的比较,比较时取1~9尺度。

aij表示第
i 个因素相对于第 j个因素的比较结果,则
B层的层次 总排序
a b
j 1 j
m
ij
A B
A 1, A 2 ,, A m
a1 , a2 ,, am
B1 B2 Bn
b11 b12 b21 b22 bn1 bn 2
b1m b2 m bnm
a b
j 1 m j 1 m j
m
j 1j
b1 b2 bn
a b a b
层次分析法
Analytic Hierarchy Process AHP
T.L.Saaty
层次分析法建模
一、 问题的提出
日常生活中有许多决策问题。决策是指在面临多种 方案时需要依据一定的标准选择某一种方案。
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、 外形等方面的因素选择某一支钢笔。 买饭,则要依据色、香、味、价格等方面的因素选 择某种饭菜。 例2 旅游 假期旅游,是去风光秀丽的苏杭,还是去迷人的北 戴河,或者是去山水甲天下的桂林,一般会依据景色、 费用、食宿条件、旅途等因素选择去哪个地方。
CR 0.1
进行检验。若通过,则可按照总排序权向量表示的结果进
行决策,否则需要重新考虑模型或重新构造那些一致性比
率 CR 较大的成对比较矩阵。
三 层次分析法建模举例
1 旅游问题 (1) 建模
Z
A1
A1 , A2 , A3 , A4 , A5分别表示景色、费用、 NhomakorabeaA2
A3
A4
A5
居住、饮食、旅途。
1 aij a ji
A aij n n
a11 a21 a n1
a1n a22 a2 n 成对比较矩阵 an 2 ann a12
比较尺度:(1~9尺度的含义) 尺度 含义 第 i个因素与第 j 个因素的影响相同 第 i 个因素比第 j 个因素的影响稍强 第 i 个因素比第 j 个因素的影响强 第 i 个因素比第 j 个因素的影响明强 第 i 个因素比第 j 个因素的影响绝对地强
n n
3. aii 1
比如,例2的旅游问题中,第二层A的各因素对目标层Z
Z A1 A1 1 A2 2 A3 1/4 A4 1/3 A5 1/3
A2 A3 A4 A5
1/2 4 3 3
A1 , A2 , A3 , A4 , A5
分别表示 景色、费用、 居住、饮食、 旅途。
1
1/7 1/5 1/5
分别记为:w1 , w 2 , , w n
w1 w2 1 wn w2

w1 wn w2 wn 1
成对比较阵和权向量 成对比较的不一致情况
1 A 2
1/ 2 1
4 7
a12 1/ 2 (C1 : C2 )
例3
择业 面临毕业,可能有高校、科研单位、企业等单位可以去
选择,一般依据工作环境、工资待遇、发展前途、住房条 件等因素择业。
例4
科研课题的选择 由于经费等因素,有时不能同时开展几个课题,一般依
据课题的可行性、应用价值、理论价值、被培养人才等因素 进行选题。
面临各种各样的方案进行比较、判断、评价、最后作出
A2
B2
A层m个因素A1, A2 ,, Am ,
对总目标Z的排序为:

Am
a1, a2 ,, am
B层n个因素对上层 A中因素为 Aj
的层次单排序为:
Bn
b1 j , b2 j ,, bnj
( j 1,2,, m)
B 层的层次总排序 即 B 层第 i 个因素对
总目标的权值如下:
B1 : a1b11 a2b12 amb1m B2 : a1b21 a2b22 amb2 m Bn : a1bn1 a2bn 2 ambnm
作为权向量,否则要重新构造成对比较矩阵,对 A 加 以调整。 一致性检验:利用一致性指标和一致性比率<0.1 及随机一致性指标的数值表,对 A 进行检验的过程。
4. 层次总排序及其一致性检验
确定某层所有因素对于总目标相对重要性的权值排序过程,
称为层次总排序
从最高层到最低层逐层进行。设:
Z
A1 B1
1 3 5 7 9
2,4,6,8表示第 i 个因素相对于第 j 个因素的影响介于上述 两个相邻等级之间。不难定义以上各尺度倒数的含义,
根据
1 aij a ji
由上述定义知,成对比较矩阵 A a ij 满足以下性质: 1.

aij 0 2.
A也称为正互反阵。
的影响两两比较结果如下:
1 aij a ji
检验。若检验通过,特征向量(归一化后)即为权向量;
若不通过,需要重新构造成对比较矩阵。
4.计算总排序权向量并做一致性检验 计算最下层对最上层总排序的权向量。 利用总排序一致性比率
a1CI1 a2CI 2 amCI m CR a1 RI1 a2 RI2 am RIm
j 1 j
2j
nj
层次总排序的一致性检验
设 B 层 B1, B2 ,, Bn 对上层( A 层)中因素 Aj ( j 1,2,, m) 的层次单排序一致性指标为 CI j ,随机一致性指标为 RI j 则层次总排序的一致性比率为: ,
a1CI1 a2CI 2 amCI m CR a1 RI1 a2 RI2 am RIm
一般分为三层,最上面为目标层,最下面为方案层,中
间是准则层或指标层。 例1 的层次结构模型 买钢笔 质 量 颜 色 价 格 外 形 实 用 目标层
准则层
方案层
可供选择的笔
例2 层次结构模型
选择 旅游地 目标层Z
景 色
费 用
居 住
饮 食
旅 途
准则层A
苏杭、北戴河、 桂林 方案层B
若上层的每个因素都支配着下一层的所有因素,或被下一层所 有因素影响,称为完全层次结构,否则称为不完全层次结构。
3. 层次单排序及一致性检验
层次单排序:确定下层各因素对上层某因素影响程度的过程。 用权值表示影响程度,先从一个简单的例子看如何确定权值。 例: 一块石头重量记为1,打碎分成
n
个小块,各块的重量
两两比较得成对比较矩阵 1 w 由右面矩阵可以看出, 2 A w1 wi wi wk wj wk w j wn a a a 即, ij ik kj w1
a13 4 (C1 : C3 )
一致比较
不一致
a23 8 (C2 : C3 )
w1 w2 w2 w2 wn w2 w1 wn w2 wn wn wn
允许不一致,但要确定不一致的允许范围
w1 考察完全一致的情况 w 1 W ( 1) w1 , w2 ,wn w2 A w1 令aij wi / w j T w (w1 , w2 ,wn ) ~ 权向量 wn w1
7
1 2 3
5
1 1
5
1 1
1/2 1/3
由上表,可得成对比较矩阵
1 2 1 A 4 13 1 3
1
2 1 1 7 1 5 1 5
4 7 1 2 3
3 5 1 2 1 1
3 5 1 3 1 1
旅游问题的成对比较矩阵共有6个(一个5阶,5个3阶)。 问题:两两进行比较后,怎样才能知道,下层各因素对上 层某因素的影响程度的排序结果呢?
4 7 1 2 3
1 1 1 3
3 5 1 2 1 1
相关文档
最新文档